CM2020 Agile Software Projects
Final Project Report

Lucille: A To-Do App for the Elderly

Tutor Group 3, Team 18, students nos.:
e 200406440
e 200422923
e 200464026
e 200510091
e 200521248

09/05/2022

Contents

Contents

Introduction
Background
Assumptions

Project planning, management and execution
Introduction
Team background
Tracing the project’s evolution
Towards the midterms (05-10-22—06-27-22)
After the midterms (06-28-22—-07-23-22)
Realignment (07-24-22—-08-15-22)
Production (08-16-22—09-04-22)
Work division, methodology, tools and artifacts
Work division
Development methodology
Tools and artifacts
Lucille
Git / GitHub
Jira
Slack
Zoom
Google Drive
Lessons learned and reflections on Agile methodology
Planning and management
Project planning
Project management
Risk management
Relation with Agile methodology
The human factor
Managing expectations and communicating intent
Maintaining a supportive social environment
Assessing skill, suitability and quality of work
Users

Design
Lifecycle of the functional prototype
Functional prototype 1

© © © © © 0o ~NO”O O O O a oo N

- A A A A 3 2 A = A A A A A
W W INDMNDMNN-_A 2~ OO0 00O o o o ©

A A A
o O O

Color, texture and size: designing interface for the elderly
Minimum memory load on the users:
Interaction design for the elderly:
Designing for acceptance and adoptability:
Replicating the natural act of “Note-taking”:
Animation:
Functional prototype 2:
Functional prototype 3:
Final product / Functional Prototype 4:

Technical design and System Development
Technical output
System description
Features:
Architecture:
Single Page Application (SPA)
UML Diagram
Programming design
OOP and Decorator design pattern and functional programming
Coding process
Our agile process:
CI/CD Pipeline:
Refactoring story:
Performance testing:
Technology stack and dependencies:
Security
Pre-detection of errors
Data layer
Data model:
Dexie.js
Data Implementation:
Program structure
Code Story: Building the app
Version Control
Testing code and error handling
Error handling:
Overall testing regime:
Unit testing:
Deployment

User Survey and Testing

Conclusion and Evaluation Summary

16
17
18
20
20
20
21
23
25

27
27
28
29
29
29
30
31
31
32
32
32
33
33
33
38
38
39
39
40
41
43
44
51
52
52
52
53
53

55
66

User Manual

Appendix A: Persona design

Appendix B: PowerPoint Presentation used during the Usability Test.
Appendix C: Figma flow used by the testing team

Appendix D: Figma design used on the first iteration.

Appendix E: Usability Test Result (Verbatim)

Appendix F: User survey consent statement and Usability Test consent form.

Appendix G: Technology stack proposal
Background
Project priorities
Problem statement
Current technology stack
Alternatives to the current technology stack
Backend
Frontend
Considerations

Bibliography

67
70
70
71
73
74
85

87
87
87
87
87
88
88
88
89

90

Introduction

Background

During the first half of this module we recognized a gap in two overlapping markets: the to-do
app market and the elderly care app market,” which we chose to fill by designing Lucille, a
“to-do” app for elderly users.? We analyzed available literature on usability design for the elderly,
and extracted a series of desigh recommendations; using these recommendations we designed
several prototypes, the last of which we proceeded to produce during the latter half of the
semester.? In this report we explain how we approached the planning, production and evaluation
of this prototype; analyze the process and its outcomes; and suggest steps for future
improvement.

Assumptions

We assume familiarity with the midterm report (Sharma et al., 2022), Agile Manifesto and
principles (Beck et al., 2001), Scrum Guide (Schwaber and Sutherland, 2020), as well as the
principles of user-centered design as laid out by Gould and Lewis (Gould and Lewis, 1985), and
elaborated on by Sharp, Rogers and Preece (Sharp, Rogers and Preece, 2019).

" Here we use the terms “seniors”, “elderly” and “older adults” interchangeably to denote persons aged 65
years and older.

2 The name “Lucille” was chosen both for its sound and age-appropriateness, and as a tongue-in-cheek
reference to Lucille Bluth, the overbearing mother figure played by Jessica Walter in the TV series
Arrested Development (‘Arrested Development’, 2003).

3 For the complete market analysis, literature review and design series, see (Sharma et al., 2022).

Project planning, management and execution

Introduction

The purpose of this section is to present the tools and processes that were used during the
development of the application; explain the planning and management considerations that
underpinned the project; trace the path and timeline that the project took; and analyze the
reasons and dynamics that lead to it.

For the initial project plan and associated timeline, see (Sharma et al., 2022, chap. Project
plan).

Team background

Our decisions throughout the process were heavily influenced by our respective backgrounds,
and our understanding of each other’s abilities. We provide our academic and professional
details below, so that the reader may better understand our thinking at various stages of the
project:

Rodi Ali, B. Eng. Engineering design, a Cloud Engineer at TryDig AS

Takahisa Hashimoto, BSc. Mechanical Engineering, a Senior Expert at the BMW Group
Isa Phuyuthanon, BSc. Business Administration, a full time student

Morag Scheinwald, a full time student

Anugya Sharma, BArch Architectural Engineering, a full time student

Tracing the project’s evolution

In retrospect, the project timeline can be divided into four periods: towards the midterms
(05-10-22—-06-27-22); immediately after the midterms (06-28-22—07-23-22); the realignment
period (07-24-22—-08-15-22) and the production period (08-16-22—09-04-22).

Towards the midterms (05-10-22—-06-27-22)

The goal at this stage of the work was to produce a viable project proposal for the midterms.
The proposal was to be written as follows:

Primary author: Ms. Sharma

Literature research and secondary author: Mr. Scheinwald

Preliminary testing and ethical review: Mr. Phuyuthanon

Summary and analysis of market research: Mr. Hashimoto

Use cases, technical and security specification, and project plan: Mr. Ali

At this point in time the project had no clear leadership; decisions were reached by vote, and
work allocation was on an ability-and-availability basis. We were meeting once a week for
discussion, and keeping in touch on Slack in-between.

Some of the key decisions made at this point were to create a “to-do” app, and to use a
software stack based on React and Amazon Web Services (AWS). Both of these decisions were
informed by the prevalence of the technologies, the availability of online resources
(documentation, tutorials, project templates, etc.), and the professional experience of one of the
team members. Our unique “twist” on this theme, however, came as a result of brainstorming on
the societal and environmental problems faced in our respective countries; we recognized the
need to find technological solutions for the needs of an aging population - a realization that was
corroborated by a subsequent market analysis and literature review.

Shortly before submission it became clear that the proposal lacked a project plan and key parts
of the specification, which were then hastily written by the principal authors. Nevertheless, the
proposal was well accepted, and provided a solid basis for production.

An important lesson from this phase of the work was that we should increase our use of Jira, a
task management system for teams, to better allocate and follow-up on tasks.

After the midterms (06-28-22—-07-23-22)

The period immediately following the midterms was challenging. Having agreed to use a
software stack based on React and AWS, members made significant efforts learning the
technologies through tutorials, books, APl documentation, and other such materials. An effort
was made to locate a suitable “starter template” for the project, but the one that was chosen
proved too complicated. Mr. Ali, the developer most experienced with React, was on vacation
until mid-July, so was unavailable to assist.

Towards the end of this period two important decisions were made: the first was to accept a
clear division of labor, for the first time since the project began:

Product owner: Mr. Scheinwald

Documentation and design: Ms. Sharma

Tech lead: Mr. Ali

Testing and analysis: Mr. Hashimoto

User testing: Mr. Phuyuthanon

The thinking underlying this division was to provide members with clear areas of expertise that
suit their respective skill sets, so as to:

1. Optimize time and effort spent

2. Give members a sense of ownership and pride at their work

3. Improve accountability

4. Allow for easier task allocation and management

The second decision was to continue working with React. After researching and discussing
alternatives such as Svelte (a React alternative), Mithril.js (a minimalist client-side SPA
framework) and Chakra-Ul (an easy-to-use React component library, which eventually formed
the basis of our prototype), we decided that despite the initial difficulties, React might still prove
viable and valuable. It required, however, that we leave the bulk of the “business logic” to our

https://reactjs.org/
https://aws.amazon.com/
https://github.com/NewthingAde/Building-Serverless-Project-in-Aws-

most experienced developer. This was a risky decision, but if it had worked it would have left the
rest of the team free to focus on our main value proposition, which is the user experience.

At this point in time it was also decided to switch to a different template that used a different set
of AWS services; it deviated from the original design which prohibited login screens,* but was
supposed to make development easier and faster, so was accepted.

Realignment (07-24-22—-08-15-22)

This period began with analysis of the project structure and goals (see fig. 8 - Work breakdown
on 07/27/2022), and the presentation of a work plan by the product owner. This included an
order of priorities for development, and a Jira “roadplan” with various milestones (for a summary
of the roadplan, see Fig. 0 below). We began working in “sprints” 7-14 days long (in some cases
less), with weekly or twice-weekly follow-up, depending on the need.

Having divided responsibilities and configured the template for development, the team started
re-working the code. Unfortunately, this too proved too complex: not only did the new template
use React, but it also used TypeScript and Redux - two technologies that only the tech lead was
familiar with - and he was away on business until mid-August.

Towards the end of this period, seeing as no progress was being made with the current model,
the product owner presented a new analysis (see fig. 9 - Work breakdown on 08/10/2022), and
a plan for pivoting away from the then-current tech stack towards one that is simpler and more
feasible (see Appendix G: Technology stack proposal). To explore alternatives, two prototypes
were demonstrated: one that relied on React, Chakra-Ul and PouchDB (a simple database
library); and another based on “vanilla” JS and client-side templating with the EJS library, which
was familiar to team members from a previous module. Member then took a few to experiment,
with Ms. Sharma working on the Chakra-based prototype, and Mr. Hashimoto working on the
EJS-based prototype. Eventually the former won on technical grounds (it was more suitable for
rendering dynamic apps), and became the basis for our current codebase.

Production (08-16-22—09-04-22)

Production began in earnest in mid-August, with the tech lead refactoring the existing codebase
into a more colloquial React form. A contingency was put in place in case development would
stall, with one of the other members who was familiar with React being asked to review the code
base as it was being worked on, in case they would need to take over and continue
development on their own.

The initial prototypes deviated quite significantly from the original design, but after some intense
discussions, re-prioritization of features, several cycles of testing led by Mr. Hashimoto and Mr.
Phuyuthanon, and some design solutions by Ms. Sharma, the current version of the app comes
close to realizing the intent of the design.

* See Literature review and design recommendations in (Sharma et al., 2022)

https://github.com/AndyW22/todolist-app
https://www.typescriptlang.org/
https://redux.js.org/
https://github.com/morags/lucille-ejs

Work division, methodology, tools and artifacts

Work division

As of the writing of this report, the team is structured as follows:
Product owner: Mr. Scheinwald

Documentation and design: Ms. Sharma

Programming: Mr. Ali

User testing and analysis: Mr. Hashimoto

User testing and design: Mr. Phuyuthanon

Development methodology

The team used a tailored development process loaning heavily from the Scrum methodology
(Schwaber and Sutherland, 2020) and user-centered design (Sharp, Rogers and Preece, 2019,
sec. What Is a User-Centered Approach?). The process consisted of the following:
e A flexible team structure where members have different specialities, but may engage in
different kinds of tasks as needed
e A product owner that plans and prioritizes development goals, and assigns tasks in
agreement with team members
e An iterative, user-centered design process that divides the long term goals of the project
into short production cycles, each followed by an evaluation stage with real users
e An emphasis on the human aspects of development: clear and frequent communication,
collaborative ownership, developer happiness and sense of fulfillment

An analysis of the relation between our chosen process and “traditional” development
methodologies is given in the section “Lessons learned and reflections on Agile methodology”
below.

Tools and artifacts

Lucille

The team produced Lucille, a “to-do” app for older users. Lucille was written using JavaScript,
React (‘React’, 2022), Chakra Ul (Adebayo, 2022) and Dexie.js (Fahlander, 2022) as its main
components, and constitutes roughly 1,800 lines of code (LOC).

A live instance of Lucille is available here.

Git / GitHub

Git (‘Git’, 2022) and GitHub (‘GitHub’, 2022) were used to track and review changes, and deploy
code. A total of 125 commits were made to the repository.

A complete Git log was attached in field 2 of this submission.

https://lucilletodo.netlify.app/
https://github.com/morags/lucille

Jira
Atlassian’s Jira (‘Jira’, 2022) was used to structure the project, schedule and assign tasks, and
follow up on completion. A total of 138 issues were created, of which 92 were completed.

A complete Jira task record was attached in field 2 of this submission.

Slack

A private Slack channel (‘Slack’, 2022) was used for frequent communication on various
matters. A total of 1,165 messages and 104 attachments were exchanged.

Zoom

Zoom (‘Zoom’, 2022) was used for weekly or twice-weekly meetings, 7 hours and 44 minutes of
which were recorded and uploaded to the team’s Google Drive.

Google Drive

Google Drive (‘Google Drive’, 2022) was used for storage of documents, recordings and memo
throughout the lifetime of the project. A total of 143 files constituting some 1.16 GB were stored
on the drive.

Lessons learned and reflections on Agile methodology

Throughout the development of this project the team encountered many challenges, some of
which have no clear answer. We reflect on these challenges and their relation to Agile
methodologies and user-centered design.

Planning and management

Project planning

Properly planning a project is no doubt key to its success. Several elements of the project that
we did not plan came to “haunt” us later:

e Our design was incomplete, and so when it was time to program certain elements of the
user interface, we did not have the right design prototypes to hand to the developer, and
had to stop to prepare them. No doubt, we should have spent more time specifying use
cases and designing prototypes to suit.

e Our technology vetting process was lacking, and so we found ourselves switching
through several stacks, until we assembled a stack that was both feasible and usable for
our use case. A thorough evaluation and specification of our needs, and a market
analysis of available technologies, would have prevented this. In particular, we should
have chosen a software stack that is familiar to several team members, to avoid having

https://uol-agile.atlassian.net/jira/software/projects/ASD/boards/1
https://drive.google.com/drive/folders/14ZJFB-Oj_Yt2DZB2rn1ylutsAm2qFrKm

to rely on a single developer for all complex work (a “bus factor” of one), as well as to
lower the costs of learning new technologies.®

e We did not assign roles until late into the project, presumably due to members’
apprehension from taking leadership roles. While an understandable human tendency, it
can - and has - resulted in poor planning and follow-up, and significant deviations from
the module schedule. A team must have some member willing to af least organize and
coordinate activity, if not plan, assign tasks, and follow-up on their completion.

Project management

Project planning is intimately tied to project management, in the sense that the latter is a
continuous extension of the former: every input from users, technical difficulty, or team member
unavailability required re-evaluation and re-planning - adjusting scope, re-prioritizing goals, or
shifting resources - flexibility that was highly valuable in bringing the project to conclusion.

