STUDIO

24

W3C - Website Rebuild Specification

Front-end delivery: a Symfony application
to deliver web pages

Overview

A Symfony front-end application will deliver the working web pages, the “frontend”.
This application reads content in from Craft, which acts as a Headless CMS, and
other data sources as required. Content is passed to the template layer, and web
pages are rendered via the Twig templating system.

This work will be led by Studio 24, with support from W3C Systems Team and
dedicated time from Jean-Gui to assist with work on the Symfony front-end
application.

The front-end application work is divided into:

e Application architecture planning
Fetching data via GraphQL and other data sources

Integration with existing Symfony “Main” application
Review previous open source code

Caching strategy
Hosting architecture

Managing redirects
Review preview content solution

o Serving images on production
Setting up of environments and deployment scripts
Symfony application architecture setup
o Setup base application
e Twig template integration
o Meta tags

o Multilingual content
o lcons

e Routes, controllers, and views
Other front-end functionalities
o Posting new comments

o Logged in/out state

o 0O O O O O O

https://twig.symfony.com/
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#heading=h.g6ztrnq4s46u

STUDIO

24

W3C - Website Rebuild Specification

Managing work between Studio 24 and W3C

This work is led by Studio 24, though W3C will be available to assist with planning,
reviewing decisions and undertaking development work alongside the Studio 24
team.

Communication will be undertaken on Basecamp as normal, with any decisions
copied into this specification document.

Work tasks will be managed in JIRA, the standard agile task management tool used
by Studio 24 on projects of this size. It is strongly recommended any W3C staff
working on development work during this phase of the project also use JIRA. Studio
24 can make users available on our commercial JIRA account.

Ideally we’ll have regular touchpoints, either daily standups or meeting regularly
each week, to ensure the team working on the front-end integration work knows what
we’re all doing and can easily answer any questions quickly.

Application architecture planning
This work will be undertaken by Studio 24, assisted by W3C.

Fetching data via GraphQL and other data sources

Data populating the W3C website comes from multiple sources. The front-end
application needs to fetch data using various Rest APIs but also using GraphQL
when fetching content from the Craft CMS.

We need to ensure the right content is exposed via GraphQL and how authentication
works for queries that need to post data (e.g. submitting comments via blog page).

We also need to identify data sources for other data, e.g. members. These data
sources will be managed by W3C.

Integration with existing Symfony “Main” application

In this phase of work, there are two Symfony applications that power W3C web
pages:

e Existing “Main” Symfony app (pages such as TR, Account pages, Groups)
e New Symfony “Frontend” app (new pages with content from Craft CMS such
as Homepage, Business Ecosystems, News)

https://3.basecamp.com/3091560/projects/15695452

STUDIO

24

W3C - Website Rebuild Specification

The current plan for the Beta site is to develop new pages in a new Symfony
“frontend” application.

However, a lot of existing functionality already exists in an older Symfony application
called “Main” which due to time constraints it is not possible to fully migrate to the
new “Frontend” application in this phase of work.

We are therefore taking a pragmatic approach. Work in this phase is focussed on the
new “Frontend” app. W3C will also need to make updates to the existing “Main” app
to update the template and update functionality as required (for example to update
how the TR listing page works).

The long-term aim is to use APIs to pull content into the frontend app and deliver all
web pages via this application.

Integration points

This means we need a few integration points between the two Symfony apps, with
the aim of reducing duplication where possible.

CSS
This can be loaded directly from the “Frontend” application.

Twig template
This may have to be copied between the two applications. We plan to use Symfony
Bundles for this.

Common content
E.g. Primary navigation, Footer.

We propose to generate static versions of this common content in the “Frontend”
application which can be read in via the “Main” application (and any other system
that needs it).

This will be available via HTTP via a URL (e.g. w3.org/en/fragments/navigation.html)
and can be accessed via HTTP requests. We recommend local caching to help
minimise requests.

