
Git Workflow for Heliotrope
This document outlines a workflow for creating Git branches for specific GitHub issues and bug
fixes while collaborating with Data Curation Experts and other members of the Heliotrope
development team. The local team generally follows a Clone and Branch method, with branches
related to specific GitHub Issue(s). Once the work is ready to be merged with the project, you’ll
issue a Pull Request (PR) to the remote repository. You need to be set as a contributor to the
repository in order to be assigned tickets or issue PRs. Non-local members can follow a Fork
and Branch method, and ask for their work to be merged to the main repository.

Heliotrope on GitHub
Heliotrope Waffle Board

Locally

Create a new-feature branch from master. Try and base the name of the branch off the issue
you’re working on so it is clear to the rest of the team. (In this example I’m just generically
calling it new-feature).

git pull origin master

git checkout -b new-feature master

Do work, add commits to the new-feature branch, edit, stage, commit, like this:

git status

git add directory/to/some-file

git commit -m “log message that will be recorded goes here”

NOTE: You cannot switch branches without making commits to your new-feature branch first.
Otherwise, your changes will be merged into the branch you are switching to. Nooooo! If you’d
rather not commit, there are ways around this, like git stash.

If changes have been made to master that are essential to your new-feature branch, you may
want to pull those changes into your branch. If so, run
​
​ git checkout master

git pull

git checkout new-feature

git rebase master

Before you merge your changes to master, you may want to see a list of what will be merged.

http://www.git-scm.com/book/en/v2/Git-Branching-Basic-Branching-and-Merging
https://github.com/curationexperts/heliotrope
https://waffle.io/curationexperts/heliotrope
https://git-scm.com/book/en/v1/Git-Tools-Stashing

Do the following while on your new-feature branch

​ git diff --stat --cached origin/master

When you’re done with your work, push it to GitHub!

​ git push origin new-feature

If you’re ready to issue a Pull Request (PR), first make sure you’ve remembered to run your
tests (rake ci from project root). Then head over to the Heliotrope repository on GitHub or
open GitHub Desktop for Mac and issue a Pull Request (PR) for your branch to be merged with
master. Be sure to include a complete description of your contributions and the related issue
number (ie, #53). If it closes a specific issue number, be sure to include either “Fixes #53” or
“Closes #53” or “Resolves #53” in the comment – GitHub will automatically close the issue
upon successful merge of the branch to master.

You should never merge your own PR to master.

After you’ve received confirmation that new-feature has merged to master, delete the
new-feature branch if the merger did not.

git branch -d new-feature

Updating Your Branch Mid-Pull Request
There may be something wrong with your code or questions about the way you’ve done
something, resulting in requested changes to your branch. Instead of closing the PR, make the
requested changes locally to your branch and then stage all modified files and commit:

​ git add directory/to/some-modified-file directory/another-file

git commit --amend

Enter a log message describing the amended fix. --amend will add any staged changes to the
previous commit you made prior to your PR.

You’ll then want to get your branch to the remote repository by force pushing your branch. Do:

​ git push origin new-feature -f

The -f flag will force push your branch. If this flag isn’t included, Git will be annoying. Use it. But
never force push to master.

Deleting Your Branch Without Issuing a Pull Request

https://github.com/mlibrary/heliotrope

You may also decide that you don’t want to merge the work you did on the branch and would
rather just delete it and start over. To do a hard delete without issuing a PR do:

​ git branch -D new-feature

Reverting to Previous Commits
In case you totally screw something up and commit something that breaks everything and need
to jump backwards – you can revert back to a previous commit quite easily. First look at which
version you’d like to move back to:
​

​ git log

​

Find the state (the first seven numbers of the commit) you want to revert to and do

git revert commit 123abc1

Hotfixes for Production During a Sprint
Oh no! A bug has been deployed to production and needs to be fixed outside of a regular sprint
release cycle. Well, we only deploy tagged releases to production (not the master branch) so
you’ll want to first make sure you have the latest tagged release. Do

git fetch

Make a branch from the latest release. Let’s say the latest release is 1.1.0. Do
​
​ git checkout 1.1.0

Then make your branch from that point:

git checkout -b hotfix/name-of-bug 1.1.0

Make your changes, test, and commit per usual. When you’re ready, push your branch to the
remote repository

git push origin hotfix/name-of-bug

Once tests pass, using the GitHub GUI, tag your hotfix/name-of-bug branch with a new
release version. In this case, it would be tagged 1.1.1

Now you’re ready to deploy to staging, preview, and production (in that order).

nectar: be cap staging deploy

As the deploy scripts run, you’ll be asked what branch or version you’ll want to deploy – you’ll
want to enter the tagged release number, in this case 1.1.1

Don’t forget to merge your hotfix/name-of-bug branch into master. Using the GitHub
GUI, create a PR like you would for a feature. This ensures that when master gets tagged and
deployed on the normal release schedule, the hotfix is included.

On Tang/Sunny-D for Deployment to Nectar
Working from the U-M Library development servers, you’ll want to clone and run commands a
bit differently than if you were developing locally.

Clone the repo from your github account

git clone https://github.com/curationexperts/heliotrope.git

In the project/application directory, set the ruby version to 2.3.0

rbenv local 2.3.0

Install gems locally to the application

bundle install --path=.bundle

Follow directions from above for the Git Workflow.

https://github.com/curationexperts/heliotrope.git

	Git Workflow for Heliotrope
	Locally
	Updating Your Branch Mid-Pull Request
	Deleting Your Branch Without Issuing a Pull Request
	Reverting to Previous Commits

	Hotfixes for Production During a Sprint
	On Tang/Sunny-D for Deployment to Nectar

