Interactive Notebook #3: Measurement

3.1 intro (left)

Insert foldable model <u>here</u>

Find the **P**erimeter and **A**rea for each:

1. Square with side length of 5cm

$$P = 4s$$

$$P = 4s$$
 $A = b^2$

$$P = 4(5)$$
 $A = 5^2$

$$A = 5^2$$

$$P = 20cm$$

$$P = 20cm$$
 $A = 25cm^2$

2. A rectangle with a base of 6cm and a height of 4 cm

$$P = 2b + 2h$$

$$A = bh$$

$$P = 2(6) + 2(4)$$
 $A = 6(4)$

$$A = 6(4)$$

$$P = 12 + 8$$

$$A = 24cm^2$$

$$P = 20 cm$$

- 1.A square with a side length of 9cm
- 2.A rectangle with a base of 7cm and a height of 3cm
- 3.A square with an area of 81cm² (b and P)
- 4.A rectangle with a height of 5 and an Area of 20u² (P and b)
- 5.A square with a base of 11m (P & A)

Challenge:

- 1. Find the Perimeter and Area of a square whose side length is k centimetres
- 2. Find the Perimeter and Area of a rectangle with a base of f and a height of y

3.1 Intro (right)

Vocab:

Perfect Squares: the products of whole numbers multiplied by themselves

3x3 = 9

6x6 = 36

$$1x1 = 1$$
 $2x2 = 4$
 $4x4 = 16$ $5x5 = 25$
 $7x7 = 49$ $8x8 = 64$

$$7x7 = 49$$
 $8x8 = 64$ $9x9 = 81$ $10x10 = 100$ $11x11 = 121$ $12x12 = 144$

The **square root** $\sqrt{\ }$ of a perfect square is the <u>original factor</u>

Eg. 4 x 4 = 16
$$\therefore$$
 $\sqrt{16}$ = 4 NB: \therefore = therefore

$$\therefore$$
 n^2 and $\sqrt{}$ are Inverse Operations

Perimeter: the distance around some object; straight sides, closed figures, (|, linear u)

Area: how many 2-dimensional units would cover the shape, (\Box, u^2)

A square has an area of 20m². What are the side lengths?

Remember: A square is a special rectangle Area of a square = b^2

So, the Side length of a **square** is the \sqrt{Area}

And \therefore the $\sqrt{Area\ of\ a\ Square}$ is the length of one side

3.2 Practice (left)

Find the <u>areas/Perimeter</u> of the following shapes: sketch the shapes and label too!!!

- 1. Area & perimeter of a 4 ft wide and 5 ft long rectangular garden
- 2. Perimeter & area of a 65m by 30m rectangular trampoline
- 3. Area & perimeter of a square where the height is 6m
- 4. Perimeter of a square with an area of 49m²
- 5. Area of a triangle with a height of 4m and a base of 10m
- 6. Area of a rectangle with a height of 7m and a base of 3m
- 7. Area of a triangle with a height of 6m and a base of 11m

More practice <u>here</u> Printable practice: <u>here</u> Relating Perimeter and Area

practice: here

More practice with Friendly Numbers: here Final printable practice: here

3.2 (right)

Area of Polygon:ls: Base x Height is all you need!

Insert foldable <u>here</u>

Rectangle
$$\rightarrow$$
 A = bh

Parallelogram \rightarrow A = bh

Trapezoid \rightarrow A = $(\underline{b1+b2}) \times \underline{h}$

3.3 (left)

- 1. Independently, find the Perimeter and Area of the following:
 - a. An equilateral triangle with a base of 4m, and a height of 6m
 - b. A rectangle with a base of 5m and a height of 3m
 - c. A <u>trapezoid</u> with a bottom of 4m, and a top of 3, and height of 2m and a slant side length of 2.5.
 - d. A <u>parallelogram</u> with a height of 6m, a base of 5m, and a side length of 7m
 - e. A square table with a base of 79cm
 - f. A rectangular garden with a height of 7ft and a base of 6ft

