Module Descriptions | Module designation | Basic Chemistry II (MPK 6337) | | | |---|---|--|--| | Semester(s) in which the module is taught | 1 | | | | Person responsible for the module | Dr. Siti Marwati, M.Si. | | | | Language | Indonesia | | | | Relation to curriculum | Compulsory / elective / specialisation | | | | Teaching methods | Lecture, discussion, project | | | | Workload (incl. contact hours, self-study hours) | Total workload of the activity is 136 hours per semester which consist of: 100 minutes/week for class learning 120 minutes/week for structured activities 120 minutes/week for individual study | | | | Credit points | 3 SKS (4.8 ECTS) | | | | Required and recommended prerequisites for joining the module | Creativity, innovation, and entrepreneurship | | | | Module objectives/intended
learning outcomes | On successful completion of the course students should be able to: - take responsibility for completing all lecture assignments, both theoretical and practical. - analyze theoretical concepts and basic applications of chemistry including thermodynamics, kinetics, chemical equilibrium, electrochemistry, elemental abundance, nuclear chemistry and macromolecules. - Collaborate in carrying out practical work in the laboratory - communicate the results of individual practical work systematically and logically. | | | | Content | Thermochemistry Chemical Kinetics chemical equilibrium Acid-Base Solution Solubility Redoks and Elektrochemical Elemental chemistry Nuclear Chemistry and Radioactivity Macromolecules | | | | Examination forms | Essay, E-poster, presentation, group discussion, and written tests | | | | Study and examination requirements | Minimum attendance at lectures is 75%. Final score (NA) is calculated as follows: | | | |------------------------------------|--|------------|-------------------------| | | Learning Outcome | Weight (%) | Technique of Assessment | | | 1 | 5 | Participation | | | 3 | 5 | Essay (Case Study) | | | 4 | 10 | Quiz | | | 6 | 50 | E-poster and Discussion | | | 1,2,4 | 15 | Mid-term Written Test | | | 3,5,6 | 15 | Final Exam Written Test | | Reading list | Made Sukarna (2007). Diktat Kimia Analisis 1. Analisis Kualitatif. Jurusan Pendidikan Kimia FMIPA UNY Crys Fajar Partana, dkk., (2002) Common Text Book Kimia Dasar 2, Yogyakarta, UNY dan JICA Buridge, Julia (2011), Chemistry 2nd Ed., New York, Mc Graw-Hill Chang, Reymond (2007), Chemistry 10Th Ed, New York, McGraw-Hill Jespersen, N.D. and Brady, J.E., (2004) Chemistry: The Molecular Nature of Matter, New York: John Wiley and Son | | | | Prepared by | Verified by: | Authorized by: | |-------------------------|--------------|---------------------------| | | | | | | | | | | | | | | | | | Dr. Siti Marwati, M.Si. | | Program Study Coordinator |