And of course - planning and management themselves requires planning, since they have a
very real overhead in terms of time and resources, and these need to be scheduled and
allocated - but also limited, so as to not spend more time planning than actually producing
software...

Risk management

On several occasions we found ourselves facing a risk that was both likely and significant, and
required a contingency to be put in place:

e Having experienced difficulties with some complex technology stacks, we conducted two
technology surveys to find easier, but similarly capable alternatives - and it is from one of
those that we eventually developed the current program.

e Having had problems with developer availability, we prepared for another team member -
then engaged with other tasks - to take over their responsibilities, and for another team
member to take over theirs.

While imperfect, these contingencies proved crucial in overcoming the technological challenge
and moving ahead with development.

Relation with Agile methodology

We adopted several ideas from the Scrum method (Schwaber and Sutherland, 2020): a “product
owner” role, flexible role assignments, 1-2 week-long “sprints”, and routine meetings of different
kinds (eg. planning meeting once a week, follow-up several times a week). These were mixed
with tools from other methodologies, such as Kanban boards and Gantt charts. We did not
require a “Scrum master”, nor “ceremonies” per se.

With regards to planning, it seems that - on the surface - agile methodologies eschew planning
in favor of rapid progress (see for example (Beck et al., 2001) - but this need not be the case.

5 This is especially true late in the project, where “onboarding” new developers in addition or in place of
existing ones can actually be less cost-effective than continuing as-is (Brooks, 1995).

https://en.wikipedia.org/wiki/Bus_factor

The first step in the Scrum process is for the product owner to “[order] the work for a complex
problem” (Schwaber and Sutherland, 2020), which suggests that a complex problem has
already been defined and decomposed into small “chunks” of work, with the goal of the Scrum
process to then organize that work to deliver “value”.

The human factor

Managing expectations and communicating intent

Communication between shareholders proved to be one of the most important aspects of our
work process:

Communicating expectations from course staff to the team

Communicating impressions from users to the product owner and designers
Communicating design intent from the product owner and designers to the developer
Communicating usage intent from the team to our users

Communicating work expectations within the team

We used a variety of tools to facilitate communication, including Slack, Zoom, Jira, Figma,
Photoshop and draw.io, as well as notepads and a digital whiteboard. We learned two lessons in
this context:
1. Everything has to be written: tasks, use cases, obligations, design specifications, flow
charts, concept maps, resources, etc. etc. If it is not written, it might as well not exist.
2. Any item that is meant to be communicated needs to be clear, specific, verifiable, and
complete (cf. SMART specification criteria by (Doran, 1981)).

Given how these problems and solutions presented in our small team, it's eminently clear why
larger development teams place such an emphasis on using shared vocabularies, defining
well-formed requirements, maintaining thorough documentation, and following a clear
development methodology.

As an aside, Agile methodologies seem to assume and depend on the availability of fast and
reliable means of communication - and in some cases, like Extreme Programming, on physical
presence (Wells, 2009). In a remote work environment where such means are not available, the
risk of miscommunication and lost work is higher, and so is the need to over-specify work so as
to resist communication errors.®

Maintaining a supportive social environment

Agile methodologies place great emphasis on the importance of developer agency and
happiness - emphasis which we believe is right. We strove to respect each other, enjoy our work
and enable others to enjoy theirs, and resolve disagreements amicably through persuasion and
consensus, rather than imposition.

6 More generally, where the expected cost of change mid-project is higher than the initial cost of planning,
planning trumps “agility” (Voytko, 2020).

Assessing skill, suitability and quality of work

Given an ex nihilo team like ours, how does one assess individuals’ skills, abilities and
motivations so as to optimize their work assignments, and by extension their efficiency and
satisfaction? Asking may yield inaccurate results, and not everyone possesses a portfolio, so
this remains an open question with but one answer: time and familiarity.

Users

We attempted to fully adopt the principles of user-centered design: early focus on users and
tasks, empirical measurement, and iterative design (Sharp, Rogers and Preece, 2019). For
more information on the tools and methods we employed, see User Survey and Testing later in
this document.

Features

Sprint no.

Start Date

End Date

Span

v ASD-60 Initialize project
ASB-68 Divide roles
ASB-76 Verify that course staff is on with our approach
Asp-e7 Fork existing React example
ASp-6+ Set GitHub repo permissions
ASB-69 Submit PR with LICENSE.md (MIT) to creator
A5B5-63 Setup ESLint
ASB-64 Setup and connect AWS accounts
~ ASD-66 First prototype
#ASB-74 Create tabbed interface
ASp-75 Create board + archive view
#sb-76 Create task list view
ASB-164 Usability testing - round 1 report
ASB-+46 Write basic test suite
ASB-195 Setup React Router
ASB-93 Design archive / recovery controls
ASB-9+ Design settings controls
4sp-98 Design contextual controls
[ass-99 Define list of DB entities and interactions

#55-73 Wiite user testing plan

ASB-16+ Usability testing - round 1
v ASD-78 Second prototype
ASB-1+45 Create empty guide view
ASB-+63 Connect React components to database
2 AsD-81 Add backgrounds to panes
AS5H-167 Create settings view
ASB-368 Create contact view

ASB—109 Usability testing - round 2 report

AsB-86 Add icons to tabs

ASD-95 Add animations

4aso-o2 Design caretaker feature

ASD-166 Usability testing - round 2

ASD-111 Write end-to-end test suite

ASB-+42 Deploy to GitHub Pages
~ B AsD-79 Third prototype

ASD-89 Add favicon

ASD-96 Add gesture control

ASD-94 Add haptic feedback

ASD-116 Test items for the guide view
~ [AsD-86 Final prototype

ASB-87 Review code documentation and formatting

ASD-97 Add text completion based on input analysis
~ ASD-85 Finalize documentation

ASB-118 User manual

25117 UML use-case diagrams

ASB-+26 Formative Evaluation

Asp23 Justification of testing methods

Asp-+2+ Complete usability questionaire

ASB-119 "Code story”

ASB-122 Summative Evaluation

ASD-90 Make sure index.html complies with best practi.

DONE

DONE MORAG'S.

DONE RODIALI

DONE RODI ALl

DONE MORAG'S.

DONE MORAG'S.

DONE RODIALI

DONE ANUGYAS...

DONE RODIALI

DONE RODIALI

DONE ISAP.

DONE RODIALI

DONE RODIALI

DONE ANUGVAS...

DONE ANUGYAS...

DONE ANUGYAS...

DONE MORAG'S.

DONE ISAP.

ASD-466 Convert Photoshop sketches into Figma flows for... DONE ISAP.

DONE ISAP.

DONE RODI ALl

DONE RODIALI

INPROGRESS ISA P

DONE RODIALI

DONE RODIALI

DONE TAKA

ASD-88 Add 3D, layering and shading effects to tabs, butto.. ToDo 1sap

DONE ANUGYAS...

TODO ISAP:

DONE ANUGYAS...

DONE TAKA

TODO RODIALI

DONE MORAG'S.

TODO MORAGS.

TODG MORAGS.

TODO RODIALI

TODO RODIAL

TODO TAKA

DONE MORAG'S.

DONE RODIALI

DONE ISAP.

DONE TAKA

DONE TAKA

DONE ISAP.

DONE ISAP.

DONE ANUGYAS...

DONE TAKA

07/03/2022

07/09/2022

7 days

07/10/2022

07/16/2022

7 days

07/17/2022

07/23/2022

7 days

07/24/2022

07/30/2022

7 days

07/31/2022

08/06/2022

7 days

08/07/2022

08/13/2022

7 days

08/14/2022

08/20/2022

7 days

08/21/2022

08/27/2022

7 days

Figure 0: Summary of our Jira roadmap

Design

Lifecycle of the functional prototype

Lucille: Product lifecycle

Market Literature
: . User Survey
Analysis review

Functional
prototype
Design Design Design 1

1 | ==)>| 2 > 8 ==

Version 1

L<— User Testing 1
v [
Summative product P 3 ve P 2 P
User Testing
\m Version 4 Version 3 Version 2
User Testing 3 User Testing 2

Figure 1: Lucille’s lifecycle and evolution

Functional prototype 1

For the first functional prototype of the application, we started with the final version of the
“Notabook” prototype (Sharma et al., 2022, sec. Third prototype: Notabook). Individual elements
of the prototype were designed following literature recommendations on these subjects (Sharma
et al., 2022, chap. Literature review):

1. Age-related changes to perception, cognition and motor function

2. Elderlies’ personal and societal attitudes to technology and technology use

3. User experience design recommendation for elderly users

4. Models of technology acceptance among the general population and older users

These were accompanied by a market survey of Apps designed for older users, and “to-do”
apps (Sharma et al., 2022, chap. Market analysis).

https://docs.google.com/document/d/1MGX7VN8mS0kTvT5FMLfeulgJJ8JArGJMDlpzJ078Gvc/edit#heading=h.r555fcnpiud1

Functional prototype 1:

Board Page List View Archive Page
[0 = o = L =
B70AR(D ARCHIVE | GUIDE | |HELPER SETUP BOARD ARCHIVE GUIDE HELPER | SETUP BOARD |ARCHIVE| GUIDE HELPER | SETUP
Weekend List Tasks
I s B e T e — ining
1 [call Daisuke. Remaining:
. STRIKE
Weekend | Gardening Holiday 1. Weekend shop 3
List Shop 2 | Book denstist's appointment
STRIKE
after 5. 2. Flight planning 5
¢ ¢ 3| Place Holiday order.
STRIKE) 3. Gardening 4
Birthday Dinner
shop tasks "
4. Holiday shop 0
5. Evening Shop List 1
6. Storage plan 0
Behe & || @ :
LIST TASK TASK
Guide Page Setup Page Helper page
== == =
BOARD |ARCHIVE | Gypg | HELPER | SETUP BOARD ARCHIVE |GUIDE | HELPER | SETUP BOARD ARCHIVE |GUIDE| {F[pgR | SETUP
Font size: <& "4
1. I cannot read the text.
Aa I can read this well. Aa ® @
2. 1 cannot see the app well.
Brightness: Alice Lucas
3. 1 cannot hear the sounds. @ | can see this well. O alice34@gmail.com lucas22@gmail.com
4. | cannot share tasks. Volume: [
- g
5. | have lost my older lists. @ i 1 ®
Vibration: Paul

6. | want to delete my lists.

7. 1 want to archive my tasks.

°

©

£
<
m

paul224@gmail.com

PIN

Table1: Different pages of the Functional Prototype 1.

Color, texture and size: designing interface for the elderly

Seniors, as they grow old, experience a loss of visual acuity, visual focus on nearby

objects(presbyopia), compromised peripheral vision, lower light sensitivity, and lower sensitivity
to color contrasts(Nunes, Silva and Abrantes, 2010; Pinheiro and da Silva, 2012) . Keeping this

in mind, we have included the following things in our design:
e Maximum contrast: Dark text on white backgrounds.

e Large fonts
e Largeicons

e Light colored paper with dark blue ink.
e Sound feedback to compensate for visual loss.(Clicking sounds when you click button)
e Haptic feedback to compensate for visual loss. (Vibration when you click buttons)

Minimum memory load on the users:

Older adults go through deteriorating changes in short-term memory, retrieval of semantic
memories (general knowledge), prospective memory (schedule of future actions) and they take
longer to form new procedural memories(implicit knowledge of how to perform certain
actions)(Nunes, Silva and Abrantes, 2010). Hence, it becomes of paramount importance to
develop a minimum-memory-load application. These are some of our attempts to reduce the
memory and cognitive load of the user when using our app:

e Eye catching buttons with not only an instructive icon but also labeled with large upper
scale letters.

e Use of color to signify the main landing page. (The only colorful button is the
board-button)

e Editable texts in blue signifying “Writing ink” and different from the inbuilt texts that are
black.

e Differentiating “action buttons” from “Navigation buttons”. Action buttons are circular and
navigation buttons are rectangular. “Action buttons” on the footer bar or in pop-up and
“Navigation buttons” always on the top bar.

Navigability:

e Single branch navigation

e Consistent conspicuous location of the navigation bar

e Layering: When a modal has to pop up, the background is faded so that the users
always know where they are. Additionally, they can press anywhere on the faded
background to go back. (As seen in Figure 2 below)

[[4

Weekend Weekend
List List

WOW B HENT,

Figure 2: Pop-ups, layering and faded background.

Interaction design for the elderly:

Older adults experience increased motor response times, difficulties with hand coordination, and
with maintaining continuous movement. Prevalence of arthritis can further reduce movement
speed and accuracy. This has psychological impacts on our users such as the “fear of
misclicking”. Interactions such as double clicking become problematic (Nunes, Silva and
Abrantes, 2010). In regards to this, our design is very mindful of using senior-friendly
interactions and avoiding problematic interactions such as double clicking, and sliding gestures.

e “Single click” Vs “long-press click”: The app’s basic functionalities are all covered without
ever using any interaction but the “single click”. However “long-press click” on some
elements gives up additional functionalities like sharing, archiving and deleting tasks/lists
directly. We use “Long- press click” in place of double click and the amount of
holding-click-time comes from our user testing. Similarly, these 2 user-interactions have
passed through user testing as well.

e Sliders with controlling buttons on the sides: Our user testing and literature review has
shown that a sliding-gesture is not appropriate when designing for elderly users. Hence,
we use controlling buttons on the side of the sliders as shown in Figure 3 below.

Volume:
) (¢

Figure 3: Sliders accompanied with controlling buttons on the side.

Designing for acceptance and adoptability:

Replicating the natural act of “Note-taking™:

We try to replicate familiar actions such as “note taking”,and “pinning lists on board”, so that
users can rely on their intuition, recognition and existing knowledge to navigate a software.
Users do not have to learn a new “software vocabulary” to be able to use our app. This makes
the possibility of adoption and acceptance of the software by our users very high. (Leonardi et
al., 2008; Neves and Amaro, 2012; Williams et al., 2013)

Notebook-parchment texture in the “list” page.

Pen icons.

Strike animation

Green board

Blue ink

Pinned paper images

Write by clicking on the paper , rather than pressing a button.

& H—
Weekend List

Ay AL L
, 1 Call Daisuke. —~
STRIKE

l.lST TASK 2 ‘ Book denstist's appointment

after |

Figure 4: Elements in the interface design that contribute towards making the note taking
experience as close to the real world as possible.