Then... FInd the area of the following:

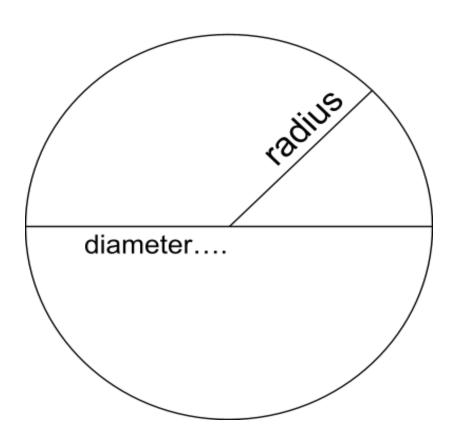
- 1. A circle with a radius of 4m
- 2. A circle with the diameter of 6cm
- 3. A circle with a radius of 3 cm

And find the circumference of the following

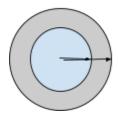
- 1. A circle with a radius of 5 m
- 2. A circle with a diameter of 7 m
- 3. A circle with a radius of 4 m

And challenge time -- find area of a circle that has a circumference of 31.4 m

3.3 (right) Circles


Diameter (d): the distance across a circle, which goes directly through the centre **d = 2r**

Radius (r): the distance from the centre of a circle to the edge of a circle $\mathbf{r} = \mathbf{d}$


Circumference (C): the outside of a circle (linear measure)

Pi (TT): an irrational # representing the ratio between the circumference of a circle and its diameter

$$A = \pi r^2$$

 $C = 2r\pi$ or πd

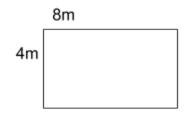
- 3.4 More circles (Left)
 - 1. A pool has a diameter of 10m. What is the circumference?
 - 2.Max has a round tablecloth. According to its package, it has a circumference of 6.28 metres. What is the tablecloth's radius?
 - 3. A pool has a radius of 7.5m. There is a 1m wide path ALL AROUND the pool. What is the area of the PATH?

- 4. When Kinsley won a contest, she got a bronze medal with a radius of 4 centimetres. Find the area
- 5. A coffee cup had a diameter of 9cm. What is the circumference of the cup?
- 6. When laid flat, a round parachute has a radius of 4 metres. What is the parachute's circumference?
- 7. A circular platter has a radius of 15cm. It sits upon a circular placemat which has a diameter of 42cm. When looking from above, what is the area of the placemat that is visible?
- 3.4 More Circles (Right) Flexibility with Formulae

If $A = \pi r^2$ how do we find the radius?

Example:

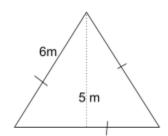
A Circle has an area = 132.665m² how do we solve for r?


A =
$$\pi r^2$$

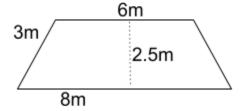
132.665 m² = πr^2
132.665 = $3.14r^2$
3.14 3.14

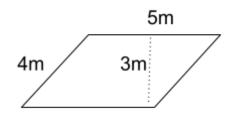
$$42.25 = r^2$$

 $\sqrt{42.25} = \sqrt{r^2}$
 $6.5 = r$

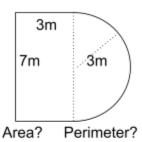

3.5 (Left & Right)

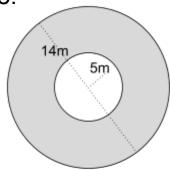
Find the Perimeter and Area:


1.


3.

2.


4.


Solve for the missing aspect:

- 1. A circle, radius of 9m. Find Area.
- 2. A circle, diameter of 6cm. Find Area.
- 3. A circle, Area of 706.5m Find diameter
- 4. A circle, Circumference of 113.04m Find radius.
- 5. A circle, Area of 153.86. Find circumference
- 6. A circle, Circumference of 35.54m Find area.

7.

8.

Area of Shaded doughnut?

