
Version Control and Git

What is version control?

Simply, a version control tool tracks change to code. This also includes creation and changes to
directories and their contents, that are located within some top level directory. Additionally,
metadata is stored to easily identify when a change was made, who made it, and what
comments the change was pushed with.

Why do we need it?

Most importantly for this class, version control saves all past versions of your code, so if
something goes wrong you can move back to a previous version. Furthermore, Pintos is a very
large codebase, so it’s necessary that related files are saved together in the repository. You’ll
have to edit multiple files at a time, so being able to push changes across the repository at once
will come in handy.

On a different note, version control is extremely useful for group work. Once a repository is
created and shared, every group member will be able to see its contents. This eliminates the
need for saving the entire project on one person’s machine and the code being inaccessible to
the other people. (I speak from my personal experience from Huffman and the 314 partner
projects, that situation is simply not it.) In addition to viewing the repository, all group members
can “commit” changes. Version control tools also track who committed each part, so it’s easy to
identify what each person worked on.

What is Git? (And GitHub? Or GitLab?)

Plainly, Git is a version control system, and GitHub, GitLab, and similar systems are
cloud-based services that allow you to manage Git repositories. Git is very widely used, as is a
good skill to have. I picked it up when I took OS, and it has already been helpful in other places,
like internships.

Sign in to your UTCS GitLab account with your CS login and password.

http://gitlab-fall25.cs.utexas.edu

Creating a Git Repository:

Once you’ve created your GitLab account, you can create new repositories. (We’ll be going over
how to do so from the website, but you can also create repositories from the terminal
completely.)

●​ Click the “+” button in the top middle and select “New Project”
●​ For all school projects create a PRIVATE repo!

○​ You don’t want other students to be able to see your projects
●​ After naming and creating the repo, follow the commands to “Push an existing folder”

○​ Make sure you’re in the top most directory of your project before running the
commands!

●​ Add the CS439 instructors with “Reporter” permission. You will find the information you
need to share the repository on the Resources page.

Git Checklist:

Everytime you start working on a project, refer to this checklist!

●​ Run “git status” or “git fetch” when starting
○​ If not up to date, “git pull”

●​ Write code!
●​ Run “git status” again

○​ Make sure the correct files have been edited
●​ Run “git add .” to commit all files

○​ Can also do “git add [filename]” for individual files
○​ Can also run “git add -u” to update files that are known to git (will not add files

that were created since the last commit).
●​ Run “git commit -m “[message about what was worked on]” ”
●​ Run “git push”

What is a merge conflict, and should I be worried?

Short answer, no, If anyone has heard about Git, I’m sure you’ve heard about merge conflicts.
However, this shouldn’t deter you from using version control!

A merge conflict occurs when two people make changes to something, and Git can’t figure out
which change is the “correct” one. Thus, Git notifies you of the merge failure, and it’s then your

job to see which changes your group would like to keep. For example, say a line of your
program contains “hello world”. You change the line to say “hello world!!” and your partner
changes it to say “Hello World”. Then, you both try to push your changes. Git has no way of
knowing which version you want to keep, so it’s up to the developers to figure it out.

The easiest way to avoid merge conflicts is elementary, but effective. If your entire group works
together, rather than having people edit code at the same time, it is impossible to create a
merge conflict. As long as only one person pulls the code, everyone works on it together (using
the Live Share extension from VS Code would be a good option), and then the code is pushed,
no merge conflicts will occur. Essentially, you pull the repository, and no one else pushes before
you once again push the code.

Of course, you may want to have people pushing/pulling on their own, so refer to these guides if
you run into this issue:
Dealing With Merge Conflicts | Learn Version Control with Git
Git merge conflicts

For more information:
MIT Missing Semester
Oh, Sh*t, Git!?!

https://www.git-tower.com/learn/git/ebook/en/command-line/advanced-topics/merge-conflicts
https://www.atlassian.com/git/tutorials/using-branches/merge-conflicts
https://missing.csail.mit.edu/2020/version-control/
https://ohshitgit.com/

	Version Control and Git
	What is version control?
	Why do we need it?
	What is Git? (And GitHub? Or GitLab?)
	Creating a Git Repository:
	Git Checklist:
	What is a merge conflict, and should I be worried?
	For more information:

