

Provided TypeConverters for Room

Author: Michał Zieliński (yairobbe@gmail.com)
Issue tracker link: https://issuetracker.google.com/u/0/issues/121067210
Created: August 2020

https://issuetracker.google.com/u/4/issues/121067210

Summary
Current version of Room allows users to create Type Converters. The limitation of

this system is that such converter must define at least one method annotated with
@TypeConverter annotation and it must meet one of conditions:

●​ be a static method
●​ be a method inside a Kotlin object
●​ have a no-argument public constructor

This is because Room needs to be able to create an instance of the converter (if needed)
and invoke converter methods on this object.

The problem with this approach is that users of Room library are not able to pass additional
dependencies to custom converters. Author of the original feature request provides an
example where they need to use the json serialization library inside a type converter.

A solution to that problem is to allow users to add @ProvidedTypeConverter annotation
on a Type Converter which will tell Room that it shouldn’t instantiate such a converter. It’ll be
added at runtime during database creation. This document describes API proposal.

https://developer.android.com/reference/android/arch/persistence/room/TypeConverter
https://kotlinlang.org/docs/tutorials/kotlin-for-py/objects-and-companion-objects.html#object-declarations
https://issuetracker.google.com/u/4/issues/121067210

API proposal
​ This section describes how the public API for this feature could look like.

1.​ Introduce a new @ProvidedTypeConverter annotation:
​

@Target(ElementType.TYPE)
@Retention(RetentionPolicy.CLASS)
public @interface ProvidedTypeConverter {
}

This annotation will be used to annotate classes containing @TypeConverter
annotated methods.

As described in the Summary section, current version of Room performs a couple of
checks to determine if it’ll be able to invoke Type Converter methods. More
specifically - it checks at compile time if it’ll be able to create an object of a class
containing @TypeConverter annotated methods (if needed, because it’s possible
that it’s a static class or a Kotlin object). It’s a nice mechanism because it informs
users about errors at compile time. Introduction of Provided Type Converters
changes that because when a @ProvidedTypeConverter annotation is present, it
should be always used, even if a class that needs to be instantiated contains a
no-argument public constructor. Room doesn’t know if the converter is present or not
at compile time. This means it’s losing some of the functionality.
With @ProvidedTypeConverter annotation Room can be informed at compile
time that it can expect that there will be a Type Converter available at runtime. There
are four possible scenarios:

 Type Converter present at
runtime

Type Converter not
present at runtime

@ProvidedTypeConvert
er present

Happy path - Room can use
the converter.

Room expected to have a
converter but it wasn’t
added at runtime. Room
can throw an exception.

@ProvidedTypeConvert
er not present

Room will throw an
exception saying that
@ProvidedTypeConvert
er annotation is missing.

Room will try to instantiate
a class containing Type
Converters using a no-arg
constructor if present or
throw an exception.

https://kotlinlang.org/docs/tutorials/kotlin-for-py/objects-and-companion-objects.html#object-declarations

2.​ Introduce a new addTypeConverter builder method:

@NonNull
 public Builder<T> addTypeConverter(
 @NonNull Object typeConverter) {}
​
​ parameter:

●​ typeConverter parameter is an instance of a Type Converter class annotated
with @ProvidedTypeConverter annotation

Developers will be able to pass one or more TypeConverters to Room using the
familiar builder API. This gives them control over creation of a Type Converter and
that means that they’ll be able to pass any dependency they want.

Example API usage
​ This section shows an example usage of the new API.

@ProvidedTypeConverter
public class ExampleConverter {

 private Foo dependency;

 public ExampleConverter(Foo dependency) {
 this.dependency = dependency;
 }

 @TypeConverter
 public Bar fromString(String value) {
 return dependency.toBar(value);
 }

 @TypeConverter
 public String barToString(Bar bar) {
 return dependency.toString(bar);
 }
}

// instantiate or inject ExampleConverter instance and
// pass it to RoomDatabase builder
db = Room.databaseBuilder(...)
 .addTypeConverter(exampleConverterInstance)
 .build();

Dependency injection
 This section shows examples of using this feature with dependency injection libraries.

Dagger/Hilt

@Module
public class GsonModule {

 @Provides
 @Singleton
 Gson provideGson() {
 return new GsonBuilder().create();
 }
}

@ProvidedTypeConverter
public class JsonConverter {

 private Gson gson;
​

 @Inject
 public JsonConverter(Gson gson) {
 this.gson = gson;
 }

 @TypeConverter
 public Bar fromJson(String jsonString) {
 return gson.fromJson(jsonString, Bar.class);
 }

 @TypeConverter
 public String barToString(Bar bar) {
 return gson.toJson(bar);
 }
}

// inject JsonConverter instance and pass it to RoomDatabase builder
db = Room.databaseBuilder(...)
 .addTypeConverter(jsonConverterInstance)
 .build();

Koin

@ProvidedTypeConverter
class JsonConverter(private val gson: Gson) {

 @TypeConverter
 fun fromJson(jsonString: String): Bar {
 return gson.fromJson(jsonString, Bar::class.java)
 }

 @TypeConverter
 fun barToString(bar: Bar): String {
 return gson.toJson(bar)
 }
}

val fooModule = module {
 single<Gson> { GsonBuilder().create() }
 single<JsonConverter> { JsonConverter(gson = get()) }
}

	
	
	
	
	Provided TypeConverters for Room
	Summary
	API proposal
	Example API usage
	
	Dependency injection
	Dagger/Hilt
	Koin

