
IRI Plankton (DarkShield RPC) API
Documentation Version 1.5.0
support@iri.com
Last Modified: 19 September 2023, Confidential per NDA

Overview
IRI Plankton is a web services platform (you host, not our SaaS) for IRI API services which can
be made through standard Remote Procedure Calls (RPC) to endpoints. All IRI services are
documented using an OpenAPI specification document that can be rendered on a web browser
using tools like Swagger UI (the default method packaged with Plankton) or Redoc.

IRI Plankton provides services for the searching and masking of unstructured data. Plankton
utilizes a plugin interface, allowing you to choose the needed functionality by installing the
appropriate API plugins. Plankton defines a common interface for loading the plugins, plus
configuring the executable and logging.

Currently, Plankton supports four RPC APIs for IRI DarkShield. These include the: base
DarkShield API, DarkShield Files API, DarkShield NoSQL API, and DarkShield RDB APIs.

mailto:support@iri.com
https://swagger.io/tools/swagger-ui/
https://redoc.ly/

DarkShield Base API

The base API was built for the purpose of search and masking free floating text. It is generally
used as a middle agent for various text streams, handling the searching and masking of free
floating text using data class search matchers to identify PII and masking rules to protect the
discovered PII.

For example, an external application can integrate calls to the DarkShield API to mask, and in
some cases, unmask data as desired by the logic of the application. Also, custom calling
programs can use input procedures not natively supported by DarkShield (e.g., file types not
supported by the DarkShield Files API, or databases or other applications that DarkShield does
not have native connectors to). Masked data returned can also be handled in any way desired.

DarkShield Files API

The files API was built for the purpose of searching and masking PII in various file formats,
including but not limited to files in semi-structured or unstructured formats; i.e. plain text, Excel,
XML, JSON, PDF, Word, Powerpoint, DICOM, Parquet, and image files. This is in contrast to IRI
FieldShield which only supports the searching and masking of flat (structured) files (which
DarkShield can also support); i.e., CSV, TSV, fixed-width, Excel, (flat) XML, (flat) JSON. Under
the hood, the DarkShield Files API uses the DarkShield Base API to process the extracted text.

DarkShield RDB API

The DarkShield RDB API was built for the purpose of searching and masking data stored inside
relational databases. The DarkShield RDB API depends on and inherits functionality from the
DarkShield Files and DarkShield base APis. Binary files stored in columns can be searched and
masked utilizing the inherited functionality from the DarkShield Files API.

Unlike FieldShield, DarkShield supports searching and masking of binary data in BLOB
columns, character data in large CLOB columns, and row (sum of all column) lengths longer
than 64KB when processing relational database tables. Also, DarkShield can selectively find
and mask sensitive data in portions of column values, such as floating JSON, XML or free text.

The scope of sources and targets for the DarkShield RDB API are a database schema on each
end (the source and the target).

The DarkShield RDB API is very performant, with a benchmark of searching and masking a
SQL Server table with 8 varchar columns and 10 million rows with a one-pass DarkShield job
search and masking execution taking approximately 90 seconds to run from start to completion.

DarkShield NoSQL API

The NoSQL API was built for the purpose of searching and masking data stored inside NoSQL
databases. Utilizing the files API, the NoSQL API is capable of processing binary files stored
inside NoSQL DBs. The NoSQL API is a sister plugin of the DarkShield RDB API; that is, it

inherits functionality from the DarkShield Files and DarkShield base APIs but does not depend
on the DarkShield RDB API.

Currently, the DarkShield NoSQL API supports MongoDB, Elasticsearch, and Cassandra.
Future developments will include Couchbase, CosmosDB, BigTable, DynamoDB, Opensearch,
Solr and Redis, as those were already tested with the base and file APIs per examples here.

Versioning

IRI Plankton and its plugins are versioned using standard Semantic Versioning. Increments to
the MAJOR version (for example, v1.1.0 -> v2.0.0) represent breaking API changes for both the
Plankton platform and its plugins. Individual plugins can also have separate updates to its
MINOR and PATCH versions, which represent backward-compatible changes and bug fixes
respectively.

