
W3C - Website Rebuild Specification 

 

Front-end delivery: a Symfony application 
to deliver web pages 

Overview 
A Symfony front-end application will deliver the working web pages, the “frontend”. 
This application reads content in from Craft, which acts as a Headless CMS, and 
other data sources as required. Content is passed to the template layer, and web 
pages are rendered via the Twig templating system. 
 
This work will be led by Studio 24, with support from W3C Systems Team and 
dedicated time from Jean-Gui to assist with work on the Symfony front-end 
application. 
 
The front-end application work is divided into: 

●​ Application architecture planning 
○​ Fetching data via GraphQL and other data sources 
○​ Integration with existing Symfony “Main” application 
○​ Review previous open source code 
○​ Caching strategy 
○​ Hosting architecture 
○​ Managing redirects 
○​ Review preview content solution 
○​ Serving images on production 

●​ Setting up of environments and deployment scripts 
●​ Symfony application architecture setup 

○​ Setup base application 
●​ Twig template integration 

○​ Meta tags 
○​ Multilingual content 
○​ Icons 

●​ Routes, controllers, and views 
●​ Other front-end functionalities 

○​ Posting new comments 
○​ Logged in/out state 

 

1 

https://twig.symfony.com/
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#heading=h.g6ztrnq4s46u


W3C - Website Rebuild Specification 

 

Managing work between Studio 24 and W3C 
This work is led by Studio 24, though W3C will be available to assist with planning, 
reviewing decisions and undertaking development work alongside the Studio 24 
team.  
 
Communication will be undertaken on Basecamp as normal, with any decisions 
copied into this specification document. 
 
Work tasks will be managed in JIRA, the standard agile task management tool used 
by Studio 24 on projects of this size. It is strongly recommended any W3C staff 
working on development work during this phase of the project also use JIRA. Studio 
24 can make users available on our commercial JIRA account. 
 
Ideally we’ll have regular touchpoints, either daily standups or meeting regularly 
each week, to ensure the team working on the front-end integration work knows what 
we’re all doing and can easily answer any questions quickly. 

Application architecture planning 
This work will be undertaken by Studio 24, assisted by W3C. 

Fetching data via GraphQL and other data sources 
Data populating the W3C website comes from multiple sources. The front-end 
application needs to fetch data using various Rest APIs but also using GraphQL 
when fetching content from the Craft CMS.  
 
We need to ensure the right content is exposed via GraphQL and how authentication 
works for queries that need to post data (e.g. submitting comments via blog page). 
 
We also need to identify data sources for other data, e.g. members. These data 
sources will be managed by W3C. 

Integration with existing Symfony “Main” application 
In this phase of work, there are two Symfony applications that power W3C web 
pages: 
 

●​ Existing “Main” Symfony app (pages such as TR, Account pages, Groups) 
●​ New Symfony “Frontend” app (new pages with content from Craft CMS such 

as Homepage, Business Ecosystems, News) 

2 

https://3.basecamp.com/3091560/projects/15695452


W3C - Website Rebuild Specification 

 
 
The current plan for the Beta site is to develop new pages in a new Symfony 
“frontend” application.  
 
However, a lot of existing functionality already exists in an older Symfony application 
called “Main” which due to time constraints it is not possible to fully migrate to the 
new “Frontend” application in this phase of work. 
 
We are therefore taking a pragmatic approach. Work in this phase is focussed on the 
new “Frontend” app. W3C will also need to make updates to the existing “Main” app 
to update the template and update functionality as required (for example to update 
how the TR listing page works). 
 
The long-term aim is to use APIs to pull content into the frontend app and deliver all 
web pages via this application.  

Integration points 
This means we need a few integration points between the two Symfony apps, with 
the aim of reducing duplication where possible.  
 
CSS 
This can be loaded directly from the “Frontend” application. 
 
Twig template  
This may have to be copied between the two applications. We plan to use Symfony 
Bundles for this. 
 
Common content  
E.g. Primary navigation, Footer. 
 
We propose to generate static versions of this common content in the “Frontend” 
application which can be read in via the “Main” application (and any other system 
that needs it).  
 
This will be available via HTTP via a URL (e.g. w3.org/en/fragments/navigation.html) 
and can be accessed via HTTP requests. We recommend local caching to help 
minimise requests. 