Animation:

To make it more acceptable to our target base, we make sure our animations are slow and easy
to perceive and that they are neither much longer nor much shorter than one second lit review
about animation (Card, Robertson and Mackinlay, 1991).

e “Animated feedback resembles that which is provided by a physical interaction.
e Gives a sense of accomplishment when completing tasks, which improves satisfaction
and acceptance” (Sharma et al., 2022, sec. Literature review and design

recommendations).
g
Y =
BOARD TASK LIST RECORD HELPER

Weekend List

1 | Call Daisuke.
STRIKE

2| Book denstist's appointment
aﬂ:er 5. STRIKE

3 | Place Holiday order. STRIKE

Flgure 5: Strike text animation

Functional prototype 2:

The first iteration of our functional prototype was tested on a panel of users aged (>65) and of
characters most similar to our personas detailed in (Appendix A: Persona Design). Further
details about this testing are included under the subheading “Testing” in this report. The
following changes were made after integrating feedback from the initial testing:

Integration of user testing feedback in Functional prototype 2:

Change 1: Setup icon changed to a more intuitive
symbol.

Justification:
Users couldn't relate the former icon to mean “setup”.
So we carried out another survey to select an icon for the

setup page. Hence, the icon was changed to this user
selected choice.

—o—
—o

—o0—
SETUP

SETUP

Setup-button before and after
changing icons.

Change 2: Integration of “Archive page” into the “Board”
page.

Justification:

Users were left confused by the “Archive page”. They
also could not utilize its functionality as it was on its own
separate page. Hence, we integrated the archive page at
the button of the board page, so that when users archived
their pinned lists, they would notice it at the bottom.

SETUP

Change 3: Integration of “Helper page” into the “Setup” - s -
page @ GUIDE

Font Size:

Justification:

We observed in our testing that users seemed more likely fo | temmdusn AQ
to add contacts when it was part of the setup-page itself. PR

Hence, we integrated the add-contact functionality into Q) remwsttisnal Q)

the setup-page itself.

Volume:

T

Add and edit contacts below

%

Daisuke
daisuke@gmail.com

Change 4: Terminology change from “Helper” to “Contacts”

Justification:

Our users couldn't relate “Helpers” to mean their relatives or caretakers, which is what we
intended it to mean. So, we changed the terminology to “Contacts”, after which we found no
confusion among our users about this.

Change 5: Blue ink changed to black

Justification:

Initially we wanted to differentiate blue text from black to mean that blue was editable by the
users and that black wasn’t. But, we found in our testing that this differentiation wasn’t
perceived by our users and that there was no value in altering black texts to blue. So we
chose to be uniform and set all texts to black.

Change 6: Modal removed: In-place writing and listing. = o 2 =

o
BOARD ~ ARCHIVE GUIDE CONTACT SETUP

Add new list

Justification:

We noticed in our testing that the pop-up-modal to insert
texts for tasks and list-titles was decreasing the usability
of our application. So we changed the design in favor of
In-place typing.

Enter your board name

Functional prototype 3:

The following changes were made after integrating feedback from another round of testing.

Integration of user testing feedback in Functional prototype 3:

Change 1: Users are no longer required to add profile
pictures when adding contacts.

Justification:

Our app wouldn't let users add contacts without pictures
and we found from the testing that users were
discouraged from using this functionality as they always
wouldn't have a picture on hand.

As seen on the picture to the right, when users are Amansa
unable to find a profile picture of their contacts, the app amani@gmail.com
itself provides a placeholder.

Change 2: Borders removed to maximize writing areas 1 [Call Daisuke. =
. . 2 Book denstist's appointment _~
Justification: after 5.

We wanted to make maximum use of the display area. 3| Place Holiday order -

List

1 | fdsfsdfs Done

List of bugs fixed leading up to the final product:

Component Item Type |Priority
Archive Combine archive with Board (display at bottom, grayved-out) Structure 1
Board Background should be uniform Style 1
When adding a list, an "untitled list” appears on the board, instead of a "add new
Board list” modal Functional 1
Board "Add new board” should be "add new list” Style 1
Board Share button functionality Functional 1
Contact Move contacts to seftings Structure 1
Contact Change button from "list" to "add confact” Style 1
General Meed to keep with ferminology: list (not board), contact (not user), efc. sctgldeE 1
Entities need to implement complete data model and actions (see Data model
General and actions) Functional 1
Code
General Code needs to be thoroughly documented and commented style 1
General White background instead of gray Style 1
Go back, when you click anywhere on the faded background instead of clicking
General Cross Functional 1
List Editable title in-place Functional 1
List Tasks written and edited in-place, instead of in modal Functional 1
List Footer buttons for the whole list (like in prototype file) Functional 1
Mavigation | Tabs should connect with panes, and panes should be bordered Style 1
Settings Auto-save on change, without a "save” button Functional 1
Tasks Auto-save on change, without a "save” button Functional 1
Tasks Strike gesture Functional 1
Board The title of a list should be editable in-place Functional 2
Board Click on empty space to add list Functional 2
Buttons Buttons should have consistent shadowing Style 2
Buttons Buttons should have consistent capitalization Style 2
Contact Limit file types that can be used as portraits to image files Functional 2
Contact Click onm empty space to add contact Functional 2
General Meed to clean up assets/images/! Other 2
Code
General Meed to clean up .eslinfrc.json style 2
General Define minimum width and redesign responsive behavior Style 2
List Click om empty space to add item Functional 2
Settings Add "vibration" shider Functional 2
Board "Mark complete” button for lists Functional 3
Contact If no image was chosen for a contact, displays a line drawing of a head instead Style 3
General Do we need a Node ESLint environment? Et;:jee 3
General Switch from LocalStorage to LocalForage (size limitations) / another DE library Functional 3
Buttons Add click/mousedown styling Style 3
Buttons Add auditory/haptic feedback (see Vibration API) Functional 3
General Clickable elements (eg_| lists on boards) should have consistent shadowing Style 3
Mavigation | Highlight tab based on the page you are on Style 3

Figure 6: List of bugs and errors fixed before the final product.

Evolution of the “Guide page”:

==
5, F ==
I:’) TACT TUP
BOARD ~ ARCHIVE GUIDE | CONTAC SE BOARD GUIDE

BOARD ARCHIVE | Guipg | HELPER | SETUP

=

== F ==

SETUP BEA!ID GUIDE serop
tte st

1.1 want to add my new task.

1.1 cannot read the text.

e the app well.

2. | cannot see the app well.

3.1 want to change font color.

3. I cannot hear the sounds. B

4.1 cannot share tasks.

5. 1 have lost my older lists.

6.1 want to delete my lists.
6.1 want to share my task.

6.1 want to delete my lists.

| |
[|
[‘.w prr— o }
{]
| |

7.1 want to archive my tasks.

Figure 7: Evolution of the “Guide” page.

The Guide page was designed for users to look up problems they were having with the app. We
wanted to study what the question on this page would be. We wanted these questions to reflect
the most common problems that the users were having, and the most common type of help they
needed to use this app. After multiple rounds of testing, we finalized the top 9 questions to put
on this page.

Final product / Functional Prototype 4-:

Board Page Inside a list Guide Page Setup page

== — — = —

| & == [o = = oF == & =

= pran = o =

an GUIDE SETUP an GUIDE SETUP BOARD GUIDE SETUP BOARD GUIDE SETUP
+ .

Gardening [1.1 want to add a list. v J Eontsize
Weekend . .
Shop Gardening + | Plant some plants. — [2.1 want to delete, archive and share my list. v) Aa 1 can read this well Aa
[3.1 have lost my older lists. v)

i Brightness:
2 | Grow some fruits. Done

@ I can read this well O

[4.1want to share my task.

5.1 want to add my new task. ~

Volume:

S

Add and edit contacts below

e bottom to add your task

[6.1 want to know if my task is complete. v

[7.1want to add a contact.

TASK

:m
@
4

Final round of summative User testing was conducted. The following are some short
conclusions from the testing (Further details under the heading “Testing”):

Users were able to use all the functionalities with ease.
Users were likely to recommend this app to their contacts.
Users were likely to use this application in their daily life.
All parts of the system worked as intended.

Technical design and System Development

Technical output

e A web based application compatible with most common browsers [Chrome, Safari,
Edge, Firefox, Samsung Internet, Opera] (Most Popular Web Browsers in 2022 [Jun '22
Update] | Oberlo, 2022) with responsive displays to devices of most common
dimensions [Smartphone, Laptop or desktop computer, Tablet Device, Smart Watch]
(Most Popular Electronics Worldwide [July 2022 Update], 2022)2022)

e An application that uses three interactions - Clicking, Long-press, and Typing.

e An application that stores data related to 4 things: User’s
contacts

lists

tasks

setting preferences

o

o O O

e An application with 3 navigable pages.
e An application with interactive and dynamic interface components.
e A system that broadly allows users to:

o Create interactive to-do lists.

o Share these lists or tasks with their contacts.

o Customize their interface [Brightness, volume, font sizes].

e Security and privacy of user data.

Some features we are proud of:

1. Sharing tasks with contacts to ask for help

Long press on the task you — ——

gp <y w2 = B)= m| 7| =
want to share. Share-icon a0aro sbat | | abibe &
pops up and you click it, Weekend Shop ° o
your contacts pop-up, you ﬁ ﬁ
choose “A”ysane”_ Book appointment at

1| the dentists for 24th Done gfgdg | fdfsd | Allysane
august.

Q searchin mail

Allysane receives a mail
saying you require help
with that task.

¢« ®m 0@ B8 0 G o i

I need your help with this task D s

2. Security and privacy of user data: Data stays on the client side.

3. Responsive to all dimensions of screen sizes and devices.

4. Click anywhere in the faded background to go back.

3. Fe.edba_Ck 3| Place Holiday order.
Animation

System description

As stated in our ‘technical output’, our product is a web-based, single page application(SPA),
that dynamically interacts with the users rewriting the webpage from the web server, based on
clicks and interaction from the users.

Changes in our approach to the system:

Pmtalyps]—[Decumpass into components (7

Accessibility measures
Recovery (user error)

Lucille

Backend (ready)

BrowserStack (3

[

Data & communication

Automatic?

[Stateless frontend (nothing to break)

LambdaTest

Portability

Testing across devices

[Cﬂché (transient, easy to recreate) Recovery

Figure 8 : Work breakdown on 07/27/2022

Lucille

Data & communication

Figure 9 : Work breakdown on 08/10/2022

Features:

Features in broad terms and their history:
The following functionalities were selected after our preliminary study and survey.
1. Add list
2. Delete list
3. Add tasks to the list
4. Delete and edit tasks
The following 2 were added to incorporate the fact that Seniors take help from their contacts to
manage their technology needs. Furthermore, we wanted to increase human connectivity.
5. Add contacts
6. Share list/task with contacts

The following was added after our survey showed users needed to change font sizes, screen
brightness and volume levels:
7. Change brightness, font size, volume

Architecture:

Single Page Application (SPA)

After evaluating different options for the tech stack and our decision to select the React and
IndexedDB stack, it was apparent that we wanted to develop a Single-Page App which served
some of our other goals, such as:

e [aster load time

e No need for server-side operations

e DBetter user experience

e |ess complex development and implementation process
Single-page apps are one of the most used ways to develop applications that perform faster
than multi-page apps due to the removal of server-side operations needs. The client (the user’s
browser) downloads the entire application once and only changes the required components

later when the user requests them. Another benefit of using this design pattern is debugging the
application directly in the browser while testing the different functions. This has helped us to

have the first MVP fast to evaluate the use cases and the idea as a whole.

UML Diagram

Lucille App System Coverage

Delete the list
Press Board tab
<<Extend>>

Check Board D Create alist <=

1|r .

Archive the list

Share the list
Press Guide tab

Check Frequently
Asked Questions
(FAQ)

Users

Press Setup tab

<<Extend>>
Change font
size

Configure App «

~f Changefont
contrast

Volume
Change

Press People Add a contact

icon

>

pa—
<<Bxtend>> Create a task

<<Extend>>
Rename the task

<<Extend>>

Complete the task

Share the task

Restore the list

. Press contact(s) ~
with email

Figure 10: UML diagram

Check email

Write an
email

Contacts

Programming design

OOP and Decorator design pattern and functional programming

We have used object oriented programming (OOP) and to some extent, “Decorator design
pattern” to program our application. We chose OOP to facilitate our group’s programming
experience and increase the comprehensibility of code and ease debugging through abstraction
and modularity. We have also used functional programming throughout the program. Breaking
down objects into reusable and smaller modules and use of inheritance and polymorphism has
helped us make our program easy to debug and easy to comprehend.

addedMembers
Decorator

Client > Component

Figure 11: UML diagram Decorator design pattern in javascript (JavaScript Decorator Design
Pattern - Dofactory, 2022)

imageToBase64 = (file) {

reader = FileReader();
reader.readAsDataURL(file);
reader.onload =
onLoad(reader.result);

Figure 12: Use of decorator design pattern

EVDELER ((navItem) =>
path === navItem.to ? (
<NavLink
to={navItem.to

{ margin: "e lepx" }

Figure 13: Functional programming: Use of map function, use of “()=>{}" function

const bind = (=%
boardlList. ((board) => {
it (board.id === selectedId
(true);

return board;

_ })s

Figure 13.1: Object oriented programming: Bind inheriting from useLongPress.

Why the decorator design pattern?

This design pattern was the most suitable for us as, in our program, we had many objects that
belonged to the same class, but would also have their own individually varying characters.
Decorator design pattern allows varying behaviors to be added dynamically to these objects
without changing the class that the object belongs to(Dung Nguyen, Stephen Wong, and Mark
Husband, 2008). We also wanted to use OOP for its abstraction and modularity, as we wanted
to increase the comprehensibility of our code and decrease time requirements.

Evaluation of using design patterns:

While React comes with its own patterns, and there wasn't a strict necessity to use a design
pattern, using the decorator design pattern has given us some more knowledge about program
structures. It has also helped us understand object oriented programming more. Finding the
correct design pattern fit for our app was difficult. We debated between “Decorator” and “Mixin”,
the former was chosen, but if we had time, we would have liked to explore the latter as well.

Coding process

Our agile process:

We followed an agile methodology, with weekly sprints. Further details and description about our
process is present in the “Planning management and execution” section of this report.

CI/CD Pipeline:

Using Continuous integration/ Continuous delivery (CI/CD) in our process significantly helped
with building the app simultaneously by 5 developers. Every Time changes were pushed to
github, we had an automation system in place that would check for security, stage and deploy
our code. Staging of the program made instant accessibility of the product updates without
altering the production environment.

Security Platform
Snyk tests for vulnerabilities —— @

snyk

JavaScript Testing Framework

Code Repository "
Code changes

Blen et e GitHub ——— Automated unit tests Q 0|0

Hosting Platform
Build, create test environments and deploy

code —’@;@3’ netl ify

Figure 14: Production, staging and deployment.

Refactoring story:

While we did have to start from scratch multiple times, once we were certain about our stack
choices, we made significant code development progress. But, we reached a point, when the
code was not easy to comprehend and debugging was impossible. At this point, we started to
refactor our code, and systematically divided every component into modules. Once refactored,
our speed increased and the program was debuggable and understandable again.

