
Project 4
Due: March 27th (Wednesday) before 11:59 pm

1. Learning Goals
The purpose of this assignment is to have practice with low-level programming.

2. Specifications
In this assignment you will write a C program read-ipheader.c that extracts various parts of the
IPv4 header and performs error checking of the header.
This is the format of the header you are expected to work with.

Figure 1: IP header format

For simplicity, we are not considering options field. In the figure the numbers do not
indicate contents of the header, but the position of the byte and bits.

2.1. Generate header
To begin with, you are given the program write-ipheader.c, which generates an ip header in
binary form. The program takes one command line argument <filename> which is the name of
the output file.
To use this program to generate the input file for ipheader.c do the following:

1.​ Create a folder named p4 in your private/354 directory.

2.​ Copy the write-ipheader.c file into your p4 directory. You may find this file here:
http://pages.cs.wisc.edu/~gerald/cs354/Spring2019/projects/p4/write-ipheader.c

3.​ Compile the program and store the executable in a file named write-ipheader.

https://en.wikipedia.org/wiki/IPv4
http://pages.cs.wisc.edu/~gerald/cs354/Spring2019/projects/p4/write-ipheader.c

4.​ Run the program using the following command:

./write-ipheader sample

5.​ The program should have created a file named sample. You can dump the contents of this
file in hexadecimal format using xxd like this:

​

2.2. Complete the main()
For the following parts of the assignment you have been provided with the file read_ipheader.c
which contains skeleton code for the functions that you need to complete to make the program to
work as expected. Copy the read_ipheader.c file into your p4 directory. You may find this file
here: http://pages.cs.wisc.edu/~gerald/cs354/Spring2019/projects/p4/read-ipheader.c
The program takes in a single command line argument <input_file> which is the name of the file
you just created in the previous step (sample in our case) that contains an ip header in binary
form.

Complete the TODO in the main():

●​ read the input file into a char *hdr​
●​ store the number of bytes read into n

In main(), we call the function is_little_endian(), to decide to exit the program if the machine is
not little endian. Complete this function is_little_endian() to return 1 if machine is little endian
or 0 otherwise.

2.3. Extract fields from header
Next you have to complete the following functions indicated in the code to extract some fields:

a)​unsigned int get_length(char *hdr)
●​ This function extracts the total length field and returns it. This is the second and

third byte as shown in the Figure 1 (Assuming we start at byte 0).
●​ The input is a pointer to header, whose contents is the ipheader (in binary) that

you filled from the input file.
●​ The output of this function will be the total length that you extracted from the ip

header (as an unsigned integer).

b)​unsigned int get_ip(char *hdr, int option)

http://pages.cs.wisc.edu/~gerald/cs354/Spring2019/projects/p4/read-ipheader.c

●​ This function is used to extract source and destination IP address. This is the
third and the fourth word (one word = 32 bits) as shown in the Figure 1.

●​ The input is a pointer to header, and an option. If the option is 0, you will have to
return the source IP. If the option is 1, you will have to return the destination IP.

●​ The output will be the IP address you extracted as an unsigned integer. Note that
the main() prints this in decimal and hex format. You can use the hex format to
cross verify with the contents of the header to confirm if you did the right thing.

c)​char *format_ip(unsigned int ip_int)

●​ This function converts the IP address from a single 32-bit integer into the form
A.B.C.D (dotted decimal notation) where A represents the value of the MSB in
decimal and D represents the value of the LSB in decimal. For example, if the
32-bit value of an ip address in binary is 11000000 10101000 00000000
00000001 then the dotted decimal form of this ip address is 192.168.0.1.

●​ The output of the previous function (i.e., get_ip) is passed as input here.
●​ The output will be the IP address in dotted decimal format (i.e., A.B.C.D) as a

char pointer.

 You will do the rest of the functions in a similar manner:

d)​ int get_protocol(char *hdr): returns the 8 bit protocol number as an integer​

e)​ int get_version(char *hdr): returns the 4 bit version number as an integer​

f)​ char get_flags(char *hdr, int pos): returns the 1 bit (corresponding to the
pos) from the flags field. This has a position argument to indicate which of the three flags
is being extracted.

2.4. Validate Checksum
Next you have to complete the following function:
​
int is_checksum_valid(char *hdr)​

If the checksum is valid the function has to return 1 else the function will return 0. This return
value is used in the main() to print if the checksum is valid or not. To validate an ip header's
checksum, you may follow the algorithm described here.

2.5. Sample output

https://en.wikipedia.org/wiki/IPv4_header_checksum

This is a sample output to show you the expected output for the sample header. Note that we will
be using different test cases to grade your program.

3. Error handling
●​ If the user invokes the list program incorrectly (for example, without an argument, or

with two or more arguments), the program should print an error message and call
exit(1)as shown below.

●​ Be sure to always check the return value of library functions. For example, if a file cannot

be opened, then the program should not read input. Instead it should print an error
message as shown below. Points will be deducted for forgetting to check return
values from library functions.

●​ If the header is not 20 bytes, print the error message “ERROR: Header not 20 bytes”

and exit the program using exit(1).
●​ If the pos argument is not valid, print the error message “ERROR: Invalid input” and

terminate the program using exit (1) (only 0, 1, and 2 are valid arguments for pos in
get_flags(); only 0 and 1 are valid arguments for option in get_ip()).

●​ Use exit(1) whenever your program terminates abnormally due to some error condition.

4. Notes
●​ Please use the same function signatures that is given in the program. We will be calling

these functions to test your program. Do not modify them.
●​ Please do not modify the contents of the main() below the comment indicating so. This is

to ensure that you don’t have to worry about the printing formats to match our grading
scripts.

●​ IMPORTANT: The CSL lab machines follow little endian byte ordering system. So
please write your program in such a way that it works correctly on the lab machines.

5. Requirements
1.​ Your program must follow style guidelines as given in Style Guidelines.
2.​ Include a comment at the top of each source code file with your name and section. You

must comment every function with a header comment. See the Commenting Guide,
where applicable for C.

3.​ Your programs should operate exactly as the sample outputs shown above.
4.​ Use a CSL Linux machine for this assignment!
5.​ We will compile each of your programs with​

gcc -Wall -m32 -std=gnu99​

on a CSL Linux machine. So, your programs must compile there, and without warnings
or errors. It is your responsibility to ensure that your programs compile on the
department Linux machines, and points will be deducted for any warnings or errors.

6.​ Remember to do error handling in all your programs. See the instructions on error
handling for more details.

6. Handing in the assignment
Copy the file read-ipheader.c into your handin directory:

/p/course/cs354-gerald/public/spring2019/handin/<your_CS_login>/p4/

where <your_CS_login> is the username of your CS account.

Good luck with bits and bytes! :)

http://pages.cs.wisc.edu/~gerald/cs354/Spring18/style.html
https://docs.google.com/document/d/1AOb4eYCH47RWQ7dbnc1ntRGeH1aVkg3yREtgbDJzjek/edit?usp=sharing

