
BaseJump STL Contributor’s Guide (2021)

Thank you for stepping forward to help contribute to BaseJump STL! Together, we will transform
how hardware is designed!

We have had both local contributors at UW / UCSD and also remote student contributors from
institutions across the world. Beyond learning how to design hardware well, and helping to
transform the way that the world design hardware, we also want to help our contributors out. In
many cases, we give follow-on recommendations to both companies and graduate school. In
fact, we have brought on several contributors into master’s and PhD programs over the year.
Additionally, your code will get taped out and used in our chip prototypes, in the latest process
generations such as TSMC 16.

Generally, for remote interns, we require a 40 hours commitment for at least 12 weeks. In
several cases, students have continued into the school year with a more advanced project that
leverages their work on BaseJump STL because they wanted to see their stuff in silicon.

Here is more info:

General

- You will work on our project that involves building open source hardware in SystemVerilog /
Verilog.
- All of your code must be made available for others to use, free of use, via an open source
license of Prof. Michael Taylor’s choice, in this case Apache 2.0.
- You must give detailed weekly reports, as detailed below.
- You must work autonomously and without reminder from us.
- If you do a great job and complete your tasks, Prof Taylor and/or team will be happy to write
you a recommendation letter for grad school or employer.

Resources
Make sure to study these items before beginning. This will give you more information on the
high level goals of the project, and for the code base.

1.​ The BaseJump STL DAC Paper.
2.​ The BaseJump STL DAC Slides.
3.​ The BSG SystemVerilog Style Guide.
4.​ https://github.com/bespoke-silicon-group/basejump_stl

http://cseweb.ucsd.edu/~mbtaylor/papers/Taylor_DAC_BaseJump_STL_2018.pdf
http://cseweb.ucsd.edu/~mbtaylor/papers/BaseJump_STL_DAC_Slides.pdf
https://docs.google.com/document/d/1xA5XUzBtz_D6aSyIBQUwFk_kSUdckrfxa2uzGjMgmCU/edit
https://github.com/bespoke-silicon-group/basejump_stl

5.​ bjump.org
6.​ If you are new to git, see https://try.github.io/ for a tutorial.

Weekly Reports

You should give a detailed report emailed to professor taylor, containing:

1.​ What you planned to do for this week (and why)
2.​ What you actually did, and what challenges you overcame, how you overcame them,

and what insights you got.
3.​ What you plan to do for next time (and why)

Having this text will improve your technical writing, improve communication with us, and provide
defacto documentation of your progress on the project.

Getting Help

For your project, in order of preference
1) try things out yourself,
2) look up on internet,
3) the basejump-stl@googlegroups.com mailing list
4) prof.taylor@gmail.com, via email (or the graduate student if one was assigned to you)

The Project

The goal of the project is to build an open-source equivalent of the Standard Template Library
(in C++) for hardware design. This way, instead of rewriting and redebugging the same code
over and over, we can reuse a bunch of well-designed hardware components. Because of this,
good, clean style is important. You should focus on mimicking the style currently in use
(naming, spacing, etc), and should try never to write the same code twice -- factor similar code
into modules with clean, easy-to-explain interfaces and reuse them. You must follow these
coding guidelines for naming and style.

Remember that when you do a pull request to the github repo, you are presenting your work to
others, and if it is unnecessarily sloppy, then they will be annoyed with you. Be sure to make it
your best work before you do a pull request.

Your initial project will be focused on improving the quality of the existing modules. After you
have grasped our coding style, testing methodology, and understand what modules we provide,
and contributed to our testing, then we will continue onto a project that makes use of the

http://bjump.org/
https://try.github.io/
mailto:basejump-stl@googlegroups.com
https://docs.google.com/document/d/1xA5XUzBtz_D6aSyIBQUwFk_kSUdckrfxa2uzGjMgmCU/edit

BaseJump STL (aka bsg_ip_cores) library. For example one of our previous students (Bandhav)
did this, and ended up designing a manycore processor.