Review previous open source code 
Studio 24 have undertaken headless CMS projects in the past, we have a range of 
open source code we maintain to assist building these projects. We will review what 

3 

https://symfony.com/doc/current/bundles.html
https://symfony.com/doc/current/bundles.html


W3C - Website Rebuild Specification 

 
code we can re-use to help increase efficiency within this project and how well that 
works with GraphQL. Where we need to add features we’ll do this in the open source 
project which can then be used in the W3C project without any impact on the project 
budget. 

Caching strategy 

Full-page caching 
By default we assume HTML pages delivered by the front-end system are fully 
cacheable and shared by all users. This means all public users see the same HTML 
web page content, including HTTP headers. Caching public pages increases 
performance dramatically and is the recommended solution wherever possible for 
w3.org web pages. 
 
Pages are also assumed to be stateless and functionality should not be based on 
serving pages from one server (since production will be run from multiple 
webservers).  
 
We have techniques for full-page caching in Symfony, though we recommend using 
Varnish Cache since this is available. 
 
Any personalised content, therefore, needs to be either excluded from full-page 
caching (e.g. account section) or we use JavaScript solutions to generate 
personalised content (e.g. sign in / my account navigation). 
 
Caching strategy 
We need to confirm the caching strategy, caching lifetime and what personalised 
content is required.  
 
Clearing the cache 
We also need to explore how to clear the cache on content updates. It has been 
suggested using tags to help clear content. See FOSHttpCacheBundle. 

API caching 
In previous projects we have also cached API requests to increase performance. 
However, with the use of Varnish Cache this is not recommended since it increased 
complexity for little gain. 

Hosting architecture 
See Hosting architecture. 
 

4 

https://foshttpcachebundle.readthedocs.io/en/latest/features/tagging.html
https://docs.google.com/document/u/0/d/1SQnTjIixSh8rL0xORiG27MGQ37WXVRughmxgk_AJ8LU/edit


W3C - Website Rebuild Specification 

 

Review preview content solution 
In previous Headless CMS projects supporting a preview for page content that is not 
yet published is challenging and not easily possible.  
 
Craft CMS does support draft entries in the GraphQL API, so this is easier to achieve 
for the W3C site. This work involves reviewing how to retrieve draft entries and how 
we can display these on the front-end application so CMS editors can preview 
content from the CMS. 
 
This may require authentication on the front-end and a small custom plugin in Craft 
to update preview links to point to the front-end site. See Craft CMS docs. 

Serving images on production 

The production site will run on multiple webservers, therefore, we need a strategy for 
serving images from one static location. This will need reviewing with W3C. 

Setting up of environments and deployment scripts 
This work will be undertaken by Studio 24, assisted by W3C. 
 

●​ Shared GitHub repo (led by W3C) 
●​ Setup of deployment script (led by W3C) 
●​ Branching strategy for different environments 
●​ Continuous Integration (review security, code standard, automated tests that 

can be setup, review Symfony Insights). Ideally use GitHub Actions. 
●​ Explore whether it’s feasible to set up integration testing (e.g. Behat) 
●​ Setup of required environments 

Environments and URLs 
Expected URLs at this time are: 

●​ Development 
○​ www-dev.w3.org 
○​ Development site intended for testing code during development 
○​ Use Deployer for deployment​

 
●​ Staging 

○​ www-staging.w3.org 
○​ Staging site intended to test & QA web pages and functionality by the 

client before they go live 
○​ Use Deployer for deployment 

5 

https://craftcms.com/docs/3.x/entries.html#previewing-decoupled-front-ends
https://insight.symfony.com/


W3C - Website Rebuild Specification 

 
 

●​ Production 
○​ beta.w3.org - production URL - the live site 
○​ To be replaced with www.w3.org on full launch 
○​ W3C to setup deployment (likely based on Puppet) 

 
Disabling search indexing of non-production site 
Development and Staging environments must set the X-Robots-Tag header to 
“noindex” to ensure pages are not indexed.  
 
While Production is in Beta this must also set the noindex header.  
 

Preview URLs 
We may need “preview” URLs setup depending on how we manage viewing draft 
content in the CMS on the front-end. This will be confirmed in the architecture setup 
work. 

Symfony application architecture setup 
This work will be undertaken by Studio 24. 

