ApplicationCache Error Detail Proposal
go/appcacheerrorsspec

The WHATWG HTML Living Standard’s Offline Web Applications section steps for
“Downloading or updating an application cache” defines errors raising behavior via the phrasing
“create a task to fire a simple event that is cancelable named error’. This occurs 3 times in the
application cache download process, and twice in the “cache failure steps” which are referenced
5 times in the process - so there are eight distinct sources for error events in the process.

To add additional information to the error, each of these sources must be augmented with the
additional data to include with the error event.

Proposed Spec Addition

IDL:

enum ApplicationCacheErrorReason {

"manifest", // manifest fetch failure (other than obsolete)
"signature", // parser for manifest failed when checking signature
"resource", // resource fetch failure

"changed", // second manifest was not byte-for-byte identical
"abort", // abort() was called

"quota”, // user agent failure due to quota limitations
"policy", // user agent failure due to policy limitations
"unknown" // user agent failure for other reason (I/0, DB, etc)

}s

[Constructor(DOMString type, optional ApplicationCacheErrorEventInit eventInitDict),
Exposed=Window]
interface ApplicationCacheErrorEvent : Event {

readonly attribute ApplicationCacheErrorReason reason;

readonly attribute DOMString url; // Empty string unless a fetch
failure

readonly attribute unsigned short status; // © means no status returned by
server

readonly attribute DOMString message; // User agent-specific
}s

To create an application cache error task with farget, reason, optional url and optional status,
run these steps:
1. Let event be a new trusted ApplicationCacheErrorEvent object that does not bubble
but is cancelable, and which has the event name error.
2. Initialize event's reason attribute to reason

http://www.whatwg.org/specs/web-apps/current-work/multipage/offline.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/offline.html#application-cache-download-process
http://www.whatwg.org/specs/web-apps/current-work/multipage/offline.html#application-cache-download-process
http://www.whatwg.org/specs/web-apps/current-work/multipage/offline.html#cache-failure-steps

3. If url was given, initialize event's url attribute to url; otherwise, initialize event's url
attribute to the empty string

4. If status was given, initialize event’s status attribute to status; otherwise, initialize
event’s status attribute to 0.

5. Initialize event's message attribute to a user agent-defined value.

6. Create and return a task to dispatch event at target. The default action of this event must
be, if the user agent shows caching progress, the display of some sort of user interface
indicating to the user that the user agent failed to save the application for offline use.

If the user agent allows resources to be fetched from a different origin than the manifest and the
resource fetch fails, event’s status MUST be reported as 0 and the event's message MUST
NOT include additional details about the failure.

Proposed Spec Changes

#1: fetching the manifest fails due to 404 or 410 or equivalent:
Step 5: If fetching the manifest fails due to a 404 or 410 response or equivalent, then run
these substeps:
Substep 4: For each entry in cache group's list of pending master entries, create
an application cache error task with the ApplicationCache singleton of the
Document for this entry as target, and “manifest” as reason and the server
response code (if any) as status....

#2: upgrade attempt, and resource download failed
Step 7:If this is an upgrade attempt and the newly downloaded manifest is byte-for-byte
identical to the manifest found in the newest application cache in cache group, or the
server reported it as "304 Not Modified" or equivalent, then run these substeps:
Substep 3: For each entry in cache group's list of pending master entries, wait for
the resource for this entry to have either completely downloaded or failed.

If the download failed (e.g. the server returns a 4xx or 5xx response or
equivalent, or there is a DNS error, the connection times out, or the user cancels
the download), or if the resource is labeled with the "no-store" cache directive,
then create an application cache error task with the ApplicationCache
singleton of the Document for this entry, if there still is one, as target, and
‘resource” as reason, the resource url as url, and the server response code (if
any) as status.

#3: otherwise, and resource download failed
Step 23: For each entry in cache group's list of pending master entries, wait for the
resource for this entry to have either completely downloaded or failed.

If the download failed (e.g. the server returns a 4xx or 5xx response or equivalent, or

there is a DNS error, the connection times out, or the user cancels the download), or if

the resource is labeled with the "no-store" cache directive, then run these substeps:
Substep 2: Create an application cache error task with the ApplicationCache
singleton of the Document for this entry, if there still is one, as target, “resource”
as reason resource url as url, and the server response code (if any) as status,
and queue it as a post-load task.

#4: fetching manifest fails due to non-404/410 (i.e. 4xx, 5xx, DNS, timeout, user cancel,

parse failure, etc)
Step 6: Otherwise, if fetching the manifest fails in some other way (e.g. the server
returns another 4xx or 5xx response or equivalent, or there is a DNS error, or the
connection times out, or the user cancels the download, or the parser for manifests fails
when checking the magic signature), or if the server returned a redirect, then run the
cache failure steps with “signature” as reason if the parser failed, or “manifest” as
reason otherwise, and the server response code (if any) as status

#5: explicit abort() call from script
Step 17: For each URL in file list, run the following steps... If, while running these steps,
the ApplicationCache object's abort() method sends a signal to this instance of the
application cache download process algorithm, then run the cache failure steps with
“abort” as reason instead.

#6: resource fetch fails (4xx, 5xx, DNS, timeout, user cancel, etc.) or redirect and
resource is explicit entry or fallback entry
Step 17: For each URL in file list, run the following steps....
Substep 4: If the previous step fails (e.g. the server returns a 4xx or 5xx response
or equivalent, or there is a DNS error, or the connection times out, or the user
cancels the download), or if the server returned a redirect, or if the resource is
labeled with the "no-store" cache directive, then...
If the URL being processed was flagged as an "explicit entry"” or a
"fallback entry" ... Run the cache failure steps with “resource” as reason
resource url as url, and the server response code (if any) as status

#7: user agent failure (e.g. quota)
Step 17: For each URL in file list, run the following steps...
Substep 5: If the user agent is not able to store the resource (e.g. because of
quota restrictions)... the user agent must run the cache failure steps with

A1

‘quota”, “policy”, or “unknown” as reason...

#8: manifest changed on re-fetch
Step 25: If the previous step failed for any reason, or if the fetching attempt involved a
redirect, or if second manifest and manifest are not byte-for-byte identical, then schedule

a rerun of the entire algorithm with the same parameters after a short delay, and run the
cache failure steps with “changed” as reason if the manifests were not byte-for-byte
identical, or “manifest” as reason and the server response code (if any) as status

otherwise.

The cache failure steps with reason, optional url and optional status, are as follows:

Step 2: For each entry in cache group's list of pending master entries...

Substep 3: Create an application cache error task with the ApplicationCache
singleton of the Document for this entry, if there still is one, as target, reason as
reason, url as url (if given) and status as status (if given)...

Step 3: For each cache host still associated with an application cache in cache group,
create an application cache error task with the ApplicationCache singleton of the

cache host as target, and reason as reason.