All OpenAPI documents from the plugins are guaranteed to be backward compatible for any
MINOR or PATCH changes. Planned breaking changes, operations, parameters, and schemas
within the OpenAPI document will be marked with the deprecated keyword per the OpenAPI
standard, which means that they will be removed or changed with the upcoming MAJOR version
release. The new semantics that follow the deprecation will be described in the description field
of the document.

Docker Install

IRI optionally provides a Docker image that includes all the dependencies needed to run the
DarkShield API. The image can be pulled with a command such as docker pull
devonak/plankton:version_number, replacing version_number with the actual version number.

As of Plankton version 1.4.2, images are split into two types: lite and full.

The lite image has no Python dependencies installed, and is configured to not attempt to install
dependencies at runtime.

Functionality of Plankton that relies on Python dependencies includes fuzzy searching, more
accurate matching of credit card numbers in images using OCR-A template matching, and
searches using Tensorflow/PyTorch named entity recognition (NER) models.

The full image has all Python dependencies pre-installed, along with large English and
Japanese NER models, making it a much larger image.

devonak/plankton:version_number-full is the tag for the full version image.
devonak/plankton:version_number is an alias tag for the full version of the image.
The 'devonak/plankton:latest' tag will pull the most recent full version image.

The lite version of the image has a tag of devonak/plankton:version_number-lite.

The DarkShield container includes Linux, a ready-to-license SortCL engine, plus the other
software dependencies and .tar contents shown below.

https://github.com/TeamIRI/darkshield-api-demos
https://semver.org/
https://hub.docker.com/r/devonak/plankton

A valid floating license file must be obtained from IRI and added as a volume to the
$COSORT_HOME/etc directory of the container. This can be done by a command such as:

docker run -p 8959:8959 -v
path/to/cosort.lic:/home/plankton/cosort-10.5.1/etc/cosort.lic --rm
devonak/plankton:version_number

Replace version_number with the actual version number.

This command starts a container from the image, binding its port 8959 to the localhost's port
8959. This command also specifies a volume to the Docker container, which in this case is the
license file for the product.

Minimum API Hardware Requirements

Memory and CPU requirements in production will often vary depending on the volume and types
of files that the API needs to process. For simple proofs of concept, you can generally use the
following specs:

● 1-2 (v)CPUs
● 2-4 GBs memory
● 500MB - 1GB SSD

See the FAQ section below for production and scaling considerations.

Native DarkShield API Installation

Software Prerequisites
All dependencies below should be installed prior to installing the Plankton API on the system.

● CoSort 10.5 (licensed; email IRI the base machine and O/S details, preferably your DB
server)

○ csconch module required for the darkshield plugin (included in CoSort)
○ O/S must be Linux, Windows, or Unix, on-premise or in a cloud

● Java JRE 11+ - Plankton versions prior to version 1.4.4 supported Java versions >=8 (a
Java version >= 8 and < 15 was previously required if using JavaScript validation with
pattern matchers.)

● Python 3.5+
○ Required for using Tensorflow and PyTorch NER models in the darkshield plugin,

template matching of credit card numbers in images in the darkshield-files plugin,
or calling the API from Python.

○ Python dependencies are compiled at startup time using pip. The minimum
tested version of pip is 7.1.0. Dependencies are installed in the .python directory.

● NGINX optional reverse proxy for load balancing or authentication. See this article and
obtain trial NGINX software here.

Please follow the steps for installing the CoSort executable provided by your IRI representative.
For CoSort executables found on a different host from the Plankton API, please refer to the
Configuring Remote SSH CoSort Server section of the document for additional instructions.

