
KAPSABET HIGH SCHOOL

- 1.(a) (i) Cracking√1
 - (ii) When the gas is burnt in air $\sqrt{1}$ it burns with a pale blue flame. $\sqrt{1}$ OR

Does not decolourize $\sqrt{1}$ purple acidified <u>potassium manganate (VII).</u> $\sqrt{1}$

- (iii) I. A. Ethane $\sqrt{1}$ II. B 1- Chloroethane $\sqrt{1}$
- (iv)

- (v) (i) Combustion $\sqrt{1}$
 - (ii) Dehydration√1
- (vi) Conc. $H_2SO_{4\sqrt{1}}$ Temperature of 170°C. $\sqrt{1}$
- (b) (i) Pent-2-ene $\sqrt{1}$
 - (ii) Prop-1-yne. $\sqrt{1}$
- 1. a) (i) Mass of Mg is 20.36-19.52=0.84g $\sqrt{\frac{1}{2}}$ Mass of MgO is 20.92-19.52=1.40g Mass of oxygen is 20.92-20.36=0.56g $\sqrt{\frac{1}{2}}$ % mass of Mg in MgO is $\frac{0.84}{1.40} \times 100\%$ = $60\%\sqrt{\frac{1}{2}}$ % mass of O₂ in MgO is $\frac{0.56}{1.40} \times 100\%$ = $40\%\sqrt{\frac{1}{2}}$

(ii)

Elements	Mg	0
%comp	60	40
R. A. M	24	16
Moles	60÷24	40÷16
	=2.5	=25
Mole ratio	1√1	1√1

Empirical formula is thus MgO√1

b) (i)
$$2NaOH_{(aq)}$$
 + $H_2SO_{4(aq)}$ $Na_2SO_{4(aq)}$ + $2H_2O_{(l)}$ $\sqrt{1}$ (ii)

I. Moles of
$$H_2SO_4$$
 in $20cm^3$ is $\frac{20 \times 0.25}{1000}$
=0.005 moles $\sqrt{1}$

Mole ratio of base to acid is 2:1

Moles of NaOH is thus $\frac{2}{1} \times 0.005$

=0.01 moles of NaOH $\sqrt{1}$

II. Moles of NaOH in 1L is thus

$$\frac{0.01 \times 1000}{50} \sqrt{1}$$

= 0.2 moles $\sqrt{1}$

III. Mass of NaOH in 1L is

0.
$$2\times40~$$
 =8g Mass of NaCl in the mixture is 8.8-8= $0.8g\sqrt{1}$ % mass of NaCl is $\frac{0.8}{8.8}\times100\%$ = $9.09\%\sqrt{1}$

2. a) (i) Bonds Broken are 4C-H= 4 x 413 = 1652

$$1C = C = 1 \times 610 = 610$$

 $1Br - Br = 1 \times 193 = 193$

 $_{1Br - Br = 1 \times 193 = 193}$ Total energy absorbed = 2455 kJmol⁻¹ √1

Bonds formed are 4C-H=
$$4 \times 413 = 1652$$

 $2C = Br = 2 \times 280 = 560$
 $1C - C = 1 \times 346 = 346$
Total energy given out = 2558 kJmol⁻¹ $\sqrt{1}$

$$\Delta H = 2455 - 2558 = -103 \text{ kJmol}^{-1} \sqrt{1}$$

(ii) Addition reaction $\sqrt{1}$

b) (i)
$$4C_{(s)} + 5H_{2(s)}$$
 ΔH_1 $C_4 H_{10(g)}$ $\Delta H_2 \sqrt{1}$ $4CO_{2(g)} + 5H_2O_{(g)}$

$$\begin{array}{ll} \Delta H^{\theta}_{\rm f}(C_4 H_{10}) &= \Delta H_3 - \Delta H_2 \\ &= 4 \; (\text{-}393) \, + 5 (\text{-}286) - (\text{-}2877) \; \; \sqrt{1} \\ &= \text{-}3002 \, + \, 2877 \\ &= \text{-}125 \; k J \text{mol}^{\text{-}1} \; \; \sqrt{1} \end{array}$$

