
Multiagent Q-Learning for Zero-Sum Markov Games
Using Correlated Equilibria

Michael Benjamin Burns

mburns49@gatech.edu
Git Hash: 6bd9913bcfff81ae56cc66117d91744addccfda8

​ Abstract - This paper details and contrasts the
implementation and effectiveness of 4 different Q-learning
algorithms: correlated-Q, foe-Q, friend-Q, and Q-learning; for
the purpose of multiagent reinforcement learning in the context
of a zero-sum game in which no deterministic equilibrium policy
exists. It will be shown how these algorithms make use of the
concept of correlated equilibria to find an effective mixed
strategy. We will show how and why linear programming can be
used to find the probabilities of signal presentations to the agents,
which will guide their decision making.

​ Index Terms - Correlated Q, Correlated Equilibria, Linear
Programming, Game Theory,

I. INTRODUCTION

​ The problem space of Q-learning as an approach to
reinforcement learning in single agent, deterministic MDPs is
relatively well explored. A more challenging matter is that of
multi-agent markov games, specifically those using multiple
agents with mixed strategies. In this paper we will attempt to
create a simple, zero-sum soccer game environment, as used
by Greenwald and Hall in their 2003 paper, “Correlated-Q
Learning”, [1] and Littman in his 1994 paper, “Markov games
as a framework for multi-agent reinforcement learning”, [2] as
a means of testing the 4 multiagent Q-learning algorithms to
try to find convergence on an optimal strategy for each agent.
These Bellman equation based algorithms all use the same
overall structure aside from their selection function which
determines which strategy for achieving equilibrium to use.
We will also see that these algorithms are prime candidates for
the use of linear programming because of their complexity and
their requirement for maximization of probable rewards.

Fig. 1 Game environment grid with arbitrary agent positions

(From Greenwald/Hall [2])

 II. ENVIRONMENT

The soccer game environment that will be used to test
the agents will be made to reflect that which is defined in
Greenwald/Hall 2003. Littman’s 1994 paper is referenced by
Greenwald/Hall so it is assumed that any ambiguities in the
definition of the Greenwald/Hall soccer environment can be
informed by Littman’s implementation. The environment is
zero-sum in its rewards- that is any time player A gets a
reward, player B gets an equivalent negative reward and
vice-versa.

It will be a grid with 2 rows and 4 columns1 wherein
the 2 agents (A and B) independently occupy a grid space at a
time. The starting state of the board is not defined by the
Greenwald/Hall paper, and the board size is different in the
Littman paper (4x5), however a board start state in the Littman
paper had the agents diagonal from each other in the center of
the board so that form was adopted for this paper wherein the
start state has A at position (1,2) and B at (0,1). Either one of
the agents can possess the ball at a time. If either agent with
the ball enters either of the far left 2 spaces, it will score for
agent A, giving a reward of +100 to A, and thus a -100 reward
to B. The inverse is true for the 2 far right spaces, giving -100
and +100 to A and B, respectively. In either case, the game is
reset to the starting state again.

Agents have 5 available actions: North, South, West,
East, and Stay. “Stick” was chosen by Greenwald/Hall instead
of “Stay” as defined by Littman, but we will use “Stay” here
as it is less likely to be mistaken for another action. The 4
cardinal directions move the agents 1 grid square in those
directions, and stay remains in the same cell without moving.
When an agent takes an action that would move it off of the
grid, that agent remains in the same space. Agents choose the
actions they wish to take prior to any action occurring. Once
they have chosen, one of the agents is chosen at random to
take their action first.

If an agent attempts to move into a space that is
occupied, the agent does not move. If an agent has possession
of the ball, is chosen to move second, and attempts an action
that would move it into a space that is occupied by the other
agent, the agent gives its ball to the other agent and does not

move. This is the only way the ball can change possession.
Aside from the constraints presented, all actions are
deterministic. In this environment, each state is determined by
the positions of all players as well as who has possession of
the ball.

​ 1 When presenting tuples representing coordinate space in this paper, the
row will be first, and the column second.