The Plankton API with the Files API is packaged in this Windows zip or Linux tar file that can be
extracted in any directory. If you do not require the Files API, you can download this zip or tar
file which contains only the Base DarkShield API. The folder structure for the DarkShield API
should appear as follows:

+-- bin

| +-- plankton

| +-- plantkon.bat

| +-- pdflist.jar

+-- conf

| +-- config.json

https://docs.google.com/document/d/1DJAaZiuXh240iEF2hMtc1c1SMkHB5mGmzPmCk6uKEA0/edit#heading=h.d451trzgilm2
http://tinyurl.com/VoracityNativeInstall
https://adoptium.net/
https://www.python.org/downloads/
https://www.iri.com/blog/data-protection/load-balancing-authenticating-darkshield-via-nginx/
https://www.nginx.com/free-trial-request
https://www.iri.com/download/08420029161ee9ab9d410b6de494ef21548af52e
https://www.iri.com/download/a15d9201dc28c8b9603012e0bc5ad3c34ea61be7
https://www.iri.com/download/8ddf9d1dbb55e2926453b128e1667620b453e1cf
https://www.iri.com/download/92abe622ee1153ad6ef9369e4a37899dabf13d2a

| +-- log4j2.xml

+-- docs

| +-- license_dependency.html

| +-- license_dependency.json

| +-- license_dependency.xml

+-- lib

| +-- {plugin}-{version}.jar

+-- static

| +-- docs

+-- LICENSE

At the time of this writing, the Plankton API and its plugins are platform independent, and can be
used from a clean installation within Windows, Mac, or Linux systems (DO NOT copy extracted
files between platforms, as they may include platform specific files that were created at runtime).

API Job Execution

To start the API, execute the plankton (Unix) or plankton.bat (Windows) scripts in the bin
directory. You can also add the bin directory to the path so that it can be executed without using
absolute paths.

For more information about the command line parameters, execute plankton with the --help flag.

Once the server has started, the OpenAPI documentation for the API can be opened in the
browser at the docs path of the server address (by default http://localhost:8959/docs). Versions
of the API 1.3.0 or older are hosted on port 8080 by default. All information regarding the
different endpoints and payload structures for the different plugins are documented there.

If a web browser is not available, the different OpenAPI documents can also be downloaded
from the /docs/{plugin}.yaml endpoints. The rest of this document will cover general
configuration options and troubleshooting information for running the Plankton API.

Configuring API Job Logging

The Plankton API uses slf4j with a secure Log4j2 implementation for logging purposes. The
logging options can be edited in conf/log4j2.xml. The default configuration disables all logging
information from non-plankton components and outputs results to standard out.

DarkShield uses asynchronous logging provided through Log4j2 by default for higher
throughput. To disable asynchronous logging for resource constrained environments, remove
the following option from either the bin/plankton or bin/plantkon.bat scripts:

Dlog4j.contextSelector=org.apache.logging.log4j.core.async.AsyncLoggerContextSelector

The Log4j2 backend can be changed for another slf4j compatible implementation by replacing
the log4j2 jars with the new implementation jars in the lib directory. Please contact
support@iri.com if additional instructions or help are needed.

http://localhost:8080/docs
mailto:support@iri.com

Custom appender jars can be placed inside of the lib directory and loaded at runtime in order to
target the logs to another destination (restarting the web services is required). A full list of
appenders that are available for Log4j2 can be found here.

As of version 1.3.2, the Plankton API has been updated to use version 2.15.0 of Log4j2, which
addresses the recently exposed remote code execution vulnerability in Log4j2.

As of version 1.3.4, the Plankton API has been updated to use version 2.17.1 of Log4j2, which
further addresses the recently exposed remote code execution vulnerability in Log4j2.

Configuring API Start

By default, the Plankton server will launch at http://localhost:8959/. This can be modified in the
conf/config.json file by editing the host and port parameters. Versions of the API 1.3.0 or older
use port 8080 by default.

To expose the API to the network, the host parameter can be set to the IP Address or host
name of the network interface that the server uses to interact with the network. Another
possibility is to use a reverse proxy server like Apache or NGINX to route requests to a locally
hosted Plankton API. The reverse proxy approach is recommended for including additional
functionality like load balancing or user authentication.

