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​ Abstract - This paper details and contrasts the 
implementation and effectiveness of 4 different Q-learning 
algorithms: correlated-Q, foe-Q, friend-Q, and Q-learning; for 
the purpose of multiagent reinforcement learning in the context 
of a zero-sum game in which no deterministic equilibrium policy 
exists. It will be shown how these algorithms make use of the 
concept of correlated equilibria to find an effective mixed 
strategy. We will show how and why linear programming can be 
used to find the probabilities of signal presentations to the agents, 
which will guide their decision making. 
 

​ Index Terms - Correlated Q, Correlated Equilibria, Linear 
Programming, Game Theory,  
 

I.  INTRODUCTION 

​ The problem space of Q-learning as an approach to 
reinforcement learning in single agent, deterministic MDPs is 
relatively well explored. A more challenging matter is that of 
multi-agent markov games, specifically those using multiple 
agents with mixed strategies. In this paper we will attempt to 
create a simple, zero-sum soccer game environment, as used 
by Greenwald and Hall in their 2003 paper, “Correlated-Q 
Learning”, [1] and Littman in his 1994 paper, “Markov games 
as a framework for multi-agent reinforcement learning”, [2] as 
a means of testing the 4 multiagent Q-learning algorithms to 
try to find convergence on an optimal strategy for each agent. 
These Bellman equation based algorithms all use the same 
overall structure aside from their selection function which 
determines which strategy for achieving equilibrium to use. 
We will also see that these algorithms are prime candidates for 
the use of linear programming because of their complexity and 
their requirement for maximization of probable rewards. 
 

 
Fig. 1 Game environment grid with arbitrary agent positions 

(From Greenwald/Hall [2]) 
 
 

 II.  ENVIRONMENT 
 

The soccer game environment that will be used to test 
the agents will be made to reflect that which is defined in 
Greenwald/Hall 2003. Littman’s 1994 paper is referenced by 
Greenwald/Hall so it is assumed that any ambiguities in the 
definition of the Greenwald/Hall soccer environment can be 
informed by Littman’s implementation. The environment is 
zero-sum in its rewards- that is any time player A gets a 
reward, player B gets an equivalent negative reward and 
vice-versa.  

It will be a grid with 2 rows and 4 columns1 wherein 
the 2 agents (A and B) independently occupy a grid space at a 
time. The starting state of the board is not defined by the 
Greenwald/Hall paper, and the board size is different in the 
Littman paper (4x5), however a board start state in the Littman 
paper had the agents diagonal from each other in the center of 
the board so that form was adopted for this paper wherein the 
start state has A at position (1,2) and B at (0,1). Either one of 
the agents can possess the ball at a time. If either agent with 
the ball enters either of the far left 2 spaces, it will score for 
agent A, giving a reward of +100 to A, and thus a -100 reward 
to B. The inverse is true for the 2 far right spaces, giving -100 
and +100 to A and B, respectively. In either case, the game is 
reset to the starting state again.  

Agents have 5 available actions: North, South, West, 
East, and Stay. “Stick” was chosen by Greenwald/Hall instead 
of “Stay” as defined by Littman, but we will use “Stay” here 
as it is less likely to be mistaken for another action. The 4 
cardinal directions move the agents 1 grid square in those 
directions, and stay remains in the same cell without moving. 
When an agent takes an action that would move it off of the 
grid, that agent remains in the same space. Agents choose the 
actions they wish to take prior to any action occurring. Once 
they have chosen, one of the agents is chosen at random to 
take their action first.  

If an agent attempts to move into a space that is 
occupied, the agent does not move. If an agent has possession 
of the ball, is chosen to move second, and attempts an action 
that would move it into a space that is occupied by the other 
agent, the agent gives its ball to the other agent and does not 



move. This is the only way the ball can change possession. 
Aside from the constraints presented, all actions are 
deterministic. In this environment, each state is determined by 
the positions of all players as well as who has possession of 
the ball. 
___________________________ 

​ 1 When presenting tuples representing coordinate space in this paper, the 
row will be first, and the column second. 

 
 III.  ALGORITHMS 

 
It is readily visible that these multiagent problems do 

not have a purely deterministic strategy that is dominant. If an 
agent were to always pick a single action, the other agent 
could recognize this and exploit their determinism. A mixed 
strategy, that is one where each possible action is assigned a 
probability that is then chosen from stochastically, is required 
to find an equilibrium. Another way of saying this is that there 
is no Nash Equilibrium wherein both agents will never want to 
change their pure strategy regardless of the actions or strategy 
of the other agent. There are however correlated equilibria 
that will allow for convergence. A correlated equilibrium (CE) 
is more general than a Nash equilibrium in that it allows for 
dependencies on the strategies of other agents through signals 
indicating the probable actions of those agents. One may 
consider a stop-light one such signal for a CE in that it does 
not dictate the actions of other drivers but it does allow for 
coordination by understanding the probable actions of those 
drivers (driving through a red light would have a low expected 
outcome for either party). 