Module division: React components:

Navigation : ‘Eﬂ 7B = %‘ Board P _ AT
1. NavBar 1.NavBar oard Fage. iz ==&
2. BoardBtn 2.BoardBtn 1. BoardPage Zdistfem_ AListitem
3. TaskBtn 2. Board ens
4. ListBtn [f]presae 3. Listltem |
5. RecordBtn 4.ListBtn :
6. HelperBtn G.Recnrdﬂ.tnlﬁ‘ —
7. HelpBin s
8. CaretakerBin 5'”""’”“‘”@'

Figure 15: A glimpse into our module division process

Performance testing:

We used “Lighthouse” for general performance testing. One instance of us fixing the app
performance was when our assets were slowing down the load time. We discovered this issue
after testing and we promptly changed all our assets to web supported .svg formats. and this
increased our performance and improved the loading times instantly.

9% 87 1@ 82 100 87 100 91
Performance Accessibility Best SEO Performance Accessibility Best SEO PWA
Practices Practices

Figure 16: Performance measurement before and after converting assets to .svg format.

Technology stack and dependencies:

4 sets of complete tech stacks were considered in our exploratory study where we tried to
answer 4 questions:

1. Establish the time resource that each stack would take to complete the application.

2. The level of ease

3. Accessibility to each member

4. Ability to produce desired functionality OR ability to meet our goals/objectives
In this study, we researched documentation and tutorials of each element of the stack and then
went on to create one single page of our application with it. We recorded the time taken to build
the first page with each of these stacks. We also noted down if we were able to produce all the
functionalities of this page. We also noted down the level of ease for each applicant.

Stack 1 Stack 2
Language e TypeScript Language & e HTML, JS, CSS
Front-end Eﬁ i E”
e React
e Redux S e Node no@de
Front-end , R
e Material Ul I zj s Mysql M
Back-end =
e AWS Amplify e Express EXpress
Back-end
) Advantages:
Advantages: . P
e A complete software solution. . Tthelzvhole team is proficient in this
e Availability of tutorial and starter Eac " " th dul
templates. . (gﬁ\e}c;ances rom other modules
Disadvantages: Disadvantages:

e Steep learning curve.

e Unfamiliar technology and new
programming language to most
members of the group.

e AWS was only partially free.

e Not enough time to grasp all the new
technologies.

¢ Time consuming.

¢ Required repetitive and manual work.

¢ Difficult to make our application
dynamic and interactive with this stack.

Time taken to build the “Board” page: 15 hour

Time taken to build the “Board” page: 10 hour

Level of difficulty: Low

Level of difficulty: High

Figured out a clear pathway to build what
percent of the aimed features? 40%

Figured out a clear pathway to build what
percent of the aimed features? 100%

Additional resources/dependencies
required:

aws-amplify/cache 4.0.48
aws-amplify/ui-react 1.0.1
material-ui/core 4.11.3
material-uificons 4.11.2
reduxjs/toolkit 1.5.0
testing-library/jest-dom 5.11.4
testing-library/user-event 12.1.10
types/jest 26.0.15

types/node 12.0.0

types/react 17.0.0
types/react-dom 17.0.0
types/react-redux 7.1.16
types/styled-components 5.1.7
typescript-eslint/eslint-plugin 4.15.1
typescript-eslint/parser 4.15.1
aws-amplify 3.3.19
aws-amplify-react

Additional resources/dependencies
required:

hody-parser 1.20.0
ejs3.1.8

express 4.18.1
jquery 3.6.0

jsdom 20.0.0
mysql 2.18.1

Stack 3 Stack 4
Language ¢ Javascript B Language e Javascript E
e React . e React .
Interface @) @)
e CSS Interface e Chakra Ul
o React Router E e React Router B
Router Router
= . D
e LocalStorage Data e Dexie.js -
Data
Advantages:
Advantages: e Reduced manual and repetitive tasks.

¢ New technologies included were
moderately easy to grasp.

Disadvantages:
e LocalStorage couldn't provide a
complete data solution.
e (CSS was time consuming as a styling
solution.

Easy to learn.

Plentiful online support and resources.
Efficient documentation.

Data design was fast and efficient.

A complete software solution for our
scope.

Time taken to build the “Board” page: 15 hour

Disadvantages:
¢ Some new technologies to grasp.

Level of difficulty: Medium

Time taken to build the “Board” page: 5 hour

Figured out a clear pathway to build what
percent of the aimed features? 70%

Level of difficulty: Medium

Additional resources/dependencies
required:

testing-library/jest-docm 5.16.4
testing-library/react 13.3.0
testing-library/user-event 13.5.0
dexie 3.2.2
dexie-react-hocks 1.1.1

expo 46.0.10

gh-pages 4.0.0

react 18.2.0

react-dom 18.2.0
react-router-dom 6.3.0
react-scripts 5.0.1
use-long-press 2.0.2

uuid 8.3.2

web-vitals 2.1.4

Figured out a clear pathway to build what
percent of the aimed features? 100%

Additional resources/dependencies

required:

. chakra-uifreact 2.2.4
emotion/react 11.9.3
emotion/styled 11.9.3
testing-library/jest-dom 5.16.4
testing-library/react 13.3.0
testing-library/user-event 13.5.0
dexie 3.2.2
dexie-react-hooks 1.1.1
expo 46.0.10
framer-motion 6.5.1
gh-pages 4.0.0
react 18.2.0
react-dom 18.2.0
react-router-dom 6.3.0
react-scripts 5.0.1
use-long-press 2.0.2
uuid 8.3.2

¢ & ¢ & 0 6 0 00 0B et e e

Conclusion:

We chose ‘Stack 4’ to develop our final product because compared to the 4 stacks we explored,
this stack was the most efficient in terms of time-consumption, the new technologies in it were
reasonably easy to grasp and it was also a complete solution to our project aims and goals.

Discussion of the technologies and dependencies used for the final product:

1. Javascript:

as

Using javascript as the main programming language was a straightforward choice as it
was the only language in which all 5 group members were proficient in. Furthermore,
javascript was a fitting language to attain all our technical aims and objectives.

2. React:

Advantages:

e React comes with built in states and render-update functionality so it reduces the
need of manual work and having to build these functionalities from scratch.
Plentiful online support and efficient documentation.

Reuse of react components.

Our list of necessary libraries and dependencies work with React seamlessly.
Easy Testing procedure with React.

Top ranking among its competitors.

Awareness, interest, and satisfaction ratio rankings.

Figure 17: React’s ranking compared to its competitors. (The State of JavaScript 2019: Front
End Frameworks, no date)

Issues faced:

e |t was a new framework that most of the group had never worked with before, so
we had to spend a lot of time researching and getting started. In retrospect, our
group should have included a much longer sprint dedicated just to learning
React.

3. Chakra Ul:

Advantages:

e |t reduced our need for manual styling.

e Other than the styling, Chakra Ul also comes with tab, navigation and button
functionalities which we were able to make use of.

e Chakra Ul elements are accessible and there are some prebuilt security
measures in place.

e \We were also able to borrow some responsive nature of Chakra elements into
our program.

Alternatives explored:

After exploring the most common css frameworks, our group was able to pinpoint
“Material Ul” and “Chakra Ul” as the most beginner-friendly framework. We initially
started our work with “Material UI” but the components that it provided were just not
suitable for our interface and so we quickly changed to “Chakra Ul”.

4. Node Package Manager (npm):
npm

Advantages:
e With npm, we were able to systematically install, manage and update all our
dependencies in a much shorter time.
e From a security perspective, npm ensured our dependencies were being installed
from trusted sources.

Security

Snyk:

@ snyk

Synk is a cybersecurity tool that we are using in our project to analyze and fix vulnerabilities and
bugs in our code and dependencies(Snyk | Developer security | Develop fast. Stay secure.,
2020). We chose Snyk because of the following reasons:

e Easy configuration

e Free of charge

e Top position in the market and good ratings among its competitors

Pre-detection of errors

ESLint is an error detection and correction tool that analyzes your javascript code and detects

errors or problematic patterns. (Find and fix problems in your JavaScript code - ESLint -

Pluggable JavaScript Linter, no date). We are using ESlint for the following reasons:

ESLint is customisable in the errors it detects.

ESLint helped us maintain a uniform coding style in a group setting.

We were able to incorporate coding style guides.

The configuration of ESLint was simple enough after some initial preparation and

research.

e We supplemented ESLint with “Prettier” which is a code formatter but doesn't handle
errors.

Data layer

We created a data model for our application. The following tables contain all the data entities
and the interaction of our app with the database layer.

Data model:

Data entities and properties:

List
1. Title (string)
2. Tasks (list of tasks)
3. State (enum; active/archived/deleted)
4. Shared with (list of helpers)
Board

1. Active lists (list of lists)

Contact
1. Name (text)
2. Email (email address)
3. Shared active tasks (list of tasks)
4. Shared active lists (list of lists)

Task

1. Content (text)
2. State (enum; active/done)
3. Shared with (list of helpers)

Settings

Font size (number)
Brightness (number)
Volume (number)
Vibration power (number)
UUID (string)

abrwnN=

Data actions:

From lists

Re/name list

Add task

Edit task

Change task status
(complete/incomplete)
Share task

Delete list

Archive list

Share list

PO~

®NOO

From the board

Create list
Delete list
Archive list
Share list

PO~

From settings

1. Adjust parameter

From helper view

1. Add helper
2. Edit helper
3. Delete helper

After exploring multiple data solutions such as Amplify, mySql, LocalStorage, and
indexedDb(dexie.js, pouchDB, LocalForage), we settled on Dexie.js which is a wrapper for

indexedDB. We chose this solution for its easy interface, beginner-friendly usability, and it was
most suited to attain our data goals.

Dexie.js

sDexie.js

Advantages:
e Security:
One of our biggest reasons for choosing Dexie.js was that it is an indexedDb solution
which means client side data remains on the client side and nobody but themselves
have access to it. Also, in indexedDB, cryptography is done outside the browser
execution environment, so it's additionally safer.
e Easy interface: Querying the database and updating it was simple.

Issues and challenges:

e Asynchronous functions: We had to do extensive research and homework into javascript
async functions, callbacks and promises before we could work with async functions in
dexie.

e Migration from localStorage to indexedDb: Since dexie.js was not our first data solution,
we were left with the issue of migrating all our data from localStoragestackoverflow,
documentation for dexie.js

Figure : Use of asynchronous function to query the database.

Data Implementation:

Indexed}B
lucilleDB - hitps://lucille
boards
deleted
name
archived
taskscount
helpers
profilepicture
name
email
settings
volume
fontsize
brightness
vibration

tasks

completed
boardid
task

Our data structure in indexedDB-
The data structure it divided into 4 parts:
1. Board: all information related to the
board and the lists on it.
2. Helpers: Information about the
Contacts/Helpers
3. Settings: Information about app
settings such as font brightness.
4. Tasks: The actual task’s text content
and its state.

1. Board: This is where all the lists are
stored. Different properties of the list such as
its name, taskcount and its states are also
stored here.

2. Helpers/Contacts: Contacts have a name,
a photo and an email id assigned to them and
this information is stored here.

Key (Key path: "id") Walue

3. Settings: This part of data store settings
value of the app such as brightness and
volume.

4. Task: This is where individual tasks and
any information about them is stored. Each
task comes with the board id of the list they
belong to and other properties such as
complete/incomplete state.

Program structure

Y Y Y Y
[Node modules] Public SRC ESLint
Index.html
Y Y

App.jsx Assets
Index.js
App.test.js

setuptest.js .
> images

JS index,js

Components

Vv Createlist

J5 Createlist.jsx
v Navbar

JS Navbar.jsx
J5 navData.js

JS index,js

Figure 18 : File structure of Lucille application

Pages] [Tests]

App.test.jsx

v Archive

JS Archive.jsx

v Board

Js Board.jsx

v BoardDetail

JS BoardDetail.jsx
v CreateHelper
Js CreateHelper,jsx
v Guide

JS Guide.jsx

JS guideData.js
v Helper

Js Helper.jsx

v Setup

JS Setup.jsx

JS index.js

Code Story: Building the app

Here, we write about the code that brought about this feature. Any issue or challenge faced
when trying to program it. Any solution used and their sources (like stackoverflow). Any
interesting bit of code’s snippet. Any library or technology used to achieve this feature. Any
description that sells the idea that it was technically challenging and sort of new in the way we
did it.

Code story: feature development, challenges and evaluation.

1. | “Share” functionality

Challenges:

1. Share lists/ tasks with contacts.
2. Send email to contacts with the data about the lists/ tasks being shared.

Solution:

1. mailto: method
We used the “mailto:” method in javascript to send emails to the contacts. This
method was the most suitable for our goal, as it was the simplest method available
that also allowed sharing of data through email.
<Box
onClick={
=> window.
‘mailto:${ helper.email }?subject=I need your help with this task&body=

${ boardData. ((task) => task.id === taskId)[e@].task}"

2. Uniform Resource Identifier (URI):
In our program, we create an URI instance using the email address of the contact.
This email address is now an URI object and it is accessed through the Simple Mail
Transport Protocol.

3. Nested in-line functions:
We made use of nested in-line functions to pass down the sharing-function along a
chain of react components. This process is triggered through event handlers in the
interface elements.

Evaluation:

In our research for various ways to send emails through the program, we came across
many libraries such as SmtpJS, but because of time constraints and in favor of
simplicity, we went with the ‘mailto:” method. In our future development, we plan on
using the SmptJs library.

“Long press” functionality

We try to differentiate between single click and long press and produce 2 different sets of
functionalities for these two interactions.

Challenges:
1. Accessing child functions of a different object, from inside another object.
2. Selecting a library that can be used to detect long-press interaction.
3. Unfamiliarity with using React hooks.

Solutions:

1. JavaScript function bind():
const bind =

)
<Image
w:"g@px"
ml="2@px"
9]

src={StrikeIcon
onMouseEnter={() => (task.id)
style={{ cursor: "pointer" }

By using the bind method, we solved our issue of not being able to access the
method of a different object from inside some other object. We stumbled upon this
solution after extensive research into documentation and tutorials. The E4X double
double dot operator “..” along with bind(), connects all the descendents of the
component to the outer method, thus enabling us to use the setButtonPopup()
method of an external object. This further enabled us to implement the long press

functionality on our interface buttons and elements.

2. ‘use-long-press’ library:
use-long-press is a js library that is used to detect click events. This library was
ideal for our purposes as it supports both mobile and desktop devices and it is very
simple to use alongside react. It is also very easy to specify the exact hold period in
seconds using the “threshold” property in event handlers.

import { uselLongPress } from "use-long-press"”;

3. React hook
Hooks are a new tool that appeared in React 16.8. We made use of “React Long
Press Hook” which supplied us with long-press detecting objects. We were able to
use react state and lifecycle without defining new classes or switching between
classes. This was a new technology we were not familiar with, and we spent a long
time trying it out.