1. To add the DarkShield API as a startup program on Windows:

● create a shortcut to the plankton.bat file
● Use theWindows+R shortcut to run shell:startup
● Paste the shortcut into the directory that was opened up by File Explorer after

running shell:startup
● plankton.bat is now listed as a startup program and can be managed through the

Windows Task Manager.

https://logging.apache.org/log4j/2.x/manual/appenders.html
https://blog.cloudflare.com/inside-the-log4j2-vulnerability-cve-2021-44228/
https://blog.cloudflare.com/inside-the-log4j2-vulnerability-cve-2021-44228/
http://localhost:8080/
https://www.iri.com/blog/data-protection/load-balancing-authenticating-darkshield-via-nginx/

Configuring CORS

The Plankton server can be started with a Cross-Origin Resource Sharing (CORS) handler
enabled by specifying the enableCORS option to true in the conf/config.json file. When true, the
Plankton API will be able to accept requests from a browser of any origin if the API is exposed
to the computer using that browser. If set to false, the Plankton server will decline all preflight
requests, meaning that the Plankton API cannot be sent requests directly from a web browser.

Configuring Python Dependency Installation

The Plankton server will attempt to install all Python dependencies at startup by default.
However, sometimes this may not be desirable if not utilizing any features that have Python
dependencies.

By setting "installPythonDependencies": false in the conf/config.json file, the installation of
Python dependencies at startup of the server can be skipped. Features that use Python
dependencies include the transformers search matcher for PyTorch and Tensorflow NER model
support, the fuzzy search matcher for fuzzy dictionary lookups, and OCR-A template matching
for more accurate matching of OCR-A fonts in images.

Configuring SSL

The Plankton server can be started with SSL options enabled by adding an ssl object to the
conf/config.json file:

"ssl": {

"certPaths": ["path/to/certificate.pem"],

"keyPaths": [“path/to/key.pem"]

}

● certPaths: a list of paths to the certificate files to use
● keyPaths: a list of paths to the private key files to use

Configuring Remote SSH CoSort Server

The Plankton API can be configured to operate with a CoSort (sortcl) installation hosted on a
different server. Note that this approach is NOT recommended for production environments
where latency is an issue.

To configure a remote sortcl program, enter the following information in the conf/config.json file:

"cosort": {

"ssh": {

"username": "required",

"host": "required",

"port": 22,

"password": null,

"passphrase": null

}

}

● username: the username for the ssh connection
● host: the host ssh server
● port: the ssh port on the remote server. Defaults to port 22
● password: if the connection should be authenticated using a password instead of a

public key. Can be excluded if no password is necessary.
● passphrase: used to access an encrypted private key. Can be excluded if no passphrase

is necessary.

Configuring a Different OpenAPI View

By default, Plankton renders the OpenAPI documentation using Swagger-UI. However, other
implementations may be used by replacing the static/docs/index.html file with an index.html file
from a different implementation, like Redoc.

The OpenAPI documentation files can be found under the static/docs/openapi folder. The folder
also contains an extensions.json file which contains a mapping between the plugin name and
the specific OpenAPI documentation file for that plugin.

API Troubleshooting

Shown in italics below are possible messages that may appear in the DarkShield API job logs,
followed by a description of why that error may occur.

CoSort Sort Control Language (SortCL) masking rule expression syntax:

DarkShield API functions currently rely on CoSort SortCL syntax for exposing many data
masking rule configurations. For more information on the structure and availability of the
masking rules, refer to the IRI FieldShield manual or contact IRI support. When the
above error occurs, an invalid masking function was used, just as if an unknown masking
function was specified in a FieldShield (SortCL) job script.1

java.net.BindException: Address already in use

An error that can occur if another program is bound to the port specified in the
config.json file. Change the port number in the file, or remove the existing program from
that port.

java.lang.RuntimeException: The ‘COSORT_HOME’ environment variable must be set to run
DarkShield.

java.lang.RuntimeException: DarkShield requires the conch module to perform masking
operations

These errors occur when the CoSort SortCL executable was improperly installed on the
machine hosting the DarkShield API. Please contact your IRI representative with the
error message in order to get the correct executable installed, registered, and licensed.
Note that these errors will not be produced when CoSort is configured through a remote
connection, since the Plankton API does not have access to the remote file system to do
the proper checks. The errors will instead be placed in the failedResults array during the
masking operations in DarkShield.

java.nio.file.AccessDeniedException: C:\windows\system32\file-uploads

Check the value of the TMP environment variable. Ensure the user that starts the
DarkShield API process has permissions to write to the directory specified as the value
of the TMP environment variable.