3.6(left & right) practice:

A. if a square has sides that are 5cm long, what is the P? the A?

B. if a right angle <u>triangle</u> has two legs that are 5 cm long and a slant that is 7 cm long, what is the area?

$$A = \underline{bh}$$
 $A = \underline{(5)(5)}$
2 $A = 12.5 \text{cm}^2$

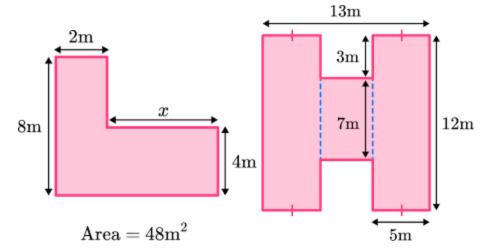
C. John is building a triangular garden in the corner of his yard. He wants his garden to take up 5 feet of fence on one side, and 6 feet on the other. What is the area of the garden?

$$A = \underline{bh}$$
 $A = \underline{5(6)}$
2 $A = 15ft^2$

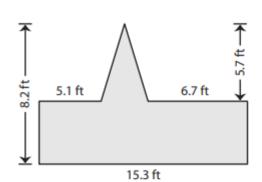
D. if a round garden has a diameter of 4m, what length of fence is needed to go around the garden?

$$C = (pi)d$$
 $C = 3.14(4)$ $C = 12.56m$

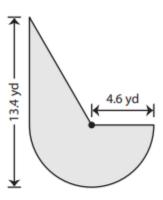
3.7 (left)


Find Perimeter and Area of the following: key

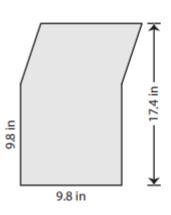
- 1. A square with a base of 17mm
- 2. A rectangle with a base of 5cm and 9cm
- 3. A trapezoid with a top of 12 mm, a base of 20mm, a height of 5mm, and a slant length of 9mm
- 4. A parallelogram with a height of 11cm and a base of 17cm and a slant of 13cm
- 5. A right angle triangle with a height of 6m and a base of 10m
- 6. C and A of A Circle with a radius of 6m
- 7. C and A of A circle with a diameter of 12cm
- 8. A square has a perimeter of 64cm. What is the area?
- 9. A rectangle has an area of 24cm² and a base of 4cm. What is the perimeter?
- 10. A right angle triangle has an area of 18m² and a height of 12m. What is the perimeter?
- 12. A square has an area of 49m² -- find the perimeter
- 13. A right angle triangle has a Perimeter of 24m. It has a hypotenuse of 10m, and a height of 6m. What is the area?


3.8 Working Backwards: Finding Side Lengths:

Shape	Given Perimeter	Find side	Given Area	Find side
Square	P=4s	<u>P</u> = s	$A = s^2$	$\sqrt{A} = s$
Rectangle	P = 2b + 2h	Substitute values, T1eq	A = bh	$\underline{A} = h$ $\underline{A} = b$ h
Triangle	P = s+s+s	S = P-(s+s)	A = <u>bh</u> 2	<u>2A</u> =b <u>2A</u> =h h b
Eq tri	P=3S	$\frac{P}{3} = s$	A = <u>bh</u> 2	<u>2A</u> =b <u>2A</u> =h h b
circle	C = πd	Diameter = <u>c</u> π	$A = \pi r^2$	Radius = $\sqrt{\frac{A}{\pi}}$


3.9 Composite Shapes:

1)


2)

Area =

Area =

3)