Evaluation:

Our use of “React Long Press Hook” was limited and in future works, we plan on making
full use of all the varied methods that it comes with. The error debugging and learning of
new techniques took a significant amount of time but as a result the Code we have put in
place is modular and flexible and can be easily extended to handle multiple
interactions(hover, double-click) not limited to long-press.

Voice to text

Challenges:
1. Identifying the most suitable voice to text conversion library.

Solutions:

1. AlanAl 2\ Alan®

We explored multiple solutions to this challenge, such as the
“react-speech-recognition” React hook, “SpeechRecognition JavaScript interface”,
“‘Rev.ai speech-to-text API”, and “Alan Al”. We chose Alan Al for the abundance of
documentation and tutorial resources on it. Alan Al is a voice interface that works
seamlessly with React apps.While it may be a complete voice assistant tool, we are
using it as a solution for voice to text conversion.

Evaluation:

Alan Al comes with advanced analytics that can be used for user experience and user
behavior analysis. In future extensions, We aim to integrate these analytics into our testing
regime. We also acquired the skill to integrate Al platforms into React apps while trying to
implement this feature.

Final state of the feature: In the final product, we had to remove this feature as we
couldn't successfully and completely implement it. We were also concerned about the
ethics of storing voice data and ensuring the privacy and storage of this data, which was
beyond the scope of our project.

Responsive display

We wanted our application to be responsive to all screen sizes and devices. We were
successful at our attempt to do this, but we did run into some issues and challenges.

Challenges:
1. We had to use multiple layers in our program and in an attempt to make the
interface responsive , we ran into the issue of bottom layers being hidden and
unresponsive..

Solutions:
1. Media queries and Breakpoints

2. Restructuring and arrangement of several layers of react components.

Animation

Challenges:
1. Create custom animation.
2. Trigger animation based on the database.

Solutions:
1. Keyframe Animation

completedTaskAnimation.css @

lucille > src > assets > completedTaskAnimation.css >

@keyframes completedTaskq{
0% { width : @; }
100% { width: 100%; }

}

.completedTask {
position: relative;

3

.completedTask::after {
content: ' °;
position: absolute;
top: 50%;
left: 5px;
width: 1e0%;
height: 4px;
background: [red;
animation-name: completedTask;
animation-duration: ©.1s;
animation-timing-function: linear;
animation-iteration-count: 1;
animation-fill-mode: forwards;

We used Keyframe animation technique along with self-made css components to
create extremely flexible and customizable animations.

2. Inquiring database to change class name:
className= (task.id)
? "completedTask"
const getTasks = (=
db.tasks. { boardid: boardId }
ik
Animations are triggered by changing class names of the animated element. This
change is triggered by querying our database by using “useLiveQuery React Hook”.
Evaluation:

We are using animations in our app to give visual feedback to our users. These animations
needed to be customisable so we opted to make our own animations from scratch instead
of using a library. KeyFrames were a fairly recent technology and creating css component
from scratch involved a lot of manual work. If we had more time, we would have explored
other options with less manual work.

Completed and uncompleted state of task.

Challenge: Give a completed/uncompleted state property to each task and make it
changeable.

Issues faced:
1. The completed/ uncompleted state of the task would change in the display layer,
but it wouldn't change in the data layer.
2. Changing the state of one task would apply to all the tasks.

Solutions:
1. Creation of individual ids:
Our problem of all the tasks changing their change when one task changed its state
was solved by giving each task its own unique individual id.
2. Boolean state column in database:
The state was stored as a boolean data in a column in our database, This database
was first queried and then changed whenever a task changed its state.

const = async (id) => {
const getTaskData = boardData. (taskItem) => taskItem.id === id);
const currentTaskCompletedvalue = JSON. getTaskData[@].completed);
const reverseValue = !currentTaskCompletedValue;
db.tasks. id, { completed: reversevalue. O}
await db.boards. (boardId, 10), {

taskscount: currentBoardTasksCount.taskscount - 1,
3

false);

35

const = (id) => {
const getTaskData = boardData. (taskItem) => taskItem.id === id);
const currentTaskCompletedvalue = JSON. getTaskData[@].completed);
return currentTaskCompletedValue;

3

Evaluation:

We had to explore multiple data solutions to implement this feature. We tried Amazon
amplify which was a complete solution but the difficulty level was high , and then we tried
localStorage which was simple to use but it supported only a very small kilobyte of data. So
we ended up using an indexedDb solution with dexie.js library, which was both easy to use
and supported the full data plan.

Layering(Background clicking to go back)

Challenges:
1. Click anywhere on the faded background, not just the cross-button to go back.

Solutions:
1. Onclick Event listeners.

'buttonPopup) }

Archiving

Challenges:
1. Querying and updating the database.

Solutions:

1. uselLiveQuery :
We used the useLiveQuery technique that is available through dexie.js library. This
doesn't just update the database but also observes any change to the database
elements.

const boardList =
=> db.boards
{archived: "false", deleted: "false"}

Evaluation:

We had to change our database solution multiple times when trying to implement the
archiving functionality. If we were to do this process again, we would choose a complete
database solution such as “Amplify” and set aside more time to learn it.

Save and change app settings (Brightness and font size)

Challenges:
1. Apply display settings throughout the whole app.
2. Save the app setting once changed by the user.
Solutions:
1. React state
We made the use of React state (useState()) to apply values for font-size and app
brightness throughout the whole app.
<Heading
className= (task.id)
? "completedTask™

fontSize: ~${mdFont}px’,
filter: " contrast(${fontBright}%) ,

function O [
const [mdFont, setMdFont] = (30);

® const [smFont, setSmFont] = (20);
const [fontBright, setFontBright] =

2. Change display settings:
We are using functions that query the database and change the display settings like
“brightness” in the database itself.
const = () = {
const newFontBright = fontBright + 26;
newFontBright);

db.settings. 1, { brightness: newFontBright });
b

Evaluation:

While trying to implement this functionality we realized that changing the whole app
brightness and dealing with the device permission to do so was very complex so we came
up with an easy solution of increasing the contrast of the fonts.

Version Control

Code version control: Git, GitHub, Fork

Report version control: Version history in google docs

File View Repository Window Help

LA LR 5 = .

Quick Launch Fetch Pull Push Stash
Lucille # 1 [0]|¥ main| decrease height
[5) Local Changes Revert to Tafe5d0
E all commits Merge branch ‘main’ of https:/github.com/marags/lucille
i Q 0 new list size
size fixes
=L Logo: part 1
v Branches dynamic guides fontsize and contrast
+' main

P routing-and-refactoring

* Remotes

* () origin
V' change_to_dexiejs
V' change-route-path
V' code_commenting
V' completed_animation
' create_anywhere_on_the_list
v edit_task_when_clicking_on_it
V' gh-pages
¥ main
V' mark_task_as_completed
¥ move_archive_to_board
¥ move_contact_to_setup
¥ new_list_without_modal
V' new_task_bug
P new_task without_medal
V' routing-and-refactoring
V save_settings_to_db
P share_list_tasks_via_email
V' share_via_email
P style_change_barder_shadow
V' style_changes
V' taka_textname
¥ unit_tests
V' update-guideData,js
' updating-guideDatajs
Tags
Stashes
Submodules

T

comments typo fixing
change animation duraticn
Merge pull request #28 from morags/unit_tests
)| origin/unit_tests | base unit tests
Fix overflow scroll bar always visible
Fix inconsistent container background calor
Fix Board separator color and location vs. options modal
Add list icon in the bottom right
Pinned list changes
tiny change before starting on pinned paper
colored current tab
tiny change in current-tab-style
board icon without border
Merge branch "main’ of https://github.com/morags/lucille
Merge pull request #27 from morags/new_task_bug
fix new task bug
navbar part 1

row-start navbar

|C)| Drlglm’style_change_border_shadow| border and shadow

Merge pull request #25 from morags/code_commenting
)| origin/code_commenting | Add comments to all pages
Merge pull request #24 from morags/update-guideData,js
()| origin/update-guideDatajs update guideDatajs
Fixed namespace error
SVG icons
«clean up assets images
change helper to contact
Merge pull request #23 from morags/move_contact_to_setup
) | origin/move_contact_to_setup | move helpers to setup
design change
remaining tasks count fix
Merge pull request #22 from morags/updating-guideData.js
)| origin/updating-guideData.js | small fix on the guieData.js
updateing guide questicn on guideData.js
Merge pull request #21 from morags/share_list_tasks_via_email
)| origin/share_list_tasks_via_email | share all list tasks via email
Merge pull request #20 from morags/new_task_withaut_modal
) | origin/new_task_without_medal | Add and edit tasks without modal
Merge pull request #19 from maorags/new_list_without_modal

)| origin/new_list without modal | add list without modal

Figure: Changes to our repository and version control logs

Rodiloo
Rodiloo
™ anugya2
Rodiloo
Rodiloo
I anugya2
Rodiloo
Rodiloo
Rodiloo
1 Rodi Ali
Rodiloo
™3 Morag §
[Morag §
[Morag §
I anugya?
I anugya?
anugyal
anugya
anugyal
anugyal
anugya2
Rodi Ali
Rodiloo

-
-
-
=
-
o

I anugya2

I anugya?
Rodiloo

3 Rodi Ali
Rodiloo

[e

B Phuyuthanon

0 anugya2

0 anugya2
Rodiloo
Rodiloo

3 Rodi Ali
Rodiloo
Rodiloo
Rodiloo

[e

B s Phuyuthanon

I Isa Phuyuthanon

3 Rodi Ali
Rodiloo

3 Rodi Ali
Rodiloo

3 Rodi Ali
Rodiloo

Fork
w Lucille
P main
Lucille

9d19ada 4 Sep 2022 22:14
Sbelbda 4 Sep 2022 21:57
43¢1026 4 Sep 2022 21:41
1afe5d9 4 Sep 2022 21:37
3eadTdd 4 Sep 2022 21:08
1edabad 4 Sep 2022 21:41
c3eelad 4 5ep 2022 1%:11
43a45a0 4 Sep 2022 18:56
9p392ch 4 35ep 2022 16:17
306383 4 Sep 2022 15:50
2b25eb5 4 Sep 2027 15:44
126e0d0 4 Sep 2022 13:35
3fe8a70 4 Sep 2022 13:32
1368131 4 Sep 2022 13:28
Bdodfc? 4 Sep 2022 01:27
Bbefd7a 4 Sep 2022 00:38
25d5¢cc? 4 Sep 2022 00:23
f1337a5 4 Sep 2022 00:14
1b00a027 3 5ep 2022 23:52
cced84b 3 Sep 2022 2347
Oc3eci2 3 Sep 2022 23:38
df0829a 3 Sep 2022 23:22
b52ea3d 3 Sep 2022 22:50
924040 3 Sep 2022 23:38
27al2ae 3 Sep 2022 22:40
5 a7 3 Sep 20
Oeaf26% 3 Sep 2022 21:58
=41371d 3 Sep 2022 21:57
ab3bbde 3 35ep 2022 13:34
5bd936b 3 Sep 2022 13:32
cObfT49 3 Sep 2022 01:54
4Acialal 3 Sep 2022 01:10
41b29bb 2 Sep 2022 23:58
447ceal 2 Sep 2022 23:45
d71220b 2 Sep 2022 23:43
02%zaa2 2 Sep 2022 23:42
0f67639 25ep 2022 2312
4664478 2 5ep 2022 19:59
bef789d 25ep 202217:38
TTcT46a 2 5ep 2022 17:27
1afa37a 2 Sep 2022 17:23
7al2a81 2 Sep 2022 02:03
024741 2 Sep 2022 02:02
032746 2 Sep 2022 00:38
5062059 2 Sep 2022 00:37
888c5% 1 Sep 2022 22:00
50b665d 1 Sep 2022 21:59

Testing code and error handling

Error handling:

Because errors will happen in different stages of the application lifecycle, one of our focus areas
when it comes to error handling was to wrap all the promise functions inside a try...catch
statement to ensure the stability of our application, although we are not handling all the errors in
a meaningful way, we can at least get information and logs to investigate the incidents more
smoothly. Most of our try...catch blocks were wrapping the API calls to the IndexedDB
client-side storage via the Dexie library, as all these calls are promises and don’t always have
values or connections.

addDefaultSettings() {

try {
await db.settings.add({
fontsize: 22,
brightness: 1ee,
volume: 20,
vibration: 1,
)

+ eateh (error) {

console.log(Failed to add default settings ${error}’);
h !
is

30 |

Figure 19: Try-catch code blocks in our program

addBoard = ()
try
await db.boards.add({
name: boardName,
archived: "false",
deleted: "false",
taskscount: @

}

2 * catch (e
console. log("Failed to add new board => ", e);

navigate('/');

1
}

Figure 20: Try-catch code blocks in our program

Overall testing regime:

As our application is highly dependent on the end-user’s browser, on both mobile phone and
computers, we had to always perform cross-browser visual testing which helped us to capture
some of the bugs and unplanned behaviors on different versions of main browsers. The tool we
used to perform this type of testing is www.browserstack.com which gave us instant access to
the main operating systems such as Windows (with different versions) and MacOs (with different
versions) and the main browsers stack on these operation systems such as Chrome, Firefox,
Safari and Edge. One of our checks before deploying the latest changes to production was to
test the staging environment on these different browsers and perform the application main
functionalities.

http://www.browserstack.com

We were able to have this level of control on our tests and application stability due to the
implementation of continuous integration, continuous delivery practices which was provided by
Netlify, our hosting platform.

Unit testing:

We have used both Jest and react-testing-library to unit test our code. We faced a lot of issues
while preparing our code to be tested due to the use of the JSX syntax extension and the
IndexedDB APIs. The team members responsible for the unit tests had to learn about different
elements in order to be able to write the starter unit tests we implemented in our application.
The total amount of hours we spent on the configuration struggles was approximately 15 hours.
After dealing with all the difficulties, we managed to have 9 passing unit tests for the main
components of the application to ensure they are rendering correctly on application startup.

Test Suites: 9 passed, 9 total
Tests: 9 passed, 9 total
Snapshots: @ total

Time: 3.173 s

+ lucille

Figure 21: Running tests

describe('CreateList', () {
it('renders without crashing', () {
root = ReactDOM.createRoot(document.createElement('div'));

root.render(<CreatelList 3

Figure 22: Example of a testing code in our program

Deployment

Due to our early adoption of CI/CD (Continuous Integration, Continuous Delivery) practices in
our development processes, such as storing the code-base in Github and using it for version
control, and integrating our hosting platform Netlify with the repository, this helped us focus on
adding new features, fixing bugs, improving the stability and faster design iteration rather than
focusing on setting up the infrastructure. This has even reduced the lead time to production due
to all the automation that has been configured in between Github and Netlify, the hosting
platform to test, build and deploy our application on every new change. A new feature
development journey looked like this:

- The developer implemented the feature locally on their machine

- Pushed the branch to Github

- Opened the pull request to merge it into the main branch

- Ateam member reviewed the changes

- The change was getting merged after approval from reviewers

- A webhook call invokes the Netlify function to fetch the new change

- Netlify build and deploy the change to a new dedicated staging environment

- If the new feature/change/bug fix is approved visually by the developer in the staging
environment

- The staging environment is then pushed to production.