Review previous open source code

Studio 24 have undertaken headless CMS projects in the past, we have a range of
open source code we maintain to assist building these projects. We will review what

https://symfony.com/doc/current/bundles.html
https://symfony.com/doc/current/bundles.html

STUDIO

24

code we can re-use to help increase efficiency within this project and how well that
works with GraphQL. Where we need to add features we’ll do this in the open source
project which can then be used in the W3C project without any impact on the project
budget.

W3C - Website Rebuild Specification

Caching strategy

Full-page caching

By default we assume HTML pages delivered by the front-end system are fully
cacheable and shared by all users. This means all public users see the same HTML
web page content, including HTTP headers. Caching public pages increases
performance dramatically and is the recommended solution wherever possible for
w3.org web pages.

Pages are also assumed to be stateless and functionality should not be based on
serving pages from one server (since production will be run from multiple
webservers).

We have techniques for full-page caching in Symfony, though we recommend using
Varnish Cache since this is available.

Any personalised content, therefore, needs to be either excluded from full-page
caching (e.g. account section) or we use JavaScript solutions to generate
personalised content (e.g. sign in / my account navigation).

Caching strategy
We need to confirm the caching strategy, caching lifetime and what personalised
content is required.

Clearing the cache
We also need to explore how to clear the cache on content updates. It has been
suggested using tags to help clear content. See FOSHttpCacheBundle.

API caching

In previous projects we have also cached API requests to increase performance.
However, with the use of Varnish Cache this is not recommended since it increased
complexity for little gain.

Hosting architecture

See Hosting architecture.

https://foshttpcachebundle.readthedocs.io/en/latest/features/tagging.html
https://docs.google.com/document/u/0/d/1SQnTjIixSh8rL0xORiG27MGQ37WXVRughmxgk_AJ8LU/edit

STUDIO

24

W3C - Website Rebuild Specification

Review preview content solution

In previous Headless CMS projects supporting a preview for page content that is not
yet published is challenging and not easily possible.

Craft CMS does support draft entries in the GraphQL API, so this is easier to achieve
for the W3C site. This work involves reviewing how to retrieve draft entries and how
we can display these on the front-end application so CMS editors can preview
content from the CMS.

This may require authentication on the front-end and a small custom plugin in Craft
to update preview links to point to the front-end site. See Craft CMS docs.

Serving images on production

The production site will run on multiple webservers, therefore, we need a strategy for
serving images from one static location. This will need reviewing with W3C.

Setting up of environments and deployment scripts
This work will be undertaken by Studio 24, assisted by W3C.

Shared GitHub repo (led by W3C)

Setup of deployment script (led by W3C)

Branching strategy for different environments

Continuous Integration (review security, code standard, automated tests that
can be setup, review Symfony Insights). ldeally use GitHub Actions.

Explore whether it's feasible to set up integration testing (e.g. Behat)

Setup of required environments

Environments and URLs

Expected URLs at this time are:
e Development
o www-dev.w3.org
o Development site intended for testing code during development
o Use Deployer for deployment

e Staging
o www-staging.w3.org
o Staging site intended to test & QA web pages and functionality by the
client before they go live
o Use Deployer for deployment

https://craftcms.com/docs/3.x/entries.html#previewing-decoupled-front-ends
https://insight.symfony.com/

STUDIO

24

W3C - Website Rebuild Specification

e Production
o beta.w3.org - production URL - the live site
o To be replaced with www.w3.org on full launch
o Wa3C to setup deployment (likely based on Puppet)

Disabling search indexing of non-production site
Development and Staging environments must set the X-Robots-Tag header to
“noindex” to ensure pages are not indexed.

While Production is in Beta this must also set the noindex header.

Preview URLs

We may need “preview” URLs setup depending on how we manage viewing draft
content in the CMS on the front-end. This will be confirmed in the architecture setup
work.

Symfony application architecture setup
This work will be undertaken by Studio 24.