 III. ALGORITHMS

It is readily visible that these multiagent problems do

not have a purely deterministic strategy that is dominant. If an
agent were to always pick a single action, the other agent
could recognize this and exploit their determinism. A mixed
strategy, that is one where each possible action is assigned a
probability that is then chosen from stochastically, is required
to find an equilibrium. Another way of saying this is that there
is no Nash Equilibrium wherein both agents will never want to
change their pure strategy regardless of the actions or strategy
of the other agent. There are however correlated equilibria
that will allow for convergence. A correlated equilibrium (CE)
is more general than a Nash equilibrium in that it allows for
dependencies on the strategies of other agents through signals
indicating the probable actions of those agents. One may
consider a stop-light one such signal for a CE in that it does
not dictate the actions of other drivers but it does allow for
coordination by understanding the probable actions of those
drivers (driving through a red light would have a low expected
outcome for either party).

Fig 2. Pseudocode for setting up multiagent Q-learning [2]

​ The general structure of the agent learning uses
Q-learning based upon the Bellman equation. As the agents
take actions, and they opponents do, they record the results of
these pairings as a means of predicting what the probably
rewards of those actions in those states will be in the future.
The agents start by picking actions at random in an
exploration phase, controlled by the epsilon hyperparameter,
and epsilon slowly decays over time to lean more towards
exploiting the strategies with the highest recorded expected
discounted reward (EDR). The amount that the EDR is
factored into the prediction of a state’s value is controlled by
the lambda hyperparameter. The amount that a Q value is
influenced when learning is determined by the alpha

hyperparameter. In this implementation, as defined by
Greenwald/Hall, the alpha value is equal to (1 / the number of
times that state was visited), which allows policies to stabilize
over time and they change less drastically. The initial
hyperparameters presented by Greenwald/Hall are alpha = 1,
epsilon = 1 (except for the pure Q-learning strategy where it is
0.01), and lambda = 0.9. Minimum values are 0.001 for
epsilon and alpha. Greenwald/Hall nor Littman define a rate of
decay for epsilon, but through experiment, 0.001 was found to
be an acceptable value. Epsilon would then be recalculated
every iteration as 1 - exp(epsilon_decay - number of
iterations), with a minimum value of 0.001.
​ The 4 different Q-learning strategies implemented for
testing are Correlated-Q (CE-Q), Foe-Q (Minimax), Friend-Q,
and Q-Learning.

Fig. 3 Equation for utilitarian correlated-Q algorithm

Fig. 4 Comparison of produced results for correlated-q algorithm (left) and

results from Greenwald/Hall 2003 [2] (right)

A.​ Correlated-Q
Correlated-Q is presented with different variants that

use different equilibrium selection mechanisms in
Greenwald/Hall’s paper, however in this paper we will focus
on the use of the “utilitarian” variety which seeks to maximize
the sum of all agent’s rewards. This is accomplished by
summing the product of each probability of choosing each
action with the EDR of that action. This is done for both
players and passed back in one common policy. The optimal
probability of picking a given action is determined using the
EDR through linear programming, discussed in Section IV.
The differences in the graphs are that my curve seems much
smoother which I suspect could be because I’d used a linearly
decaying alpha value, whereas Greenwald/Hall used an alpha
that was dependant on the number of times a Q state-action
pair was visited. Convergence seems to be around the same
time in both. My errors are also much higher, perhaps they’d
used some kind of normalization. Also, there are gaps between
the values in my graph, leading me to believe that they did not
include zero values in theirs, or perhaps if a value was zero
they’d used the previous error for smoothing.

Fig. 5 Equation for foe-Q algorithm [2]

Fig. 6 Comparison of produced results for foe-q algorithm (left) and results

from Greenwald/Hall 2003 [2] (right)

B.​ Foe-Q
Foe-Q uses the minimax strategy wherein each agent

tries to pick the action that will give them the highest EDR
while expecting that their opponent will choose the action that
will give them the lowest EDR for all possible actions. This is
similar to Correlated-Q, and in fact achieves similar rewards.
My results seem again to be much smoother and the same
thoughts lie with these as the prior uCE.

Fig. 7 Equation for friend Q

Fig. 8 Equation for regular Q-learning

 IV. LINEAR PROGRAMMING

In this environment, each state is determined by the
positions of all players as well as who has possession of the
ball. This would mean that 8 grid spaces * 7 other grid spaces
* 2 possible ball possessors = 112 possible states. For each of
these states, there are then 25 actions represented in the Q
table per state for each agent, because for each agent’s 5
possible actions, the agent must also consider each of the other
agent’s 5 possible actions. 112 states * 25 Q values per state *
2 agents = 5600 possible Q values to manipulate for this very
small grid size.