Setup base application 
This part of work requires an outline application architecture to be created, to enable 
future work. At least one page URL should render content from Craft CMS as part of 
this work. 

Twig template integration 
This work will be undertaken by Studio 24. 
 
Templates of the Design system that are necessary for delivering the views listed in 
the routes, controllers, and views section above will be converted into Twig 
templates. 
 
The Twig templates will be built according to the Twig coding standards and the DRY 
principle to ensure productivity, maintainability and quality of the templates. 

Meta tags in the document head 
The following metadata will be populated with data when building the views: 

●​ Document title 

6 

http://www.w3.org
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#heading=h.f07h0rapdr8j
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#heading=h.i4xe12u99y0b
https://twig.symfony.com/doc/2.x/coding_standards.html
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


W3C - Website Rebuild Specification 

 
●​ Meta description 
●​ OpenGraph metadata 
●​ Twitter metadata (where not covered by OpenGraph data) 
●​ Robots metadata 
●​ Home link 
●​ Canonical URL link (we will review whether we should point to www.w3.org 

from beta site for canonical links) 
 
Reference: 
https://developer.twitter.com/en/docs/twitter-for-websites/cards/guides/getting-started  

Internationalization on the front-end 

Localized messages 
Some text on the website will not be managed in the CMS, e.g. pagination text “Next 
page.” 
 
We recommend the use of language files (e.g. YAML) to manage different translated 
messages for use across the site. Messages need to be identified by short, clear 
keywords. We do not recommend using the actual English text as the message key, 
since this can cause confusion if the text subsequently changes. 
 
In Symfony these are managed via the Translation component. 
 
Also see Mozilla’s Localization content best practices. 

Page language attribute 
HTML documents generated by the front-end app will bear a language attribute with 
a value that corresponds to the language of the current page content. 

In-page translated content language attribute 
Sometimes, a piece of content in another language than the main language of the 
page will be displayed. In that case, a language and direction attribute will be added 
to the HTML element that contains that piece of content. 

Links to translated content 
Any links to translated content will have the hreflang attribute.  

7 

http://www.w3.org
https://developer.twitter.com/en/docs/twitter-for-websites/cards/guides/getting-started
https://symfony.com/doc/current/translation.html
https://developer.mozilla.org/en-US/docs/Mozilla/Localization/Localization_content_best_practices


W3C - Website Rebuild Specification 

 

Bi-directional templates 
Similarly, all HTML documents will have the direction attribute set to ‘rtl’ or ‘ltr’ 
(right-to-left or left-to-right) depending on the current language of the page. The CSS 
rules applicable to the current language direction will take effect automatically. 

Links to localized websites 
Visitors of the website will see a choice of languages to switch between localized 
websites. When clicking a language link, the visitor will be redirected to the 
homepage of the website in the target language. 

Icons 
Icons of the Font Awesome 5 icon collections will be used. When an icon is picked in 
the CMS, its slug will be used as its identifier. In the front-end app, we will need to 
implement a Twig function that: 

●​ Takes a Font Awesome 5 identifier slug 
●​ Fetches content from the corresponding svg file 
●​ Adds an optional <title> tag to it 
●​ Adds optional classes to it top-level <svg> tag, and its <path> element  

Routes, controllers, and views 
This work will be undertaken by Studio 24 and W3C. Along with templating, it forms 
the bulk of the front-end integration work to create working web pages. 
 
Here is the list of routes that need to be covered and processed by the front-end 
application. 

Homepage 
●​ Display page content 

 
Data sources: Craft CMS, its content need to be fetched using its GraphQL API​
+ other sources?  
 
View: TBC 

Pages 
●​ Display page content 

 
Data source: Craft CMS, each page need to be fetched using its GraphQL API 

8 

https://fontawesome.com/


W3C - Website Rebuild Specification 

 
Views: There are two types of page templates: the default page template, and the 
landing page template 

Business ecosystem pages 
●​ Display page content 

 
Data sources: The bulk of the content needs to be fetched from Craft CMS using its 
GraphQL API. Pieces of content are also fetched from other sources (TBC):  

○​ Groups 
○​ Member organizations 
○​ Testimonials? 
○​ Evangelists 
○​ Champions 

 
View: Each business ecosystem entry uses the business ecosystem template. 