The basic structure of the repository is that different modules that people may want to use are
organized by type into directory. In the top-level "testing" directory, we plan to mirror the
directory structure of the top-level of the repo, so that ideally each file has a test.

So for instance, the directory basejump_stl/testing/bsg_misc/bsg_popcount is intended
to test the file basejump_stl/bsg_misc/bsg_popcount.v. You can look at that test as an
example.

For writing tests, we have a lot of helpful modules that already exist in the BaseJump STL
source base, that you should use. This way we can use our own philosophy of reuse even in
testing! As you develop tests, you will come up with your own ideas about what helper modules
we should use, and we can add those to the repo as well. After you have written tests and have
a sense of our hardware design philosophy, then you will be contributing synthesizable code to
the repository as well. Some of your code is likely to end up in a chip that we design in the
near future!

To run your tests, we recommend that you use Verilator. This will be scripted with a Makefile
(see the example in the project above), in order to try out different variations in parameters. All
of your code must be synthesizable for ASIC, unless the code is specifically for a testbench.

Another option, but less recommended, is Vivado (from Xilinx). They only charge money for
device support (ie. you want to synthesize your design for a specific FPGA) but we really just
want the RTL simulator and waveform viewer so there is no need to target a specific FPGA. You
can check it out here https://www.xilinx.com/support/download.html. I think you might need to
create a Xilinx account but that is free. Select the Web Pack License. You must still run
everything via makefile and command line; GUIs are the antithesis of automation.

Using GNU Make

In our testing infrastructure, we make use of GNU make (http://www.gnu.org/software/make/).
You will need to decode some of our makefiles so here is some useful information.

There are manuals there. Make is a declarative language -- you tell it what file you want to build,
and then it combines rules in the makefile to generate it. There is a link to a webpage that has
the entire manual on one webpage (http://www.gnu.org/software/make/manual/make.html),
which is good for searching through to look up specific features. You can read the manual to
learn about make basics, like how to write rules and build things. And then look up some of the
advanced features that I used by searching through the manual.

https://www.xilinx.com/support/download.html
http://www.gnu.org/software/make/
http://www.gnu.org/software/make/manual/make.html

Test Design

Each module in BaseJump STL has input and output signals, as well as input parameters. We
need to make sure that our tests cover both the important variations in wired inputs and outputs,
as well as variations in parameters. The popcount test I have linked to above gives an example
of testing both of these.

Ensure both module and testing code are environment agnostic. As BaseJump STL is designed
to be imported by other projects, we strive to avoid namespace pollution, committing local paths,
or depending on any non-standard environment variables.

Each test should have comments that explain how the test works. Let's have a section in the
comment blocks, called "TEST RATIONALE" that discusses what cases the test should cover, in
English. Here is an example rationale:

// TEST RATIONALE

// 1. STATE SPACE

The output of the function is undefined if there is more than a single 1 bit set in the function, so
that fortunately limits the state space that needs to be tested, and means that we can
exhaustively test the function, simply by testing the following inputs: all zeros, and the value 1
shifted from 0 to width_p bits. Clearly, we should test both output values.

// 2. PARAMETERIZATION

The parameter width_p determines the behavior of the function in a significant way, because it is
written as a divide-and-conquer recursive algorithm. Significantly, in the cost, the case
(width_p=1) is a special case, and power of two widths and non-power of two-widths are
handled with different clauses. So a minimal set of tests might be width_p=1, width_p=4, and
width_p=5,6,7. However, since there are relatively few cases, an alternative approach is to test
width_p=1..512, which gives us brute force assurance.

B. For the parameterization, it is somewhat tricky because we want to run these tests in an
automatic fashion. In academia, and in industry, people very widely use gmake. We will make
use of it. All of your work should be scripted using Makefiles -- no manual typing (except
"make") should be required, so that we can repeatedly re-rerun things.