Setup base application

This part of work requires an outline application architecture to be created, to enable
future work. At least one page URL should render content from Craft CMS as part of
this work.

Twig template integration
This work will be undertaken by Studio 24.

Templates of the Design system that are necessary for delivering the views listed in
the routes. controllers, and views section above will be converted into Twig
templates.

The Twig templates will be built according to the Twig coding standards and the DRY
principle to ensure productivity, maintainability and quality of the templates.

Meta tags in the document head

The following metadata will be populated with data when building the views:
e Document title

http://www.w3.org
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#heading=h.f07h0rapdr8j
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#heading=h.i4xe12u99y0b
https://twig.symfony.com/doc/2.x/coding_standards.html
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

STUDIO

24

W3C - Website Rebuild Specification

Meta description

OpenGraph metadata

Twitter metadata (where not covered by OpenGraph data)

Robots metadata

Home link

Canonical URL link (we will review whether we should point to www.w3.org
from beta site for canonical links)

Reference:
https://developer.twitter.com/en/docs/twitter-for-websites/cards/quides/getting-started

Internationalization on the front-end

Localized messages

Some text on the website will not be managed in the CMS, e.g. pagination text “Next
page.”

We recommend the use of language files (e.g. YAML) to manage different translated
messages for use across the site. Messages need to be identified by short, clear
keywords. We do not recommend using the actual English text as the message key,
since this can cause confusion if the text subsequently changes.

In Symfony these are managed via the Translation component.

Also see Mozilla’s Localization content best practices.

Page language attribute

HTML documents generated by the front-end app will bear a language attribute with
a value that corresponds to the language of the current page content.

In-page translated content language attribute

Sometimes, a piece of content in another language than the main language of the
page will be displayed. In that case, a language and direction attribute will be added
to the HTML element that contains that piece of content.

Links to translated content

Any links to translated content will have the hreflang attribute.

http://www.w3.org
https://developer.twitter.com/en/docs/twitter-for-websites/cards/guides/getting-started
https://symfony.com/doc/current/translation.html
https://developer.mozilla.org/en-US/docs/Mozilla/Localization/Localization_content_best_practices

STUDIO

24

W3C - Website Rebuild Specification

Bi-directional templates

Similarly, all HTML documents will have the direction attribute set to ‘rtl’ or ‘Itr’
(right-to-left or left-to-right) depending on the current language of the page. The CSS
rules applicable to the current language direction will take effect automatically.

Links to localized websites

Visitors of the website will see a choice of languages to switch between localized
websites. When clicking a language link, the visitor will be redirected to the
homepage of the website in the target language.

Ilcons

Icons of the_Font Awesome 5 icon collections will be used. When an icon is picked in
the CMS, its slug will be used as its identifier. In the front-end app, we will need to
implement a Twig function that:

Takes a Font Awesome 5 identifier slug

Fetches content from the corresponding svg file

Adds an optional <title> tag to it

Adds optional classes to it top-level <svg> tag, and its <path> element

Routes, controllers, and views

This work will be undertaken by Studio 24 and W3C. Along with templating, it forms
the bulk of the front-end integration work to create working web pages.

Here is the list of routes that need to be covered and processed by the front-end
application.

Homepage

e Display page content

Data sources: Craft CMS, its content need to be fetched using its GraphQL API
+ other sources?

View: TBC

Pages

e Display page content

Data source: Craft CMS, each page need to be fetched using its GraphQL API

https://fontawesome.com/

STUDIO

24

Views: There are two types of page templates: the default page template, and the
landing page template

W3C - Website Rebuild Specification

Business ecosystem pages

e Display page content

Data sources: The bulk of the content needs to be fetched from Craft CMS using its
GraphQL API. Pieces of content are also fetched from other sources (TBC):
o Groups
Member organizations
Testimonials?
Evangelists
Champions

o O O O

View: Each business ecosystem entry uses the business ecosystem template.