 

 
Fig 2. Pseudocode for setting up multiagent Q-learning [2] 

 
​ The general structure of the agent learning uses 
Q-learning based upon the Bellman equation. As the agents 
take actions, and they opponents do, they record the results of 
these pairings as a means of predicting what the probably 
rewards of those actions in those states will be in the future. 
The agents start by picking actions at random in an 
exploration phase, controlled by the epsilon hyperparameter, 
and epsilon slowly decays over time to lean more towards 
exploiting the strategies with the highest recorded expected 
discounted reward (EDR). The amount that the EDR is 
factored into the prediction of a state’s value is controlled by 
the lambda hyperparameter. The amount that a Q value is 
influenced when learning is determined by the alpha 

hyperparameter. In this implementation, as defined by 
Greenwald/Hall, the alpha value is equal to (1 / the number of 
times that state was visited), which allows policies to stabilize 
over time and they change less drastically. The initial 
hyperparameters presented by Greenwald/Hall are alpha = 1, 
epsilon = 1 (except for the pure Q-learning strategy where it is 
0.01), and lambda = 0.9. Minimum values are 0.001 for 
epsilon and alpha. Greenwald/Hall nor Littman define a rate of 
decay for epsilon, but through experiment, 0.001 was found to 
be an acceptable value. Epsilon would then be recalculated 
every iteration as 1 - exp(epsilon_decay - number of 
iterations), with a minimum value of 0.001. 
​ The 4 different Q-learning strategies implemented for 
testing are Correlated-Q (CE-Q), Foe-Q (Minimax), Friend-Q, 
and Q-Learning. 
 

 
Fig. 3 Equation for utilitarian correlated-Q algorithm 

 
Fig. 4 Comparison of produced results for correlated-q algorithm (left) and 

results from Greenwald/Hall 2003 [2] (right) 
 

A.​ Correlated-Q 
Correlated-Q is presented with different variants that 

use different equilibrium selection mechanisms in 
Greenwald/Hall’s paper, however in this paper we will focus 
on the use of the “utilitarian” variety which seeks to maximize 
the sum of all agent’s rewards. This is accomplished by 
summing the product of each probability of choosing each 
action with the EDR of that action. This is done for both 
players and passed back in one common policy. The optimal 
probability of picking a given action is determined using the 
EDR through linear programming, discussed in Section IV. 
The differences in the graphs are that my curve seems much 
smoother which I suspect could be because I’d used a linearly 
decaying alpha value, whereas Greenwald/Hall used an alpha 
that was dependant on the number of times a Q state-action 
pair was visited. Convergence seems to be around the same 
time in both. My errors are also much higher, perhaps they’d 
used some kind of normalization. Also, there are gaps between 
the values in my graph, leading me to believe that they did not 
include zero values in theirs, or perhaps if a value was zero 
they’d used the previous error for smoothing. 

 



 
Fig. 5 Equation for foe-Q algorithm [2] 

 

 
Fig. 6 Comparison of produced results for foe-q algorithm (left) and results 

from Greenwald/Hall 2003 [2] (right) 
 

B.​ Foe-Q 
Foe-Q uses the minimax strategy wherein each agent 

tries to pick the action that will give them the highest EDR 
while expecting that their opponent will choose the action that 
will give them the lowest EDR for all possible actions. This is 
similar to Correlated-Q, and in fact achieves similar rewards. 
My results seem again to be much smoother and the same 
thoughts lie with these as the prior uCE. 

 

 
Fig. 7 Equation for friend Q 

 

 
Fig. 8 Equation for regular Q-learning 

 
 

 IV.  LINEAR PROGRAMMING 
 

In this environment, each state is determined by the 
positions of all players as well as who has possession of the 
ball. This would mean that 8 grid spaces * 7 other grid spaces 
* 2 possible ball possessors = 112 possible states. For each of 
these states, there are then 25 actions represented in the Q 
table per state for each agent, because for each agent’s 5 
possible actions, the agent must also consider each of the other 
agent’s 5 possible actions. 112 states * 25 Q values per state * 
2 agents = 5600 possible Q values to manipulate for this very 
small grid size. 

Because of the complexity that this problem presents, 
linear programming is critical to the computability of 
correlated learning scenarios such as this. The role of the LP is 
to give the probabilities that are being signalled to the agents, 
not to actually determine the actions directly for the agents. A 
linear program minimizes some objective function using a set 
of constraints, either as inequalities or equations. The 
objective function (c) contains a set of variables that are being 

solved for. When determining the inequality constraints for a 
zero-sum, 2 player matrix game, one should visualize each cell 
of the matrix to have its own probability. 

 

 N S E W Stay 

N p1 p2 p3 p4 p5 

S p6 p7 p8 p9 p10 

E p11 p12 p13 p14 p15 

W p16 p17 p18 p19 p20 

Stay p21 p22 p23 p24 p25 

Fig. ?? Matrix of agent A (rows) and agent B (cols) with probabilities to be 
used for constructing constraints for linear program solver 

 
Each of these probabilities are a variable in the 

objective function. The constraints then are ensuring that for a 
given action for either agent, every other action that that agent 
could take is less rewarding. For example, when writing 
constraints for the row player, one would check that the 
rewards expected, through the agent’s Q table, for a given 
action, are more than that of each other action. So to check N 
against S for the the row agent (A), the equality would be: 
p1*R1(N,N) + p2*R1(N,S) + p3*R1(N,E) + p4*R1(N,W) + 
p5*R1(N,Stay) ≥ p1*R1(S,N) + p2*R1(S,S) + p3*R1(S,E) + 
p4*R1(S,W) + p5*R1(S,Stay) [7]. This needs to happen for 
each other action (E,W,S) against N. There are in total, then, 
20 constraints for each player, and then 40 in total. Each of 
these needs to be put into standard form as well, that is setting 
them against 0 on the right side. In addition there are 
constraints ensuring that all values are ≥ 0 and sum in total to 
1. Once all of these conditions are met, the solver can create a 
convex hull from which to find an equilibrium payoff matrix 
that can be used to determine the expected rewards for our 
agents. Note that for this paper, the excitedAtom [9] solver 
was used. 
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