These practices helped us in some situations to revert back some undiscovered buggy changes
during the tests via either Github or Netlify. This has been very beneficial to reduce the length of
the impact on our end-users when having bugs in the production environment.

These processes were completely new to some of the team members, which created some
confusion at the early stages of application development. After testing it and changing some of
the rules at later stages, such as reducing the number of reviewers to only one and after
experiencing its benefit to reduce the stress on team members pushing bugs into production,
the whole team started appreciating it.

Deploys for lucilletodo

« https:/flucilletodo.netlify.app
Deploys from gitt com/morags/lucille.
Published main@ab36bde

Auto publishing is on. Deploys from main are published automatically.

Deploy settings ## Notifications Lock to stop auto publishing

Deploy Previews X Trigger deploy v
: code_commenting@e41371d Today at 8:58 PM
D c
iew #24: update-guideData.js@5bd936b
#23: move_contact_to_setup@029aaa2
tup

Deploy Preview #22: updating-guideData.js@77c746a Yesterday at 4:30 PM
Updating guide data js Deplo

Deploy P #21: share_list_tasks_via_email@f92474f
share

Deploy Preview #20: new_task_without_modal@5062059 Sep1at11:38 PM
Add and e« | Deployed in 27s

iew #19: new_list_without_modal @50b665d

Sep 1at7:03 PM
Deplo s

are

where_on_the_list@e2f7¢75 Aug 31at 9:35 PM

Deplo
Aug 30
Aug 30 at 5:01PM

Deplo

Deploy Preview mark_task_as_completed@f1ee62c Aug 29 at 8:51 PM
add checkbox and styling change Deplo

Fig 23 : Deployment History of our application

User Survey and Testing

Usability Test

We decided to use the Usability Test as our method of assessment. To gain as much knowledge
from the user as possible, our planning, including selecting the best applicant to be invited to
our interview, developing the questions to be asked, and altering our interview flow (see
Appendix C), was rigorously tested internally. Companies routinely do usability testing as part of
the creation of standardized products that endure multiple generations, including word
processing programs, databases, and spreadsheets (Sharp, Rogers and Preece, 2019). A
usability specification, which enables developers to test upcoming prototypes or versions of the
product against it, frequently compiles the results of usability testing. Current levels are stated,
along with optimal performance levels, minimal levels of acceptance, and other basic
specifications. Following that, modifications to the design can be made to the navigation
structure, terminology, and user interface. Then, these modifications can be observed (Sharp,
Rogers and Preece, 2019). Usability testing is well-established in UX design, but it has also
begun to acquire more traction in other industries like healthcare, particularly as mobile devices
play an increasingly important role in hospitals and for tracking one's own health (for instance,
Fitbit and the Polar series, Apple Watch, and so forth) (Sharp, Rogers and Preece, 2019).
Usability testing was thus selected as our primary method of evaluation since it is a norm, is
trackable, and produces positive results in healthcare products, as we have all seen in the
market with devices like Apple Watch and Fitbit that are effectively implemented.

Formative Evaluation

Between our initial prototype design for the Notebook and a second prototype, the formative
evaluation took place, and several applicants were selected to validate our concept with signed
consent to record the session (see Appendix F). We were able to create plans in a one page
dashboard thanks to David Travis' 1-page usability test plan from Userfocus (Travis, 2016).
David Travis has set up a single-page testing dashboard because “some start-up users of our
toolkit have complained that it's a little too documentation-heavy for their purposes. They
understand that planning is necessary for usability tests, but they don't require the level of detail
we do in our test plans because they are essentially executing everything themselves (where
there are often multiple stakeholders)” (Travis, 2016). Travis's layout has provided us with an
overview of what, why, where, and how due to the time constraints imposed by the fact that the
majority of our applicants are older. What we discovered from each interview throughout the
formative evaluation is listed below. For more details and verbatim documents (see Appendix E)

Author: Contact: Final date for
|lsa Phuyuthanon comments:
August 3rd, 2022
Product under | Test Participant: Test tasks: Responsibility:
test objectives: IMale age 65. Isa Phuyuthanon
A to-do list Find out about (Moderator)
application See below the design layout
prototype.
Find out about
word choices
Find out about
Business Equipment: color choice Location and
case: A laptop, the date:
The test will session will be | Find out about August 4th, 2022
address key recorded by favorite/least via zoom.
questions/valid zoom. The favorite function
ate regarding interview will be
the third accompanied by
prototype: a PowerPoint
MNotebook for interview deck.
the next
iteration. Failing
fo answer might
increase the
risk of
developing a
wrong product.
Procedure:
[osmin | 4-8 min 18-23 min
B I Pre-test Carrying out Post-test
Imrﬁ;’::;:_ o =) interview = the"t:stglask = interview =) | Userdeedback

Table 3: Usability Test Plan, Testing panel 1, Male age 65

Author: takahisa Hashimoto Contact: Final date for
comments:
Product under | Test Participant: Test tasks: Responsibility:
test: objectives: 66, female, Takahisa
A to-do list Japanese. Find out about Hashimoto
application See below Part-time the design layout | (Moderator)
prototype. Caretaker
Find out about
word choices
Business case: Equipment: , Location and
Only localized Find out about date:
landing pages in | c@lor choice 2022/Aug/16
Japanese and] 18:00 - 18:45,
use figma to Find out about her home.
show sequence favarite/least
flows. Interview favorite function
was recorded as
3 voice memo.
Procedure:
b 2 Pre-test Carrying out Post-test
'""I"Iﬁ';;:d” l:> interview l:> the test task :> interview :> Userfeedback

Table 4: Usability Test Plan, Testing panel 2, Male age 66

Author: takahisa Hashimoto Contact: Final date for
comments:
Product under | Test Participant: Test tasks: Responsibility:
test objectives: 71, female, Takahisa
A to-do list Japanese. Find out about Hashimoto
application See below Accounting for his | the design (Moderatar)
prototype. husband layout
business
Find out about
word choices
Business Equipment F'Td OL: ?bOUt Location and
case: Only localized color choice date:
landing pages in , 2022/Aug/16
Japanese and med _‘}”flabO“t 19:00 - 19:35, her
use figma to avorite/least home.
show sequence favarite function
flows. Interview
was recorded as
a voice memao.
Procedure:
L Pre-test Carrying out Post-test
I"TE;::F;?_ do () interview — the test task = interview [0 | Usertesdback

Table 5: Usability Test Plan, Testing panel 3, Female age 71

Flow Test objectives

Pre-test

To get started, can you please state your age and nationality ?

Are you experiencing any difficulty with eyesight, hearing, memory or
movement (incl. eyeglasses, hearing aid, joint pains, etc.) 7

On a scale of 1 to 5 (1=not at all confident, 5=very confident), how would
you rate your level of confidence in using computers and technology ?

On average how many hours do you spend online every day ?

What do you usually do online ?
How do you keep track of your daily tasks 7 What tool do you use 7

What devices do you use (mobile/ftablet, Android/Apple) ?

During test

Hover your mouse to the Weekend list, do you think this should be text or
FLOW 1 (LIST) an icon ?
If you wanted to create a list, how would you go about doing that ?

How would you edit the title of the list?
How would you delete a list, { Hover the mouse over Gardening)
What motivated you to hover over the list and not click?

If you click into the list, you will see a task, how would you create a new
FLOW 2 (TASK) [taskto the list ?
How would you edit the task 7

If you have completed the task, how would you do it ?

FLOW 3(ARCHIVE) |\What are you thinking as you view this Archive page ?

If user hover or click asks: Why did you navigate to the hover or click at the
list ? Do you expect to see some information ?

FLOW 4 (GUIDE) |\What do you think is the functionality on the page you are viewing ?

FLOW 5 (HELPER) |How do you view the complete information for the contact ?

| noticed you click the back arrow. Can you tell me why?
If you need to add more contact, how do you go about doing that?

Can you click on the name: Jack and edit his information

FLOW 6 (SETT|NCG". |Can you think of an appropriate setting other than what you see on the
screen 7

Should the page contain more information 7

Let the user choose the setting icon

Post-interview

How do you like the overall lay-out ?
Is the color appropriate 7

Table 6: Test objective used during the Usability Test

We organized a total of four usability tests by gathering panel users who matched our target
audience and profile. The initial attempt was carried out while displaying to them FIGMA-drawn
step-by-step screen flows (see Appendix D). In order to understand their challenges and

confusion over our design and concept, we posed a series of questions to four seniors. The
remaining usability tests were carried out on a laptop while using our browser-based application.
In addition, we received input from four separate elders about the program that was operating
on the device.

Details about our test methodology, their feedback, and our improvements are shown in the
table below. We received negative comments on our initial designs, and the elders required our
instruction for every single procedure. However, thanks to their candid criticism, our team was
able to think about how to improve the following test cycles. Elders received less advice from
our moderators during the most recent attempt than they had previously, and they expressed a
desire to add their tasks to the list.

Attempts Test Feedback from Elders and some Changes from previous
Platform | major issues Usability test
1 FIGMA | (Issue 1) Hard to understand how N/A (Not applicable)

"ARCHIVE" works and what it's for.

(Issue 2) Two Tabs "GUIDE" and
"HELPER" look similar. Any
difference?

(Issues 3) The background color on
the archive need to be contrast to that

of the font
2 Browser | (Issue 4) Impossible to check my Switch from FIGMA to our
app tasks after archiving the list 1st Browser app
3 Browser | () | can't save my contact until | Moved ARCHIVE page to
app all fields are filled out. BOARD page to simplify the
function (for issue 1 and
issue 4)
Added FAQ (Frequently
Asked Questions) in GUIDE
tab (for issue 2)
Coloring is fixed for issues 3
4 Browser | | can't probably find a long press MOVED Helper page to
app function by myself. [Add FAQ in SETUP so that users can
GUIDE tab configure all at the single

page (for issue 2)
| want to keep entering new tasks
after hitting the Enter button. Contact picture is set as
However, the task button has to be optional (for)
pressed after moving the cursor. [J
Further solution study required.

Table 7:Result of the iterative usability tests and feedback and updated from elders

Pic 1: Our moderator visited elders and
asked them how easily they could create
their tasks on our app.

Pic 2: Some elders participated in our
usability test via an online zoom meeting.

|1 e [E A

FEFEE L LY

Table 8: Pictures shows how usability tests were conducted

Summative Evaluation

We extensively tested our prototypes with actual users before sending the same group a survey
asking them to review the finished product. They were asked to test our finished product and
provide a score ranging from 1 (least satisfied) to 5 (most satisfied).

| enjoy the design of BOARD page

5 responses

2

1 (20%) 1 (20%)

1 2 3 4 5
Score (1 - least satisfied to 5 - most satisfied)

Figure 24 : Summative Evaluation “| enjoy the design of BOARD page”

| find the layout of the BOARD page easy to navigate

5 responses

3

2 (40%)

0 (0%) 0 (0%) 0 (0%)
o | | |
1 2 3

Score (1 - least satisfied to § - most satisfied)

Figure 25 : Summative Evaluation “| find the layout of the BOARD page easy to navigate”

| find several functions on the page were thoughtfully incorporated.
5 responses

3
2
1
1 (20%)
0 (0%) 0 (0%)
o | |
1 2 3 4 5

Score (1 - least satisfied to § - most satisfied)

Figure 26 : Summative Evaluation I find several functions on the page were thoughtfully
incorporated”

| like the design of the Guide page

5 responses

3
2
1
1 (20%)
0 (0%) 0 (0%)
0 | I
1 2 3 4 5

Score (1 - least satisfied to 5 - most satisfied)

Figure 27 : Summative Evaluation “I like the design of the guide page”

| find that the information on the Guide page is very useful
5 responses

3

2 (40%)

0 (0%) 0 (0%) 0 (0%)
o | | |
1 2 3

Score (1 - least satisfied to 5 - most satisfied)

Figure 28 : Summative Evaluation “l find several adjustment (Font size, Brightness and Volume
) to be very useful for this application”

| find it easy to add new contact
5 responses

2 2 (40%)

1 (20%)

0 ((f%) 0 (?%)

1 2 3
Score (1 - least satisfied to 5 - most satisfied)

Figure 29 : Summative Evaluation “l find it easy to add new contact ”

With an average score of 3.6 when asked to rate the board page's design, most respondents
said they had an "enjoyable" experience; but, when asked whether the board page was simple
to navigate, the average score rose to 4.5. The data shows that the adjustments made between
the initial prototype and the final product were carried out satisfactorily in design. The

respondents gave our features an average score of 4, thinking that they had been "thoughtfully
incorporated." This demonstrates that the features we've created have undergone
research-based testing and have a solid foundation.

Respondents gave the design of the Guide page an average score of 4, indicating that they
'liked' the page. The majority of users have praised the notion of guided questions throughout
the development process, from the first prototype to the finished product. The high rating merely
further demonstrates the value of this feature. Respondents gave the information on the guide
page an average score of 4.6, classifying it as "helpful". This suggests that the inquiries were
deliberately chosen to address and meet the concerns of an elderly users.

The respondents gave the setup page's design an average score of 4.2 and gave the
experience of using the page, which includes the ability to quickly add new contacts, an average
score of 4. This demonstrates that the improvements we made between the initial prototype and
the end product were successful. With an average score of 4.6, the respondents considered
changing the font size, brightness, and volume to be "helpful." This shows that the options we
provided are sufficient for senior users.

The study's main drawback is the small sample size; however, with a larger sample size and
more testers, we might increase the likelihood of product adjustments. One thing to note is that
everyone who tests the product is between the ages of 60 and 73, so with this modest response
from the correct market segment, we can really draw attention to the apparent features and
design.

Conclusion and Evaluation Summary

Where are we now?
e We were able to build the application detailed in our specifications bar some advanced
features which we plan on including in our future development endeavors.
e We were able to integrate findings from our literature review, market survey and user
survey into our application design and development.
e The app as a product has been through a series of testing and changes and the final
product we have has been tested for successful usability.

Place of our product?
e Lucille is a unique app in that it is one of the few apps specifically designed for elderly
and most likely the only to-do app designed for elderly.
e Lucille was

Further development:
Below are some of the features we proposed, researched and tried to implement but could not
successfully complete the implementation. These are also our potential areas of further
development.

1. Sentence completion while filling in tasks.

2. Animation of pinned lists flying towards the archived area when archive-button is

pressed.
3. Implementation of “cross” gesture to delete items.
4. Vibration and sounds when button pressed for haptic feedback.