1 For some functions alternative methods are used when they are faster. For example, for redaction a
direct Java implementation is used, and for functions like encryption and hashing, the Sandkey
(FieldShield encryption API) library is used.

https://www.iri.com/download/c7ba74ef0c8679a28d807675181515b448358463
mailto:support@iri.com

Defining Contexts for Searching (Finding) and Masking Data

Before attempting to search and mask data, you must first define the data to search for and how
to mask each type of data by setting up search and mask contexts, respectively.

A search context includes the definition of any number of search methods to match on the
content of data. Certain file types have their own specific search matchers, which are defined in
a file search context rather than in a base API search context, such as JSON path matchers,
that allow matching on region(s) of data based on the structure of that specific file type.

Using ‘Glue Code’ to Define Custom Input Procedures

The DarkShield API is flexible and can be called by any program in any programming language
that can make HTTP requests. DarkShield provides built-in and front-ended input/output
procedures for many data sources and targets; however, the flexibility of the DarkShield API
allows custom programs to get and put data from/to virtually any source or target, with any
custom procedures in the flow. For data-source-specific DarkShield API calling program (glue
code) examples, see this GitHub folder.

Using the DarkShield Base API to Find and Mask Text Data
The base API was built to search and mask free floating text. It is typically used as a middle
agent for various text streams, handling the searching and masking of free floating text using
data class search matchers to identify PII and masking rules to protect that discovered PII.

DarkShield Base API and DarkShield Files API

https://github.com/TeamIRI/darkshield-api-demos

The DarkShield base API implements core methods for searching for data in unstructured text,
and masking data that are shared by other DarkShield APIs (Files, NoSQL, and RDB APIs). The
initial steps include creating a search context and mask context via API calls to specific
endpoints. These initial steps must be performed first:

Base API Endpoint Calls By Operation

Search operation:
1. /api/darkshield/searchContext.create
2. /api/darkshield/searchContext.search

Mask operation (can only be performed after search operation):
1. /api/darkshield/maskContext.create
2. /api/darkshield/maskContext.mask

Search and mask operation:
1. /api/darkshield/searchContext.create
2. /api/darkshield/maskContext.create
3. /api/darkshield/searchContext.mask

These contexts need to be set up only once to be referenced in multiple requests to search and
mask text.

When a search context or mask context is no longer needed, it can be destroyed by making a
request to the respective endpoint to destroy a search or mask context. Destroying a context will
free up resources used by that context.

Destroy Contexts:
● Search Context - /api/darkshield/searchContext.destroy
● Mask Context - /api/darkshield/maskContext.destroy

Using the DarkShield Files API to Find and Mask Data in Files
The files API was built for the purpose of searching and masking various file formats including
but not limited to files in semi-structured or unstructured data formats.

A search context, mask context, file search and file mask context must first be defined. These
contexts need to be set up only once and are referenced in requests to search and mask files.

Files API Endpoint Calls By Operation

Search operation:
1. /api/darkshield/searchContext.create
2. /api/darkshield/files/fileSearchContext.create
3. /api/darkshield/files/fileSearchContext.search

Mask operation (can only be performed after search operation):

1. /api/darkshield/maskContext.create
2. /api/darkshield/files/fileMaskContext.create
3. /api/darkshield/files/fileMaskContext.mask

Search and Mask operation:
1. /api/darkshield/searchContext.create
2. /api/darkshield/maskContext.create
3. /api/darkshield/files/fileSearchContext.create
4. /api/darkshield/files/fileMaskContext.create
5. /api/darkshield/files/fileSearchContext.mask

When a context is no longer needed, it can be destroyed by making a request to the respective
endpoint. Destroying a context will free up resources used by that context.