Test Coverage
Moving forward, we expect that new modules that are committed should also have tests that
achieve near 100% line and toggle coverage. Moreover, they should pass the BaseJump STL
synthesis tests. See our BSG Coverage Based Methodology document on the right way to do
verification:

Merging and naming of modules with like behavior

- for debugging, we want to maintain the invariant that every input, and every output is explicitly
listed when people instantiate a module, to prevent bugs.
- for code clarity, we don't want people to have specify null input values to ports if they are not
using them (e.g. if they want a d-flip flop, don't make them put a .reset(1'b0),.en(1'b1)).
- we want basejump to provide portable interfaces so that people don't have to change their
verilog code to move it from one foundry to the next -- they should just have to modify the /hard
library
- if a module generally corresponds to hardened macros, then we want to make sure to have
interfaces that will map efficiently onto those structures across the dominant IP vendors (e.g.,
TSMC, ARM, Xilinx, Altera)
- we want the module names to be different if there are significant difference in cost for
implementing each variant. So for example, the write_bit versions of RAMs are not supported by
Xilinx FPGAs, so we don't want to make the write bit versions the single unified interface to a
ram -- because people may use them casually and not realize that they will have a horrendous
cost when mapped to FPGA.
- we want a module name to correspond to a unique idea
 - if there are some minor variants that have little ramification for area/performance/energy, and
for which there are no established terminology, then it is preferable to merge them and have a
parameter select between the modes (ideally, the obvious default mode, and the slightly less
obvious non-default mode.

How to Ramp Up
The intent here is to model how you should approach collaboration in any open source project.

1.​ Read all of the items labeled resources -- the BaseJump STL DAC paper, slides, and the
BSG SystemVerilog style guide.

2.​ Start looking at the BaseJump STL modules on github. Familiarize yourself with what is
there and what might be missing, and how it is organized.

3.​ Start with this modest task that will help you get experience with the code base and our
style guide. Look through the code and find violations of the style guide, and try to do a

https://docs.google.com/document/d/1QD4w-B4S1RgIzbuaT-3KD46q4TXDuG61mDDvugPUd0s/edit#

few pull requests to clean up any issues you identify. Make sure the requests are
minimal and do not have unnecessary reformatting of white space.

4.​ Also look through the testing directory and try to identify a few modules or functionality
that have not been tested. Check to see if issues have been filed for that module, and if
not, file an issue, referencing the file that was not testing. File an issue for each untested
thing.

5.​ Look through the issues that have already been filed for BaseJump STL, and see if you
can do pull requests that fix some of the easy ones. If you have a direct question about
the issue, you can post it on the issue itself in github. If you are asking more for
clarifications about coding style or contributing, then use the
basejump-stl@googlegroups.com mailing list.

6.​ Write a test for one of the modules that has not been tested. Look at the other code to
see how tests are setup. Achieve 100% toggle and line coverage.

7.​ Once you have built up some credibility by fixing some issues on the existing code, now
it is time to create some new modules. To minimize wasted time, clear the idea ahead of
time by either asking for suggestions on the mailing list (if you want, you can say what
kind of module you are interested in) and getting a consensus, or if you have a concrete
idea, write an email to the mailing list with the title RFP: module_name (e.g. RFP:
bsg_decoder_thermometer) and a body that describes the module and the interface
(port names and types, and parameter names) you believe it should have. Then folks
can tell you if it would be useful or is redundant before you charge off and do it. Or they
can tell you that somebody is already working on it and help you avoid duplication of
effort. If you have other proposed changes that are not just new modules, you can also
use RFP: <change>. Simply bug or issue fixes do not require unless there is some
ambiguity.

Thanks in advance for your great contributions!

mailto:basejump-stl@googlegroups.com

	BaseJump STL Contributor’s Guide (2021)
	General
	Resources
	Weekly Reports
	Getting Help
	The Project
	Using GNU Make
	Test Design
	Test Coverage
	Merging and naming of modules with like behavior
	How to Ramp Up