User Manual

Instructions for creating a to do list on

L ucl

e Applicatio

N

Getting Started | Adding List
4 N/ N N\

Access our to do list
application at:

Lucille Application

=

On the Board page, add
your to do list by clicking
‘LIST located at the
bottom of the screen.

LIST

o _/

_

_/

When a notebook text
box appears, put a list
title in place of ‘Add List
Name’'.

N

Deleting, Archiving and Sharing List

Click and press your list for 3 seconds to access delete,
archive, and share buttons.

Mother's day

N\

w8 n

Click this bin iconto |
delete the list.

Click this drawer
icon to archive
your list.

Click this sharing
icon to share your
list to saved contact.

Click this icon to go
back to the board.

https://lucilletodo.netlify.app/

Adding and Editing Task
4 N/ N/ I

Click your list to access
your task. To add a new
task, click a ‘TASK’
button on the bottom of
the screen.

’d

TASK ||

N AN N\
- YA \

Click and press your task
for 3 seconds, share
button will appear. Share
your task with saved
contact.

When a text box appears,
simply type down your
task.

1 | make a rastaurent reservation

To edit, double-click your
task.

1 make a restaurant reservation

For help with ‘How to..’,
access our Guide page.

30
It

When you finish your
task, tick on the ‘DONE’
box at the end of each
task.

Unticking means you
have not completed the
task.

Font size, Brightness and
Volume adjustment.

Access SETUP page to
adjust Font Size,
Brightness and Volume.

Fomt Size:

1 cae g ehiks weall Aa
Brighimess:
C | cam read this well ¢
Volume:

Simply click on each icon
to increase and decrease.

o /

Adding Contacts

-

On the SETUP page, (put the helper's name and email, and upload photo. \

click the share contact Click ‘Add new helper' to save the contact.

icon on the bottom of the

screen.

Add Helper
-e Browse... Mo file selected
[Adl new helper

AN /

Figure 30: Instruction for creating a to-do list on Lucille

Appendix A: Persona design

Akiko

65 y/o Akiko lives in Miyama with her husband, Kazuo, where they own a farm and a small
B&B. Their daughter, a marketing professional, works in nearby Kyoto. They have three
grandkids, who occasionally visit them on weekends and holidays. They’re both in good
health, but the physical nature of the job means they now employ a handful of workers across
their estate. They own a kei truck and a small family car, which they both drive. They socialize
on a weekly basis in the local community center and in town events, and occasionally travel to
nearby towns, as well as to Kyoto and Osaka. They’ve been abroad, but they’re not fluent
English speakers and have difficulty arranging and managing trips. They have a reliable
internet connection at home and around town, but occasionally travel in areas with limited
cellular coverage.

Johann

75 y/o Johann is a retired teacher from Cologne. Divorced for 20 years, he never remarried,
but remains open to the notion. He has a son in Munich and a daughter who lives nearby, and
four grandchildren. He likes to think of himself as curious and open to new experiences, and
still enjoys everything the city has to offer. He doesn’t drive but travels frequently, relying
instead on the local public transport network and rail. He wears eyeglasses and takes
medication to lower his blood cholesterol levels. He recently received an e-book reader as a
gift; he finds it an interesting but imperfect experience, and still likes to pick up a book or a
(printed) newspaper whenever he has the chance. He often uses public wi-fi networks in
places like libraries and cafes.

(Sharma et al., 2022, sec. Users and personas)

Appendix B: PowerPoint Presentation used during
the Usability Test.

Figure 1 shows the PowerPoint that will be used during the usability test to get the test panel
going and to explain what to expect during the interview.

A to-do list
application 03 min

Welcome intro. and
Consent

»,

User usability (For interview)

D Pre-test interview) 14 Carry out the test task »)
D) Post-test interview) |4 1 2 3)
= X2 8
! Thank you, your feedback
U feedback : ’
P serfeedbac »”p will help us develop a
right product.

Appendix C: Figma flow used by the testing team

Figure 1. PowerPoint used during the usability test

The PowerPoint below in figure 1 is for an internal testing team to use to evaluate how well they
comprehend our application on Figma; it is for internal usage only and is not visible to the test

panel.

Link to access Figma design of the prototype: The Notebook

Please note that, currently the navbar for every page is clickable. This is meant for user to click
so that we learn their behavior during the interview e.g., what motivate them to click when we

did not guide them to click.

ust

’ \
| |l Ol &
/ = an || ¥
{ BOARD| |ARCHIVE] | GUIDE HELPER | ISETTING]
THE NOTEBOOK FIGMA DESIGN FLOW
FOR INTERNAL USE ONLY
(DO NOT SHOW TO THE TEST PANEL)
FLOW 1) LIST FLOW 2) TASK
BOARD! .mn.vs
:) &) "
¢ — Weskana ot Gurtening
Weekend MHoliday ‘Gardening. Weekend Lok
oy s
» 2 p» »)
. P »)
2 4 n e B 1
s 0 Dionar Upooming
= . iy
= 2ALME

st

EORRD)

aa O
HELPER | |SETTING]

BOARD

BEaME
BOARD| |ARCHIVE! | GUIDE HELPER | [SETTING]

&3 Upcoming birthday & Upcoming birthday &3 Upcoming birthday
& 1. Buy birthday cake A € 1. Buy birthday cake A = ~4-Buy birthday-cake- 4
=) =) =
= 2.Buy gifts A . =" 2.Buy gifts. A = 2.Buy gifts A i
>» = 3.Booka table for 2 A ») » >» s 3.Book a table for 2 i ») S 3.Book a table for 2 A »
= / = = 4
4.Buy 22 candles 4.Buy 20 candles A — 4.Buy 20 candies A
W 8 &8 &= =
= = =
np= V4 = V4
e @ & L @
FLOW 3) ARCHIVE FLOW 4) GUIDE FLOW 5) HELPER
ARCHIVE | | GUIDE BOARD
Task remaining: > .
1. Weekend ist 3 V) O
J,
== c I glby | 2= *
P - . | '
= .
5. Upcoming birthday 3
©

o

O

uuuuuuuuuuuuuuu

nnnnnnn

Figure 30: Figma flow for internal use

Appendix D: Figma design used on the first iteration.

Figure 1 shows Figma design of our first prototype, The Notebook. Access the Figma design
here: To-do list application prototype 1

https://www.figma.com/proto/NbBqMnkkhLR1g2bcrevwR2/To-do-list-application?node-id=9%3A17&starting-point-node-id=9%3A17

B [g][=][]
R

“SEEE DEEas CeEEE JEEE

Figure 31: Figma design of the the first prototype of the Notebook

Appendix E: Usability Test Result (Verbatim)

We recorded the full session of the usability test, and the test panel's response is provided
below in figure 1 - 3 (verbatim) including test panel 1 - 3.

Test Panel #1:

Questions Answer

Observation
Pre-test

To get started, can you please state
your age and nationality ?

Are you experiencing any difficulty
with eyesight, hearing, memory or
movement (incl. eyeglasses,
hearing aid, joint pains, etc.) ?

Nothing, | am
wearing glasses,
farsighted. Sometime
if the screen is too
bright | can not focus
very well.

On a scale of 1 to 5 (1=not at all
confident, 5=very confident), how

would you rate your level of 4
confidence in using computers and
technology ?

On average how many hours do you 4 hours

spend online every day ?

What do you usually do online ?

reading online
material and attend
online conference

How do you keep track of your daily
tasks ? What tool do you use ?

| use my notebook to
keep track of my to
do lists. Sometimes |
also use reminder on
my phone.

What devices do you use
(mobile/tablet, Android/Apple) ?

When | am on the go,
| use my mobile
phone and tablet

During
test

FLOW 1
(LIST)

Hover your mouse to the Weekend
list, do you think this should be text
or anicon ?

| think it should have
both text and icon

If you wanted to create a list, how
would you go about doing that ?

| clicked the list
button.

User took about 50
secnds - 1 min to find
the button and confuse
about creating a new list
with already made list
but eveutually found the
button

How would you edit the title of the
list?

User navigate himself to
click the list. Moderator
asked why, he replied,
he is hoping there is an
edit button inside the
list. He continued to say
there is no button visible

in the list page so
moderator asked him to
long-press the button

How would you delete a list, (Hover
the mouse over Gardening)

After being introduce
that the list is long-press
enable, user
long-pressed the list and
a choice to delete
appear.

What motivated you to hover over
the list and not click?

Edit and delete
should be basic
functionality there
must be a way to
make it easily visible

to the user
If you click into the list, you will see |l will click on the
FLOW 2 |a task, how would you create a new [pencil icon

(TASK)

task to the list ?

How would you edit the task ?

User keep clicking the
task. When asking what
motivate them to click
the task, he said he was
hoping to have the
same function as when
asking to click inside the
list.

If you have completed the task, how
would you do it ?

This icon [strike icon]

User is able to navigate
to the strike icon very
fast. He added that he
likes this idea as it is
very intuitive.

FLOW 3
(ARCHIV
E)

What are you thinking as you view
this Archive page ?

| am not sure but, |
think it's a summary
of task remaining on
the list.

The user has made
some important
comment here regarding
the color: He suggest
that the background
colored green should
contrast with the white
font to see it clearly.

If user hover or click asks: Why did
you navigate to the hover or click at
the list ? Do you expect to see some
information ?

User click on the
remaining task, when
asking why he click the
task remaining, he said
he would expected to

see the actual remaining
tasks.

FLOW 4
(GUIDE)

What do you think is the
functionality on the page you are
viewing ?

Actually I'm not sure,
looking from the title
of the menu | think it
is some kind of a
guiding questions but
not sure whats the
main functionality is

The user has given his
feedback about the title
of the this functionality.
He suggested to us to
consider changing the
title of this menu but he
really likes this
functionality, and it could
be our USP for the app.

FLOW 5 [How do you view the complete Click on the contact |[The test is being done
(HELPE |information for the contact ? where name is on the previous version
R) located of the app.
I noticed you click the back arrow. |l understand that
Can you tell me why? black arrow means to
go to the previous
page.

If you need to add more contact, Just click "Add

how do you go about doing that? contact"

Can you click on the name: Jack User is able to edit the

and edit his information contact, he added that
the button and the
instruction is clearly
stated.

FLOW 6 [Can you think of an appropriate | think this is all we
(SETTIN [setting other than what you see on |need for setting
G) the screen ?

Should the page contain more No

information ?

Let the user choose the setting icon |3rd icon His reason for choosing
number 3 is that his
background is in IT and
most of the software he
uses in the past uses
this style of icon.

Post-inte

rview

How do you like the overall lay-out ? |l think it is a good to
do app however |
would suggest to
change the title of the
guiding page. Also is
there a way to group
contact into Family,
Colleague and
Friends ? | like the
functionality of the
guiding page a lot it
would be cool to see
it being implemented.

Is the color appropriate ? Color is appropriate
except on the archive
page where | suggest
the background and
font need to be
contrast.

Figure 32: Usability Test result for test panel #1

Test panel #2:

Questions

Answer

Pre-test

To get started, can you please state
your age and nationality ?

66, Japan

Are you experiencing any difficulty
with eyesight, hearing, memory or
movement (incl. eyeglasses, hearing
aid, joint pains, etc.) ?

Hard to read small
letters on books
these days.

On a scale of 1 to 5 (1=not at all
confident, 5=very confident), how
would you rate your level of
confidence in using computers and
technology ?

On average how many hours do you
spend online every day ?

2 hours

What do you usually do online ?

email, SNS (Line)
with her daughters,
Watch youtube

How do you keep track of your daily
tasks ? What tool do you use ?

Put schedules on
paper calendar

What devices do you use
(mobile/tablet, Android/Apple) ?

Her own
smartphone

During test

(show a panel our landing page and
ask) what do you think this app is?

Support to make a
reservation for
something?
Because "helper”,
"guide" encourage a
booking service

FLOW 1
(LIST)

Hover your mouse to the Weekend
list, do you think this should be text or
anicon ?

she thought it's a
button after thinking
a few minutes.

If you wanted to create a list, how
would you go about doing that ?

she didn't
understand a list
itself without any
explanation.

How would you edit the title of the
list?

How would you delete a list, (Hover
the mouse over Gardening)

she said "there is no
delete button, so |
can't".

What motivated you to hover over the
list and not click?

Observation

FLOW 2
(TASK)

If you click into the list, you will see a
task, how would you create a new
task to the list ?

she didn't
understand my
question. But she
said "l want to make
todo items for her
job", not private stuff
stored on my
smartphone.

How would you edit the task ?

she said "no
edit/delete required
for me because |
need to check same
todo item every
week"

If you have completed the task, how
would you do it ?

Since | need to keep
doing same todo
next week or so,
they would be never
completed (She
wants to keep
showing the same
todos as her routine
work)

FLOW 3
(ARCHIVE

)

What are you thinking as you view
this Archive page ?

Probably | can see
my old todo??

If user hover or click asks: Why did
you navigate to the hover or click at
the list ? Do you expect to see some
information ?

She didn't
understand what the
screens are for,
even | explained
"tasks remaining".
"holiday shop 0"
means "no shop
infomration
available??"

FLOW 4
(GUIDE)

What do you think is the functionality
on the page you are viewing ?

Probably learning
my preference with
Al technologies and

suggest something?

FLOW 5
(HELPER)
How do you view the complete She said the icons
information for the contact ? were for Al agents.
She expected the Al
agents could answer
her questions.
| noticed you click the back arrow.
Can you tell me why?
If you need to add more contact, how
do you go about doing that?
Can you click on the name: Jack and
edit his information
FLOW 6
(SETTING

)

Can you think of an appropriate
setting other than what you see on
the screen ?

Why do we need the
settings?
Smartphone already
have the funcitons.

Should the page contain more
information ?

No

Let the user choose the setting icon

| don't think it's hard
to read.

Post-interview

How do you like the overall lay-out ?

Hard to use. too
much functions.

Is the color appropriate ?

What do you think could be improved
for this interview?

Can | directly make

a todo first? Why do
| need to make a list
first?

Figure 33: Usability Test result for test panel #2

Test panel #3:

Flow Questions Answer Observation
Pre-test
To get started, can you please
state your age and nationality |71, Japan
o
Are you experiencing any
difficulty with eyesight, | took cataract surgery
hearing, memory or last year though, |
. have no problems to
movement (incl. eyeglasses, see things
hearing aid, joint pains, etc.) ? '
On a scale of 1 to 5 (1=not at
all confident, 5=very
confident), how would you
, 3
rate your level of confidence
in using computers and
technology ?
On average how many hours
do you spend online every 2 hours
day ?
What do you usually do online |business and use
? excel, word etc
qu do you keep track of your write todo at memo
daily tasks ? What tool do you
pad
use ?
What devices do you use :
(mobile/tablet An):jroid/AppIe) old fashioned phone,
5 ’ laptop and iPad
During test
(show a panel our landing An app to make a
page and ask) what do you video? (why?) archive
think this app is? videos, guides to show
how to make a video
etc.
Hover your mouse to the
FLOW 1 Weekend list, do you think this
(LIST) should be text or an icon ? button
If you wanted to create a list, |touch LIST

how would you go about
doing that ?