Destroy Contexts:
1. /api/darkshield/files/fileSearchContext.destroy
2. /api/darkshield/searchContext.destroy
3. /api/darkshield/files/fileMaskContext.destroy
4. /api/darkshield/maskContext.destroy

Once the necessary contexts have been set up, a request to search, mask, or search and mask
a file can be made.

The request should be a multipart: One part should be named ‘context’ and reference the name
of any contexts needed. The other should be named ‘file’ and contain the file to be searched
and/or masked. In the response, when only searching a file, JSON annotations are returned.

These annotations are required as a part of the request to mask a file (when searching and
masking separately), in a part named ‘annotations’. The response from masking or searching
and masking a file in one pass will return a multipart response. One part is named ‘results’ and
contains an audit of masking performed. The other part is named ‘file’ and is the masked file.

Using the DarkShield RDB API to Find and Mask Data in
JDBC-Connected Relational Databases
The DarkShield RDB API was built for the purpose of searching and masking data stored inside
relational databases and supports columns that contain binary.

DarkShield RDB API

A set of 6 contexts must be created in order to make a request to the DarkShield RDB or
NoSQL APIs to perform searching and masking of data.

First, define and create search and mask contexts for the DarkShield-Base API. These contexts
define search matching methods for text, and pair search matching methods to masking rules.

Second, define and create file search and mask contexts for the DarkShield-Files API. These
contexts define file search methods, configuration options, and filters for when PII needs to be
found and masked within files embedded in your (C/BLOB) columns.

Third, define and create RDB search and mask contexts for the DarkShield-RDB API. These
contexts define connection details and configuration options for connecting to, searching and
masking data in relational databases connected to with a JDBC driver.

The DarkShield RDB API operates at the database schema level. That is, the source of a
request is a database schema, and the target of a request is also a database schema. The
target schema can be the same or different as the source schema, and can also be in another
database entirely.

Following are an example set of contexts for searching and masking data in an Oracle
database, where the source schema is a schema named KEVINR and the target schema is
another schema in the same database named DEVONK:

Base API Search Context

{
"name" : "SearchContext",
"matchers" : [{
"name" : "LASTNAME_LastNameSetFileDataMatcher",
"type" : "set",
"url" : "file:/C:/IRI/cosort105/sets/names/names_last.set",
"matchWholeWords" : true,
"ignoreCase" : false,
"exclusion" : false,

"dataClass" : "LASTNAME"
}, {
"name" : "SSN_SSN_Pattern_Data_Matcher",
"type" : "pattern",
"pattern" : "\\b(\\d{3}[-]?\\d{2}[-]?\\d{4})\\b",
"dataClass" : "SSN"

}]
}

Base API Mask Context

{
"name" : "MaskContext",
"rules" : [{
"name" : "FullRedaction_1",
"type" : "cosort",
"expression" : "replace_chars(${FIELDNAME},\"*\")"

}, {
"name" : "FullRedaction_2",
"type" : "cosort",
"expression" : "replace_chars(${FIELDNAME},\"*\")"

}, {
"name" : "FullRedaction_3",
"type" : "cosort",
"expression" : "replace_chars(${FIELDNAME},\"*\")"

}, {
"name" : "FullRedaction_4",
"type" : "cosort",
"expression" : "replace_chars(${FIELDNAME},\"*\")"

}],
"ruleMatchers" : [{
"name" : "FullRedaction_Matcher_1",
"type" : "name",
"rule" : "FullRedaction_1",
"pattern" : "LASTNAME_ColumnNameMatcher"

}, {
"name" : "FullRedaction_Matcher_2",
"type" : "name",
"rule" : "FullRedaction_2",
"pattern" : "LASTNAME_LastNameSetFileDataMatcher"

}, {
"name" : "FullRedaction_Matcher_3",
"type" : "name",
"rule" : "FullRedaction_3",
"pattern" : "SSN_SSN_COLUMN_MATCHER"

}, {
"name" : "FullRedaction_Matcher_4",
"type" : "name",
"rule" : "FullRedaction_4",
"pattern" : "SSN_SSN_Pattern_Data_Matcher"