(ii)
$$\Delta H + \Delta H hyd$$

= 690 + -322 + - 364
= 690- 686
= + 4 kJ / mol

- 3. a) $\sqrt{1}$
- i. Burrete $\sqrt{1}$
- ii. Pippete√1
- iii. Measuring cylinder
- b)
- i. Due to incomplete combustion, it produces white hot carbon particles that emittes a lot of light $\sqrt{1}$
- ii. It produces soot that makes apparatus dirty $\sqrt{1}$ It does not produce much heat $\sqrt{1}$
- c)
- i. Nitrogen √1and oxygen√1
- ii. It can be separated by physical means $\sqrt{1}$ Components of air are not chemically combined $\sqrt{1}$
- iii. Pass air through lime water $(Ca(OH)_2\sqrt{)}\sqrt{1}$ the lime water forms white precipitate indicating presence of carbon(IV)oxide $\sqrt{1}$
- 4. (a) Alkali metals $\sqrt{1}$
 - (b) Electron arrangement $2.8.5 \sqrt{1}$ position: group V period $3\sqrt{1}$

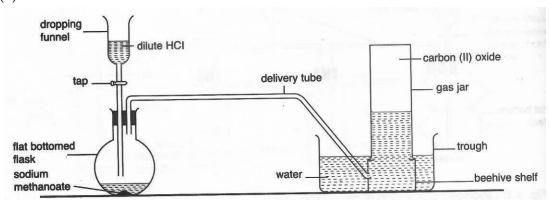
- (c) The atom of R is larger $\sqrt{\frac{1}{2}}$ // has a larger atomic radius than the ion $\sqrt{\frac{1}{2}}$ This is because the ion of R is formed when the atom loses the electrons in the outermost energy level $\sqrt{\frac{1}{2}}$ therefore, the ion has one less energy level than the atom. $\sqrt{\frac{1}{2}}$
- (d) (i) $P_2W \sqrt{\frac{1}{2}}$
 - (ii) $TY_4 \sqrt{1/2}$
- (e) S has a higher $\sqrt{1/2}$ melting point than Q $\sqrt{1/2}$ This is because e S has more valence electrons in its metallic structure hence a stronger metallic bond $\sqrt{1/2}$ than Q $\sqrt{1/2}$
- (f) M $\sqrt{1}$

It has a completely filled outermost energy level $\sqrt{\frac{1}{2}}$ and therefore, does not need to react with other elements to gain stability $\sqrt{\frac{1}{2}}$

- (g) S has a higher electrical conductivity than $Q\sqrt{1}$. S does not corrode easily like Q. $\sqrt{1}$
- (h)

- 5. (a) A Ammonia $\sqrt{1}$ B Calcium oxide $\sqrt{1}$
 - (b) $CaO_{(s)} + H_2O_{(l)} Ca(OH)_{2 (aq)} \sqrt{1}$
 - (c) Reaction is exothermic $\sqrt{1}$
 - (d) Filtration √1
 - (e) Ammonia √1
 - Carbon (IV) oxide √1

(f) (i)
$$C_{(s)} + 2H_2SO_{4(l)} - CO_{2(g)} + 2H_2O_{(l)} + 2SO_{2(g)}\sqrt{1}$$


- (ii) Oxidising property $\sqrt{1}$
- (g) Manufacture of glass $\sqrt{1/2}$
 - Softening of hard water $\sqrt{1/2}$
 - Making of soaps and detergents
 - For making sodium hydrogen carbonate used in baking soda and fire extinguishers

(Any 2 correct answers each $\frac{1}{2}$ mk)

6. (a) (i)

Substance	Carbon (IV) oxide	Carbon (II) oxide
K	Dilute hydrochloric acid √½	Concentrated sulphuric (VI) acid √½
L	Marble chips or calcium carbonate $\sqrt{\frac{1}{2}}$	Sodium methanoate or ethanedioc acid (oxalic acid) $\sqrt{1/2}$

(ii)

Complete diagram = 1 mark, Labelling = 1 mark

(iii) Carbon (IV) oxide reacts with lime water / calcium hydroxide solution $\sqrt{1/2}$ to yield white precipitate while carbon (II) oxide does not. $\sqrt{1/2}$

Carbon (II) oxide burns $\sqrt{1/2}$ with blue flame while carbon (IV) oxide does not burn. $\sqrt{1/2}$

- (b) (i) $CO_{2(g)} + C_{(s)} \rightarrow 2CO_{(g)} \sqrt{1}$
 - (ii) Reducing agent in extraction of some metals from their oxides. $\sqrt{1}$
- (c) The bulb lights in set up I or conducts electricity while set up II does not. $\sqrt{1}$ In graphite, three out of four valence electrons of carbon atom are bonded leaving one delocalised $\sqrt{1}$ electron thus conducts electricity while in diamond, all the four valence electrons are bonded and is without delocalised electrons. $\sqrt{1}$