How would you edit the title of
the list?

touch "weekend list",
probably there is an
edit button.

How would you delete a list, (
Hover the mouse over
Gardening)

i touch *weekend list"
and press "delete" or
"back" buttons on
keyboards

What motivated you to hover
over the list and not click?

FLOW 2
(TASK)
If you click into the list, you select a last item and
will see a task, how would you |press enter button.
create a new task to the list ? |After the link break,
add a new task
How would you edit the task ? |Book a table for 2 -->
select the item and
move the cursor at the
end and change 2 to 3
for instance.
If you have completed the select item and press
task, how would you do it ? "delete" button on
keyboard
FLOW 3
(ARCHIVE)
What are you thinking as you
view this Archive page ? showing old records?
If user hover or click asks:
Why did you navigate to the |"weekend list 3"
hover or click at the list ? Do |means "three people
you expect to see some have to do something
information ? on this weekend?"
FLOW 4
(GUIDE)
What do you think is the If I lost my way, the
functionality on the page you |app can help where to
are viewing ? go. (why?) The icon
show a tour guide with
flag.
FLOW 5
(HELPER)

How do you view the
complete information for the
contact ?

probably guide to a
hotel? (why?) The icon
shows "person with a
tie", It looks like a
"hotel concierge". No

idea why there are
similar buttons like
"guide" and "helper".

I noticed you click the back
arrow. Can you tell me why?

If you need to add more
contact, how do you go about
doing that?

Can you click on the name:
Jack and edit his information

FLOW 6
(SETTING)

Can you think of an we can change the
appropriate setting other than [font size by browser or
what you see on the screen ? |laptop. why do we
need the settings?

Should the page contain more [No, just need more
information ? bigger font size.

Let the user choose the
setting icon

Post-interview

How do you like the overall
lay-out ?

Is the color appropriate ? no issues.

What do you think could be
improved for this interview?

Figure 34: Usability Test result for test panel #3

Appendix F: User survey consent statement and
Usability Test consent form.

Participation in the users survey was governed by Section 29 of the Thai Personal Data
Protection Act B.E. 2562 (2019) (“PDPA”). Participants were notified of the purpose of the
survey and the legal background, and were assured that their data will be kept confidential and
not shared with third parties (Fig. 1). They were then asked to sign a consent form (Fig. 2).

Lucille - A to-do list application.

Your information will help us design a better application.

Your information is protected by Thailand Data

Protection Act 2019 section 29. The purpose of this survey shall be kept
for studies purposes only and shall not be distributed to any
third-party. The information you will share with us if you participate

in this study will be kept completely confidential to the full extent of

the law. Please note that we don't collect emails and IP address.

By completing this survey, you are consenting to participate in this study.
Instruction

1. Access our Lucille - A to-do list application here: https://lucilletodo.netlify.app/
2. Please rate your experience from 1 (least satisfied) to 5 (most satisfied).

Figure 35: Finished product user survey consent statement

Consent to take part in a user's testing interview for To-do list application.

voluntarily agree to participate in user's testing interview.

» | understand that even if | agree to participate now, | can withdraw at any time or refuse to
answer any question without any conseguences of any kind.

» | understand that | can withdraw permission to use data from my interview within two weeks
after the interview, in which case the material will be deleted.

= | have had the purpose and nature of the study explained to me in writing and | have had the
opportunity to ask questions about the study.

» | understand that participation involves answering questions for a To-do list application

» | understand that | will not benefit directly from participating in this user's testing interview.
» | agree to my interview being recorded.

» | understand that all information | provide for this study will be treated confidentially.

» | understand my name, age and nationality will be including in the project proposal.

» | understand that disguised extracts from my interview may be quoted in a project proposal for
a To-do list application.

| understand that signed consent forms and recordings will be retained in Google drive named
Agile_group (hitps/drive google com/dnve/folders/14ZJFB-0 Yt2DZB2m1ylutsAm2gFriKm),
YouTube for private viewing until the university have confimed grades for CM2022.

« | understand that under Thailand Data Protection Act 2019, | am entitled to access the
information | have provided at any time while it is in storage as specified above.

Signature of participant

Signature of participant Date

Signature of researcher

| believe the participant is giving informed consent to participate in this study

Signature of researcher Date

Figure 36: Interview consent form

Appendix G: Technology stack proposal

Background

Project priorities

Our priorities center on the production of a useful, usable and satisfying UX informed by
up-to-date research (see project goals). This means that anything not directly relevant to UX is
of secondary importance.

Problem statement

We are at the end of our second sprint, which was preceded by several weeks that were
dedicated to preparatory work on React. By this point (both by the course and the project plan)
we should’ve had a functional prototype and started user testing; instead we have medium and
high-fidelity designs, a data model and a testing plan, but no prototype to test. Since we are less
than a month away from the deadline, we have to quickly reconsider our options and adjust, so
we don’t find ourselves at the finish line with no product.

Since the rest of the project is on schedule, and judging by input from the team, | believe the
problem has to do with our choice of technology stack.

Current technology stack

Our current technology stack comprises the following (as forked from AndyW22’s source):

TypeScript
React

Redux
Material Ul
AWS Amplify

Of these, only React and Amplify were explicitly chosen; the rest were a byproduct of the source
we forked, and neither was chosen as part of a thorough review of available solutions. Three of

the technologies required learning from most of us (TS, React and MUI), and two are usable by

only one team member (Redux and Amplify). This means we have issues with fluency and work
distribution, which result in significant slowdowns.

https://docs.google.com/document/d/1MGX7VN8mS0kTvT5FMLfeulgJJ8JArGJMDlpzJ078Gvc/edit?usp=sharing
https://github.com/AndyW22/todolist-app

Alternatives to the current technology stack

Our program has to perform in three domains across both the backend and frontend: data
handling, design, and user-facing behaviors. The following alternatives try to address all three,
on both “ends” of the app.

Backend’

1. Express + MySQL:

a. Pros: familiar and straightforward (taught at DNW), especially when combined
with EJS.

b. Cons: requires hosting (may be readily available, but need to check) and schema
design; some functionality (authentication) may have a learning curve; requires
building from scratch?

2. Other backend frameworks:

a. Pros: designed to integrate with React; easy deployment to Vercel, Fly.io, and
others; templates available; plenty of frameworks to choose from.

b. Cons: some learning curve compared to Express.

3. No backend (client-side storage):

a. Pros: very simple to do using an IndexedDB wrapper.

b. Cons: no cloud sync and backup (limited to one device, with sharing through
email or some dedicated API, and limited resilience).

Frontend®

1. EJS + CSS framework (demo):
a. Pros: familiar and straightforward (taught at DNW); plenty of frameworks to
choose from (also here).
b. Cons: essentially stateless - may require some programming tricks to appear
dynamic (eg. routing), especially if not using a backend; SCSS (if needed) has a
mild learning curve.
2. Frontend router / framework + CSS framework:
a. Pros: suitable for dynamic applications; familiar - closer to plain JS/Express than
React and JSX; plenty of frameworks to choose from.
b. Cons: some learning curve, depending on the framework; SCSS (if needed) has
a mild learning curve.
3. React + component library (demo):
a. Pros: essentially dynamic; encompasses both behavior and design; plenty of
frameworks to choose from.
b. Cons: some learning curve, depending on the library; may require a router.
4. Vue / Svelte + component library:
a. Pros: may be easier to work with than React.
b. Cons: some learning curve; already invested in React; may require a router.

7 Also see State of JS 2021.
8 Also see State of JS 2021 and State of CSS 2021.

https://docs.google.com/document/d/1U3t0ebZuoCxvyFApiRofpRyXN8O2qNhMVye6eHkmvF4/edit?usp=sharing
https://docs.google.com/document/d/1U3t0ebZuoCxvyFApiRofpRyXN8O2qNhMVye6eHkmvF4/edit?usp=sharing
https://github.com/sorrycc/awesome-javascript#mvc-frameworks-and-libraries
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Client-side_web_APIs/Client-side_storage
https://developer.mozilla.org/en-US/docs/Web/API/IndexedDB_API#see_also
https://github.com/morags/lucille-ejs
https://github.com/troxler/awesome-css-frameworks#general-purpose
https://github.com/troxler/awesome-css-frameworks#general-purpose
https://github.com/awesome-css-group/awesome-css#frameworks-art
https://github.com/sorrycc/awesome-javascript#mvc-frameworks-and-libraries
https://github.com/morags/lucille
https://github.com/enaqx/awesome-react#react-component-libraries
https://github.com/enaqx/awesome-react#react-component-libraries
https://github.com/enaqx/awesome-react#react-routing
https://2021.stateofjs.com/en-US/
https://2021.stateofcss.com/en-US/
https://2021.stateofjs.com/en-US/

Considerations

Of the above alternatives, | believe we should choose one that maximizes productivity by way of
functionality and ease of use, with a view to having a minimal viable product (MVP) by the end
of the month.

Bibliography

Adebayo, S. (2022) ‘Chakra UI'. Available at: https://chakra-ui.com (Accessed: 11 September
2022).

‘Arrested Development’ (2003). 20th Century Fox Television.

Beck, K. et al. (2001) ‘Agile Manifesto’. Agile Alliance. Available at:
https://www.agilealliance.org/agile101/the-agile-manifesto/.

Brooks, F.P. (1995) The Mythical Man-Month: Essays on Software Engineering. Anniversary ed.
Reading, Mass: Addison-Wesley Pub. Co.

Card, S.K., Robertson, G.G. and Mackinlay, J.D. (1991) ‘The information visualizer, an
information workspace’, in Proceedings of the SIGCHI Conference on Human factors in
computing systems, pp. 181-186.

Doran, G.T. (1981) ‘There’s a SMART way to write management’s goals and objectives’,
Management review, 70(11), pp. 35-36.

Dung Nguyen, Stephen Wong, and Mark Husband (2008) Principles of Object-Oriented
Programming. Connexions. Available at:
http://archive.org/details/ost-computer-science-ooprogramming (Accessed: 2 September 2022).
Fahlander, D. (2022) ‘Dexie.js’. Available at: https://dexie.org/ (Accessed: 11 September 2022).

Find and fix problems in your JavaScript code - ESLint - Pluggable JavaScript Linter (no date).
Available at: https://eslint.org/ (Accessed: 4 September 2022).

‘Git’ (2022). Software Freedom Conservancy. Available at: https://git-scm.com/ (Accessed: 11
September 2022).

‘GitHub’ (2022). GitHub, Inc. Available at: https://github.com (Accessed: 11 September 2022).

‘Google Drive’ (2022). Google. Available at: https://drive.google.com/ (Accessed: 11 September
2022).

Gould, J.D. and Lewis, C. (1985) ‘Designing for usability: key principles and what designers
think’, Communications of the ACM, 28(3), pp. 300-311. Available at:
https://doi.org/10.1145/3166.3170.

JavaScript Decorator Design Pattern - Dofactory (2022). Available at:
https://www.dofactory.com/javascript/design-patterns/decorator (Accessed: 2 September 2022).

‘Jira’ (2022). Atlassian. Available at: https://www.atlassian.com/software/jira (Accessed: 11
September 2022).

Leonardi, C. et al. (2008) ‘Designing a familiar technology for elderly people’, Gerontechnology,
7(2), p. 151. Available at: https://doi.org/10.4017/gt.2008.07.02.088.00.

Most Popular Electronics Worldwide [July 2022 Update] (2022). Available at:
https://www.oberlo.com/statistics/most-popular-electronics (Accessed: 5 September 2022).

Most Popular Web Browsers in 2022 [Jun °22 Update] | Oberlo (2022). Available at:
https://www.oberlo.com/statistics/browser-market-share (Accessed: 5 September 2022).

Neves, B.B. and Amaro, F. (2012) “Too Old For Technology? How The Elderly Of Lisbon Use
And Perceive ICT’, The Journal of Community Informatics, 8(1). Available at:
https://doi.org/10.15353/joci.v8i1.3061.

Nunes, F., Silva, P.A. and Abrantes, F. (2010) ‘Human-computer interaction and the older adult:
an example using user research and personas’, in Proceedings of the 3rd International
Conference on PErvasive Technologies Related to Assistive Environments - PETRA ’10. the 3rd
International Conference, Samos, Greece: ACM Press, p. 1. Available at:
https://doi.org/10.1145/1839294.1839353.

Pinheiro, C. and da Silva, F.M. (2012) ‘Colour, vision and ergonomics’, Work, 41, pp.
5590-5593. Available at: https://doi.org/10.3233/WOR-2012-0891-5590.

‘React’ (2022). Meta Platforms. Available at: https://reactjs.org/ (Accessed: 11 September 2022).

Schwaber, K. and Sutherland, J. (2020) Scrum Guide. Available at:
https://scrumguides.org/docs/scrumguide/v2020/2020-Scrum-Guide-US.pdf (Accessed: 5
September 2022).

Sharma, A. et al. (2022) Lucille: A To-Do App for the Elderly. Agile Software Projects mid-term
submission. Goldsmiths, University of London.

Sharp, H., Rogers, Y. and Preece, J. (2019) Interaction Design: Beyond Human-Computer
Interaction. 5th edition. Indianapolis, IN: Wiley.

‘Slack’ (2022). Slack Technologies, LLC. Available at: https://slack.com/ (Accessed: 11
September 2022).

Snyk | Developer security | Develop fast. Stay secure. (2020). Available at: https://snyk.io/,
https://snyk.io/ (Accessed: 4 September 2022).

The State of JavaScript 2019: Front End Frameworks (no date). Available at:
https://2019.stateofjs.com/front-end-frameworks/ (Accessed: 3 September 2022).

Travis, D. (2016) ‘The 1-page usability test plan’, Medium, 15 January. Available at:
https://medium.com/@userfocus/the-1-page-usability-test-plan-dbc8c3d7fb54 (Accessed: 9
September 2022).

Voytko, J. (2020) ‘Why are we so bad at software engineering?’, www.bitlog.com, 12 February.
Available at: https://www.bitlog.com/2020/02/12/why-are-we-so-bad-at-software-engineering/
(Accessed: 12 August 2022).

Wells, D. (2009) Dedicated Open Work Space, Extreme Programming. Available at:
http://www.extremeprogramming.org/rules/space.html (Accessed: 12 September 2022).

Williams, D. et al. (2013) ‘Considerations in Designing Human-Computer Interfaces for Elderly
People’, in 2013 13th International Conference on Quality Software. 2013 13th International
Conference on Quality Software, pp. 372-377. Available at:
https://doi.org/10.1109/QSIC.2013.36.

‘Zoom’ (2022). Zoom Video Communications, Inc. Available at: https://zoom.us/ (Accessed: 11
September 2022).