}]
}

File Search Context

{
"name" : "FileSearchContext",
"matchers" : [{

"name" : "SearchContext",
"type" : "searchContext"

}, {
"dataClass" : "LASTNAME",
"name" : "LASTNAME_ColumnNameMatcher",
"type" : "column",
"pattern" : "LASTNAME"

}, {
"dataClass" : "SSN",
"name" : "SSN_SSN_COLUMN_MATCHER",
"type" : "column",
"pattern" : "SSN"

}],
"configs" : { }

}

File Mask Context

{
"name" : "FileMaskContext",
"rules" : [{
"name" : "MaskContext",
"type" : "maskContext"

}],
"configs" : { }

}

RDB Search Context

{
"name" : "RdbSearchContext",
"fileSearchContextName" : "FileSearchContext",
"configs" : {
"schemaName" : "KEVINR",
"url" : "jdbc:oracle:thin:@overflow:1521/ORCL",
"username" : "cosort",
"password" : "sorco78",
"driverClassName" : "oracle.jdbc.OracleDriver",
"driverConfigs" : { }

}
}

RDB Mask Context

{
"name" : "RdbMaskContext",
"fileMaskContextName" : "FileMaskContext",
"configs" : {
"schemaName" : "DEVONK",
"url" : "jdbc:oracle:thin:@overflow:1521/ORCL",
"username" : "cosort",
"password" : "sorco78",
"driverClassName" : "oracle.jdbc.OracleDriver",
"driverConfigs" : { }

}
}

Within an RDB search context, requisite connection details and options for searching a source
schema such as filtering to certain table names using a Java RegEx pattern are specified.

Within an RDB mask context, requisite connection details for a target schema, where masked
data is output to, must be specified. Tables in the target schema are attempted to be recreated
based on the DDL of the source. If the target database is a different database than the source
database, then this attempt may be unsuccessful and target tables should be created first.

If there is any existing data in a table in the target schema with the same name as a table
searched in the source schema, the data is removed first by a SQL truncate command. If the
target schema is the same as the source, then update statements are executed to replace data
with masked data. Column matchers can be used with structured column types to match on all
values in a column by either the name of the column using a Java regular expression match, or
the index of the column.

The correct JDBC driver(s) for the databases to be searched and/or masked MUST be placed in
the lib folder of the DarkShield API distribution. If running a DarkShield job in Workbench, the
process of placing the correct JDBC drivers into the lib folder of the DarkShield API distribution
will attempt to be performed automatically.

However, for this automatic process to succeed, the DarkShield API folder location specified in
DarkShield preferences MUST be the currently running API based on the host and the port
number specified in DarkShield preferences. Also, the drivers associated with the DTP profile(s)
used in the job MUST be accessible by the file system of the machine running Workbench.

Using the DarkShield NoSQL API to Find and Mask Data in
Selected NoSQL Databases

The NoSQL API was built for the purpose of searching and masking data stored inside NoSQL
databases and supports the handling of binary content with these NoSQL databases.

As with calls to the relational database API for DarkShield (see above), NoSQL DB users calling
DarkShield must first define and create search and mask contexts for: 1) the base API, 2) the
DarkShield-Files API (for files embedded in documents), and 3) the DarkShield-NoSQL API.

DarkShield NoSQL API

Within a NoSQL search context, requisite connection details and options for searching a source
collection (or other equivalent construct depending on the exact NoSQL database) are
specified. Within a NoSQL mask context, requisite connection details for a NoSQL database
target must be specified.

Currently, the DarkShield NoSQL API only supports Cassandra, Elasticsearch, and MongoDB
databases for searching and masking.

Outside of the DarkShield NoSQL API it is possible to support far greater NoSQL data sources
but custom development (glue code) is required.

Utilizing glue code IRI has demonstrated DarkShield API calls to 10 NoSQL databases so far,
with examples here.