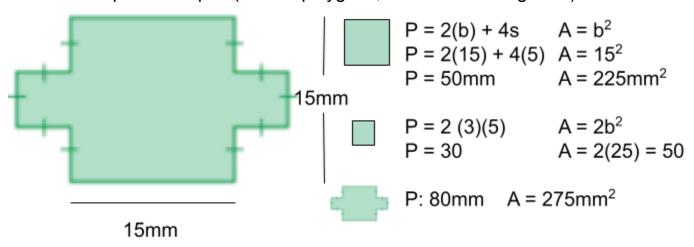
Area =

4) 12.5 ft

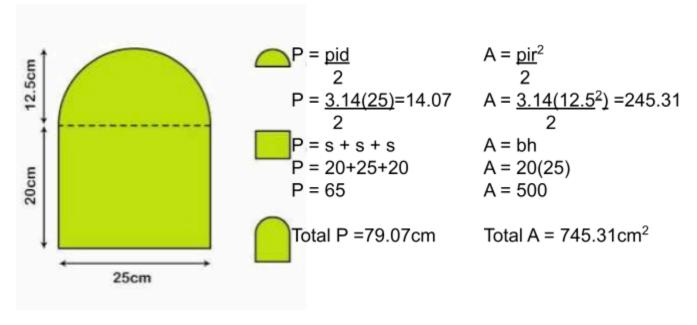
Area =

- 16.7 ft -

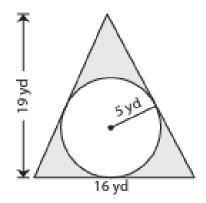
3.9 Composite shapes:

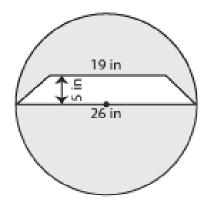

Composite shapes - closed figures made up of several smaller polygons
Finding Perimeter: solving for all unmarked sides, then sum all sides
Finding Area: break shape into recognizable parts, find individual areas, sum the areas

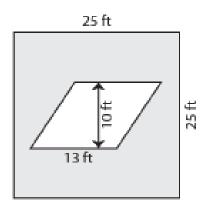
Challenges:

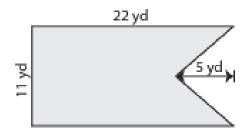

Finding implied measurements
Using the most efficient strategies
Labelling all work logically****

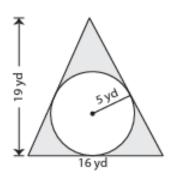
4 Scenarios:

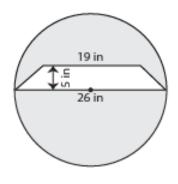

Additive composite shapes (normal polygons, all smooshed together)


Additive partial shapes (include half circles, half trapezoids, etc)

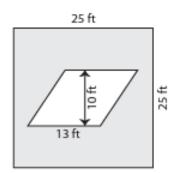

3.10 Composite shapes: left

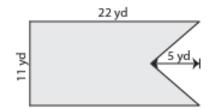

Area = ____


Area = _____

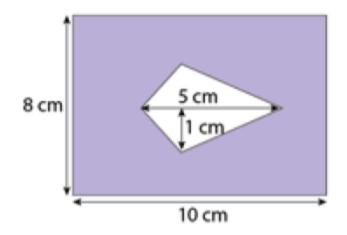

Area = _____

Area = _____



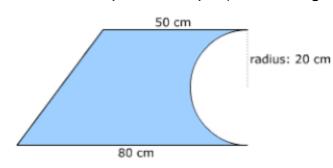


Area = 418.16 in²


6)

3.10 Composite shapes: right

Subtractive composite shapes (shapes you have to subtract from a larger area)



$$P = 2b + 2h$$
 $A = bh$
 $P = 2(10) + 2(8)$ $A = 10(8)$
 $P = 36cm$ $A = 80cm^2$

$$A = 2(5)(1) = 5cm^2$$

Total A =
$$80 - 5 = 75 \text{cm}^2$$

Subtractive partial shape (subtracting half-circles, half-trapezoids etc)

$$A = \underline{bh} \qquad A = \underline{bh} \qquad A = 50(40)$$

$$A = 30(40)$$
 $A = 2000 \text{ cm}^2$

A
$$\angle = 600 \text{cm}^2$$
 $A \varphi = \underline{\pi} \underline{r}^2$ 2 $A \varphi = \underline{\pi} \underline{20}^2$ 2 $A \varphi = \underline{\pi} \underline{400}$ 2

A = 628 cm²