Blog 

View page 

●​ Display page content 
○​ Display comments (Nice-to-have is to display W3C user avatar, W3C 

can provide an API endpoint to provide this based on email address) 
○​ Comments form 
○​ Submit comments form to Craft CMS (which needs to use spam 

filtering) 
●​ Possible use of microdata to mark up content (see schema.org Blog) 

 
Data source: Craft CMS 
 
View: Blog articles follow the blog template.  

Listing page 
●​ Listing page to display paginated results of content (ordered by most recent) 
●​ Listing page to display paginated results of content (by year) 
●​ Listing page to display paginated results of content (by category) 
●​ Data feed (RSS 2.0) for listing pages 

 
Data source: Craft CMS 
 
View: Blog listings implement the news listing template, in which posts are listed 
from most recent to oldest.  

9 

https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.rjct3tr0bpj
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.ff91vvqny2vr
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.ff91vvqny2vr
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.i93d3uilx7n2
https://schema.org/Blog
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.rfp4ylmpc6fb
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.9uni5lpltcm


W3C - Website Rebuild Specification 

 

Search page 
●​ Search content by keywords (match against title and/or content) 
●​ Display listing page with paginated results 

 
Data source: Craft CMS (note: this includes comments related to individual blog 
articles) 
 
View: Blog search implements the news listing template, in which posts are listed in 
order of relevancy.  

News 

View page 

●​ Display page content 
●​ Possible use of microdata to mark up content (see schema.org NewsArticle) 

 
Data source: Craft CMS 
 
View: News articles each follow the blog template.  

Listing page 
●​ Listing page to display paginated results of content (ordered by most recent) 
●​ Listing page to display paginated results of content (by year) 
●​ Listing page to display paginated results of content (by category) 
●​ Data feed (RSS 2.0) for listing pages 

 
Data source: Craft CMS 
 
View: News listings follow the news listing template, in which posts are listed from 
most recent to oldest.  

Search page 
●​ Search content by keywords (match against title and/or content) 
●​ Display listing page with paginated results 

 
Data source: Craft CMS 
 
View: News search implements the news listing template, in which posts are listed in 
order of relevancy. 

10 

https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.9uni5lpltcm
https://schema.org/NewsArticle
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.rfp4ylmpc6fb
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.9uni5lpltcm
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.9uni5lpltcm


W3C - Website Rebuild Specification 

 

Press releases 

View page 

●​ Display page content 
●​ Possible use of microdata to mark up content (see schema.org NewsArticle) 

 
Data source: Craft CMS 
 
View: Press release articles each follow the blog template.  

Listing page 
●​ Listing page to display paginated results of content (ordered by most recent) 
●​ Listing page to display paginated results of content (by year) 
●​ Data feed (RSS 2.0) for listing pages 

 
Data source: Craft CMS 
 
View: Press release listings follow the news listing template, in which posts are listed 
from most recent to oldest.  

Events 
It is intended to house all event content within the events section, which includes 
talks, workshops, conferences, meetings. 

View page 

●​ Display page content 
●​ Possible use of microdata to mark up content (see schema.org Event) 
●​ Possible download event as an iCal file (data about a single event) 

 
Data source: Craft CMS 
 
View: Events articles each follow the event entry template. 

Listing page 
●​ Listing page to display paginated results of content  
●​ Current and future events are listed in chronological order according to their 

start date from closest in the future, to furthest in the future.  
●​ Past events are automatically listed in an archive, which list events in reverse 

chronological order from most recent to oldest. 
●​ Listing page to display paginated results of content (by year) 

11 

https://schema.org/NewsArticle
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.rfp4ylmpc6fb
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.9uni5lpltcm
https://schema.org/Event
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.raxgaqoc4f8j


W3C - Website Rebuild Specification 

 
●​ Listing page to display paginated results of content (by category) 
●​ Data feed (RSS 2.0) for listing pages 

 
Data source: Craft CMS 
 
View: Events listings follow the events listing template.  

Staff Alumni 
A page listing W3C staff alumni. 
 
Data source: The Craft CMS 
 
Views: A single page using the People listing template 

Newsletters 
Newsletters are intended to house simple HTML content to be sent out via the 
current W3C newsletter system.  
 
Content is generated by a script managed by W3C which pushes content to Craft via 
the API. Content in Craft for newsletters would need to be edited in HTML only. 