Search operation:
1. /api/darkshield/searchContext.create
2. /api/darkshield/files/fileSearchContext.create
3. /api/darkshield/nosql/nosqlSearchContext.create
4. /api/darkshield/nosql/nosqlSearchContext.search

Mask operation (can only be performed after search operation):
1. /api/darkshield/maskContext.create
2. /api/darkshield/files/fileMaskContext.create
3. /api/darkshield/nosql/nosqlMaskContext.create
4. /api/darkshield/nosql/nosqlMaskContext.mask

Search and mask operation:
1. /api/darkshield/searchContext.create
2. /api/darkshield/files/fileSearchContext.create
3. /api/darkshield/nosql/nosqlSearchContext.create
4. /api/darkshield/maskContext.create
5. /api/darkshield/files/fileMaskContext.create

https://github.com/TeamIRI/darkshield-api-demos

6. /api/darkshield/nosql/nosqlMaskContext.create
7. /api/darkshield/nosql/nosqlSearchContext.mask

Destroy Contexts:
1. /api/darkshield/nosql/nosqlSearchContext.destroy
2. /api/darkshield/nosql/nosqlMaskContext.destroy
3. /api/darkshield/files/fileSearchContext.destroy
4. /api/darkshield/files/fileMaskContext.destroy
5. /api/darkshield/searchContext.destroy
6. /api/darkshield/maskContext.destroy

FAQs

1. How can you scale the solution (horizontally vs vertically)?

Most masking jobs scale linearly in volume (vertically), so hardware capacity and the location of the
external DarkShield engine can affect performance. Thus co-locating the CoSort (SortCL) executable with
the data source -- by installing it on the same server(s) or within close network proximity to the source
system(s) -- is recommended. Multiple executions of different jobs concurrently is a way of horizontal
scaling through distributed vertical installations.

Depending on the requirements, it may be possible to operate several API nodes in a “cluster” behind a
load balancer (see NGINX prototype article here) which distributes work between the different nodes. A
node represents a host running a single API instance (running multiple instances on a single host is
redundant since the API scales to the available resources on the host).

All nodes operate independently of each other and do not have a shared state, so it is up to an
orchestration tool or program to initialize it in the same state (using the same configuration options,
search/masking rules, etc.). This can be handled through custom “glue code” written in any language. IRI
can also be contracted to develop this framework, but either way it will still require multiple node licenses.

2. What are the hardware requirements for my use case (unstructured data masking)?

This is a difficult question to answer without knowing the details of the use case. Generally speaking,
DarkShield is configured to stream the file without loading it fully in memory. This means that it can handle
file sizes that are significantly larger than the available memory. However, for files that reach terabytes or
higher in size, it may be faster to split the file into independent pieces that can be masked in separate
operations. This would have to be handled in the glue code.

The API is multithreaded and can handle multiple files at once, although this may lead to lower throughput
if the CPU and memory cannot keep up with the higher load. In those cases, vertically or horizontally
scaling your architecture can help handle the increased load (see question #1).

The number of instances and hardware requirements also depend on the processing requirements of the
system. For fault tolerant, real-time systems, running multiple API instances is a requirement to ensure
redundancy while keeping latency low to handle the constant flow of data. For static batched
environments, a single API instance may be sufficient.

3. How do I improve the accuracy of OCR for my images?

See this article.

https://www.iri.com/blog/data-protection/load-balancing-authenticating-darkshield-via-nginx/
https://docs.google.com/document/d/1GRWtiSaa9kAtdQS93tpFiFPcVKeYlgHY/edit?usp=sharing&ouid=109853073305592503413&rtpof=true&sd=true

4. How can I improve the accuracy of NER models?

Through the semi-supervised, machine-learning-enabled NLP model training wizard for DarkShield in the
IRI Workbench. The DarkShield API now has support for Tensorflow and PyTorch models as well, which
are often larger, more accurate models, and support supplemental training of existing models rather than
just making a new model.

For assistance, contact darkshield@iri.com.

mailto:darkshield@iri.com

NDA CONFIDENTIAL

Innovative Routines International (IRI), Inc.
2194 Highway A1A, Suite 303
Melbourne, Florida 32937 USA
Tel. 1.321.777.8889, ext. 238

https://www.iri.com

Copyright 2023 Innovative Routines International (IRI), Inc. All Rights Reserved.

https://www.iri.com

