IBDP Biology HL

Topic 7: Nucleic acids

Revision List - Syllabus Topics

7.1: DNA structure and replication

- 1. Nucleosomes help to supercoil the DNA.
- 2. DNA structure suggested a mechanism for DNA replication.
- 3. DNA polymerases can only add nucleotides to the 3' end of a primer.
- 4. DNA replication is continuous on the leading strand and discontinuous on the lagging strand.
- 5. DNA replication is carried out by a complex system of enzymes.
 - a. Proteins and enzymes involved in DNA replication should include helicase, DNA gyrase (topoisomerase), single strand binding proteins, DNA primase and DNA polymerases I an III.
- 6. Some regions of DNA do not code for proteins but have other important functions.
 - a. The regions of DNA that do not code for proteins should be limited to regulators of gene expression, introns, telomeres and genes for tRNAs.

7.2: Transcription and gene expression

- 1. Transcription occurs in a 5' to 3' direction.
 - a. RNA polymerase adds the 5' end of the free RNA nucleotide to the 3' end of the growing mRNA molecule.
- 2. Nucleosomes help to regulate transcription in eukaryotes.
- 3. Eukaryotic cells modify mRNA after transcription.
 - a. Students should understand the action of introns and exons.
- 4. Splicing of mRNA increases the number of different proteins an organism can produce.
- 5. Gene expression is regulated by proteins that bind to specific base sequences in DNA.
- 6. The environment of a cell and of an organisms has an impact on gene expression.

7.3: Translation

- 1. Initiation of translation involves assembly of the components that carry out the process.
 - a. tRNA-activating enzymes illustrate enzyme-substrate specificity and the role of phosphorylation.
 - i. Phosphorylation is the addition of a phosphate group that turns many enzymes on and off.
- 2. Synthesis of the polypeptide involves a repeated cycle of events.
 - a. Names of the tRNA binding sites are expected as well as their roles.
 - i. E site, P site, A site
- 3. Disassembly of the components follows termination of translation.
- 4. Free ribosomes synthesize proteins for use primarily within the cell.
- 5. Bound ribosomes synthesize proteins primarily for secretion or for use in lysosomes.
- 6. Translation can occur immediately after transcription in prokaryotes due to the absence of a nuclear membrane.
- 7. The sequence and number of amino acids in the polypeptide is the primary structure.
- 8. The secondary structure is the formation of alpha helices and beta pleated sheets stabilized by hydrogen bonding.
- The tertiary structure is the further folding of the polypeptide stabilized by interactions between R groups.
 - a. Polar and non-polar amino acids are relevant to the bonds formed between R groups.
- 10. The quaternary structure exists in proteins with more than one polypeptide chain.
 - a. Quaternary structure may involve the binding of a prosthetic group to form a conjugated protein.