View page 

●​ Display page content 
 
Data source: Craft CMS 
 
View: A very plain HTML document which does not use the main W3C template. 
Global CSS will not be applied to newsletter. 
 
This would require some inline CSS styles to be created in order to allow W3C to 
send an HTML email alongside a text email. We'd need a simple bare bones HTML 
template for email sending. 

Listing page 
●​ Listing page to display paginated results of content (ordered by most recent) 

 
Data source: Craft CMS 
 
View: Default template, displaying a simple list of newsletters. 

12 

https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.yfebkwi0rihw
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.u8tilzzd5gps


W3C - Website Rebuild Specification 

 

400 and 500 errors 
400 and 500 errors will be set to return error views in keeping with the styles of the 
W3C website and present the user with a generic message. Content on these pages 
will be editable via Twig templates. 
 
Common error pages we need to account for: 
 

●​ 403 - Not authorised (cannot login) 
●​ 404 - Page not found 
●​ 410 - Gone (examples: https://www.w3.org/2001/03/webdata/xsv and 

https://www.w3.org/2017/11/tidy) 
●​ 50x - Server error 

Other front-end functionalities 

Posting new comments 
Users can leave comments on blog posts. The front-end app needs to process 
comment posting by users. This involves creating a custom commenting form, 
processing submissions and pushing the new comments to the Craft CMS using 
GraphQL mutations. 
 
If a user is already logged-in then their name and email should be automatically 
captured for the blog comment form. Ideally this data would be read via JavaScript 
from the user menu AJAX endpoint. 

Logged in/out state 
Some page content will be personalised to users who are logged in to w3.org, 
namely the ‘My account’ link in the page header. 
 
As we are implementing full-page caching, this content cannot be rendered by the 
PHP scripts of the Symfony application. 
 
A JavaScript snippet will be created to make an AJAX call to a W3C application via a 
specific API endpoint. The request will return a JSON object bearing all the user and 
account information required to create the markup of the ‘My Account’ link. 
 
W3C will develop the AJAX endpoint to return user data for this feature. 
 
The AJAX endpoint will ideally contain data for: 

13 

https://www.w3.org/2001/03/webdata/xsv
https://www.w3.org/2017/11/tidy
https://www.w3.org/2017/11/tidy
https://craftcms.com/docs/3.x/graphql.html#mutations


W3C - Website Rebuild Specification 

 
●​ Current user email 
●​ Current user name 
●​ Current user avatar image URL 
●​ User menu items (label & link) 

’ 

Gravatar-like URLs 
To display avatars next to blog post authors and commenters an endpoint will be 
needed to retrieve the avatar URL from an email address or username, similarly to 
what Gravatar does, but with W3C accounts instead. 
 
W3C will develop the AJAX endpoint for this feature. We recommend Varnish 
caching is used on this endpoint to improve performance. 

14 


	Front-end delivery: a Symfony application to deliver web pages 
	Overview 
	Managing work between Studio 24 and W3C 
	Application architecture planning 
	Fetching data via GraphQL and other data sources 
	Integration with existing Symfony “Main” application 
	Integration points 
	CSS 
	Twig template  
	Common content  


	Review previous open source code 
	Caching strategy 
	Full-page caching 
	Caching strategy 
	Clearing the cache 

	API caching 

	Hosting architecture 
	Review preview content solution 
	Serving images on production 

	Setting up of environments and deployment scripts 
	Environments and URLs 
	Disabling search indexing of non-production site 

	Preview URLs 

	Symfony application architecture setup 
	Setup base application 

	Twig template integration 
	Meta tags in the document head 
	Internationalization on the front-end 
	Localized messages 
	Page language attribute 
	In-page translated content language attribute 
	Links to translated content 
	Bi-directional templates 
	Links to localized websites 

	Icons 

	Routes, controllers, and views 
	Homepage 
	Pages 
	Business ecosystem pages 
	Blog 
	View page 
	Listing page 
	Search page 
	 


	News 
	View page 
	Listing page 
	Search page 
	 


	Press releases 
	View page 
	Listing page 

	Events 
	View page 
	Listing page 

	Staff Alumni 
	Newsletters 
	View page 
	Listing page 

	400 and 500 errors 

	Other front-end functionalities 
	Posting new comments 
	Logged in/out state 
	Gravatar-like URLs 