Because of the complexity that this problem presents,
linear programming is critical to the computability of
correlated learning scenarios such as this. The role of the LP is
to give the probabilities that are being signalled to the agents,
not to actually determine the actions directly for the agents. A
linear program minimizes some objective function using a set
of constraints, either as inequalities or equations. The
objective function (c) contains a set of variables that are being

solved for. When determining the inequality constraints for a
zero-sum, 2 player matrix game, one should visualize each cell
of the matrix to have its own probability.

 N S E W Stay

N p1 p2 p3 p4 p5

S p6 p7 p8 p9 p10

E p11 p12 p13 p14 p15

W p16 p17 p18 p19 p20

Stay p21 p22 p23 p24 p25

Fig. ?? Matrix of agent A (rows) and agent B (cols) with probabilities to be
used for constructing constraints for linear program solver

Each of these probabilities are a variable in the

objective function. The constraints then are ensuring that for a
given action for either agent, every other action that that agent
could take is less rewarding. For example, when writing
constraints for the row player, one would check that the
rewards expected, through the agent’s Q table, for a given
action, are more than that of each other action. So to check N
against S for the the row agent (A), the equality would be:
p1*R1(N,N) + p2*R1(N,S) + p3*R1(N,E) + p4*R1(N,W) +
p5*R1(N,Stay) ≥ p1*R1(S,N) + p2*R1(S,S) + p3*R1(S,E) +
p4*R1(S,W) + p5*R1(S,Stay) [7]. This needs to happen for
each other action (E,W,S) against N. There are in total, then,
20 constraints for each player, and then 40 in total. Each of
these needs to be put into standard form as well, that is setting
them against 0 on the right side. In addition there are
constraints ensuring that all values are ≥ 0 and sum in total to
1. Once all of these conditions are met, the solver can create a
convex hull from which to find an equilibrium payoff matrix
that can be used to determine the expected rewards for our
agents. Note that for this paper, the excitedAtom [9] solver
was used.

REFERENCES
[1]​ C. Daskalakis, “ Topics in Algorithmic Game Theory, Lecture 2,”

08-Feb-2010. [Online]. Available:
http://people.csail.mit.edu/costis/6896sp10/lec2.pdf. [Accessed:
14-Apr-2019].

[2]​ A. Greenwald and K. Hall, “Correlated-Q Learning,” ICML'03
Proceedings of the Twentieth International Conference on International
Conference on Machine Learning, pp. 242–249, Aug. 2003.

[3]​ A. Greenwald, K. Hall, and M. Zinkevich, “Correlated Q-Learning,” Jul.
2005.

[4]​ M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning ,” In Proceedings of the Eleventh International
Conference on Machine Learning, pp. 157–163, 1994.

[5]​ M. L. Littman, “Friend-or-Foe Q-learning in General-Sum Games,” In
Proceedings of the 18th Int. Conf. on Machine Learning, 2001.

[6]​ A. Pilkington, “Strategy Lines and Optimal Mixed Strategy for R,”
06-Nov-2018. [Online]. Available:
https://www3.nd.edu/~apilking/Math10120/Lectures/Topic 28.pdf.
[Accessed: 14-Apr-2019].

[7]​ https://web.archive.org/web/20170829232257/http://www3.ul.ie/ramsey/L
ectures/Operations_Research_2/gametheory4.pdf

[8]​ https://github.com/axonal/cvxopt-tutorial/blob/master/Linear%20Program
ming.pdf

[9]​ https://github.com/excitedAtom/blogs/blob/master/cvxopt/cvxopt_exampl
es.py

https://web.archive.org/web/20170829232257/http://www3.ul.ie/ramsey/Lectures/Operations_Research_2/gametheory4.pdf
https://web.archive.org/web/20170829232257/http://www3.ul.ie/ramsey/Lectures/Operations_Research_2/gametheory4.pdf
https://github.com/axonal/cvxopt-tutorial/blob/master/Linear%20Programming.pdf
https://github.com/axonal/cvxopt-tutorial/blob/master/Linear%20Programming.pdf
https://github.com/excitedAtom/blogs/blob/master/cvxopt/cvxopt_examples.py
https://github.com/excitedAtom/blogs/blob/master/cvxopt/cvxopt_examples.py