Blog

View page
e Display page content
o Display comments (Nice-to-have is to display W3C user avatar, W3C
can provide an API endpoint to provide this based on email address)
o Comments form
o Submit comments form to Craft CMS (which needs to use spam
filtering)
e Possible use of microdata to mark up content (see schema.org Blog)

Data source: Craft CMS

View: Blog articles follow the blog template.

Listing page

e Listing page to display paginated results of content (ordered by most recent)
e Listing page to display paginated results of content (by year)

e Listing page to display paginated results of content (by category)

e Data feed (RSS 2.0) for listing pages

Data source: Craft CMS

View: Blog listings implement the news listing template, in which posts are listed
from most recent to oldest.

https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.rjct3tr0bpj
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.ff91vvqny2vr
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.ff91vvqny2vr
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.i93d3uilx7n2
https://schema.org/Blog
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.rfp4ylmpc6fb
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.9uni5lpltcm

STUDIO

24

W3C - Website Rebuild Specification

Search page

e Search content by keywords (match against title and/or content)
e Display listing page with paginated results

Data source: Craft CMS (note: this includes comments related to individual blog
articles)

View: Blog search implements the news listing template, in which posts are listed in
order of relevancy.

News

View page

e Display page content
e Possible use of microdata to mark up content (see schema.org NewsArticle)

Data source: Craft CMS

View: News articles each follow the blog template.

Listing page
e Listing page to display paginated results of content (ordered by most recent)
e Listing page to display paginated results of content (by year)
e Listing page to display paginated results of content (by category)
e Data feed (RSS 2.0) for listing pages

Data source: Craft CMS

View: News listings follow the news listing template, in which posts are listed from
most recent to oldest.

Search page

e Search content by keywords (match against title and/or content)
e Display listing page with paginated results

Data source: Craft CMS

View: News search implements the news listing template, in which posts are listed in
order of relevancy.

10

https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.9uni5lpltcm
https://schema.org/NewsArticle
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.rfp4ylmpc6fb
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.9uni5lpltcm
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.9uni5lpltcm

STUDIO

24

W3C - Website Rebuild Specification

Press releases

View page

e Display page content
e Possible use of microdata to mark up content (see schema.org NewsArticle)

Data source: Craft CMS

View: Press release articles each follow the blog template.

Listing page
e Listing page to display paginated results of content (ordered by most recent)

e Listing page to display paginated results of content (by year)
e Data feed (RSS 2.0) for listing pages

Data source: Craft CMS

View: Press release listings follow the news listing template, in which posts are listed
from most recent to oldest.

Events
It is intended to house all event content within the events section, which includes
talks, workshops, conferences, meetings.
View page
e Display page content
e Possible use of microdata to mark up content (see schema.org Event)
e Possible download event as an iCal file (data about a single event)

Data source: Craft CMS

View: Events articles each follow the event entry template.

Listing page
Listing page to display paginated results of content
Current and future events are listed in chronological order according to their
start date from closest in the future, to furthest in the future.
e Past events are automatically listed in an archive, which list events in reverse
chronological order from most recent to oldest.
e Listing page to display paginated results of content (by year)

11

https://schema.org/NewsArticle
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.rfp4ylmpc6fb
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.9uni5lpltcm
https://schema.org/Event
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.raxgaqoc4f8j

STUDIO

24

W3C - Website Rebuild Specification

e Listing page to display paginated results of content (by category)
e Data feed (RSS 2.0) for listing pages

Data source: Craft CMS

View: Events listings follow the events listing template.

Staff Alumni
A page listing W3C staff alumni.

Data source: The Craft CMS

Views: A single page using the People listing template

Newsletters

Newsletters are intended to house simple HTML content to be sent out via the
current W3C newsletter system.

Content is generated by a script managed by W3C which pushes content to Craft via
the API. Content in Craft for newsletters would need to be edited in HTML only.

View page

e Display page content
Data source: Craft CMS

View: A very plain HTML document which does not use the main W3C template.
Global CSS will not be applied to newsletter.

This would require some inline CSS styles to be created in order to allow W3C to

send an HTML email alongside a text email. We'd need a simple bare bones HTML
template for email sending.

Listing page

e Listing page to display paginated results of content (ordered by most recent)
Data source: Craft CMS

View: Default template, displaying a simple list of newsletters.

12

https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.yfebkwi0rihw
https://docs.google.com/document/d/1NRXvIO4kDs2leAFVF-zqJxNKGMbrRDL3MaQDOjp4WHI/edit#bookmark=id.u8tilzzd5gps

STUDIO

24

W3C - Website Rebuild Specification

400 and 500 errors

400 and 500 errors will be set to return error views in keeping with the styles of the
W3C website and present the user with a generic message. Content on these pages
will be editable via Twig templates.

Common error pages we need to account for:

403 - Not authorised (cannot login)
404 - Page not found
410 - Gone (examples: https://www.w3.0rg/2001/03/webdata/xsv and

https://www.w3.0rg/2017/11/tidy)
e 50x - Server error

Other front-end functionalities

Posting new comments

Users can leave comments on blog posts. The front-end app needs to process
comment posting by users. This involves creating a custom commenting form,
processing submissions and pushing the new comments to the Craft CMS using
GraphQL mutations.

If a user is already logged-in then their name and email should be automatically
captured for the blog comment form. Ideally this data would be read via JavaScript
from the user menu AJAX endpoint.

Logged in/out state

Some page content will be personalised to users who are logged in to w3.org,
namely the ‘My account’ link in the page header.

As we are implementing full-page caching, this content cannot be rendered by the
PHP scripts of the Symfony application.

A JavaScript snippet will be created to make an AJAX call to a W3C application via a
specific APl endpoint. The request will return a JSON object bearing all the user and
account information required to create the markup of the ‘My Account’ link.

W3C will develop the AJAX endpoint to return user data for this feature.

The AJAX endpoint will ideally contain data for:

13

https://www.w3.org/2001/03/webdata/xsv
https://www.w3.org/2017/11/tidy
https://www.w3.org/2017/11/tidy
https://craftcms.com/docs/3.x/graphql.html#mutations

STUDIO

24

W3C - Website Rebuild Specification

Current user email

Current user name

Current user avatar image URL
User menu items (label & link)

Gravatar-like URLs

To display avatars next to blog post authors and commenters an endpoint will be
needed to retrieve the avatar URL from an email address or username, similarly to
what Gravatar does, but with W3C accounts instead.

W3C will develop the AJAX endpoint for this feature. We recommend Varnish
caching is used on this endpoint to improve performance.

14

	Front-end delivery: a Symfony application to deliver web pages
	Overview
	Managing work between Studio 24 and W3C
	Application architecture planning
	Fetching data via GraphQL and other data sources
	Integration with existing Symfony “Main” application
	Integration points
	CSS
	Twig template
	Common content

	Review previous open source code
	Caching strategy
	Full-page caching
	Caching strategy
	Clearing the cache

	API caching

	Hosting architecture
	Review preview content solution
	Serving images on production

	Setting up of environments and deployment scripts
	Environments and URLs
	Disabling search indexing of non-production site

	Preview URLs

	Symfony application architecture setup
	Setup base application

	Twig template integration
	Meta tags in the document head
	Internationalization on the front-end
	Localized messages
	Page language attribute
	In-page translated content language attribute
	Links to translated content
	Bi-directional templates
	Links to localized websites

	Icons

	Routes, controllers, and views
	Homepage
	Pages
	Business ecosystem pages
	Blog
	View page
	Listing page
	Search page
	

	News
	View page
	Listing page
	Search page
	

	Press releases
	View page
	Listing page

	Events
	View page
	Listing page

	Staff Alumni
	Newsletters
	View page
	Listing page

	400 and 500 errors

	Other front-end functionalities
	Posting new comments
	Logged in/out state
	Gravatar-like URLs

