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Motivation / Abstract

persona

LLM models can be over 100 GB, which takes a long time to download, resulting in long service
startup time. We would like to introduce a “model cache” which allows operators to specify a list
of models to be cached on local disks or other PVs like EFS. For example, we cut down service
startup time from 15-20 mins to ~1 minute by caching the Llama3 70B model locally. It also
benefits autoscaling as the service can scale up faster.

Background

Before talking about reducing inference service start up time by caching models, let’s review a
few common ways to download a model.


https://github.com/greenmoon55/
https://github.com/knative/serving/blob/master/docs/product/personas.md
https://aws.amazon.com/blogs/storage/persistent-storage-for-kubernetes/

1. Build the model into a custom image (not in this doc)

2. Have a model ready in a PV and mount it to kserve-container

3. Downloads the model in storage-container (an init container) before kserve-container
starts

We are going to make #2 and #3 better by pre-downloading models to your PV or local disk on
nodes before an inference service is created, so we can skip downloading models in the storage
initializer. For #1, you might want to use kube-fledged or similar tools to cache models on local
nodes.

Overall we would like to support two use cases.
1. Pre-download models to local disks, and models can be shared across
namespaces.
2. Leverage custom StorageClass to create PVs and pre-download models to PVs.
These models cannot be shared across namespaces.

Goals

1. Forlocal PVs, cached models can be shared across namespaces. Otherwise cached
models can only be used in the same namespace.

2. Cluster admin manages which models can be cached by a cluster-scoped model cache
custom resource. Users can create a namespace-scoped model cache CR with a
custom storageclass (e.g. network volume).

3. Cluster admin can choose which nodes to cache a model, like a specific GPU type. The
admin can set a limit on the maximum size of the cache per node.

4. Model cache controller downloads models to the PV and deletes the model when the CR
is deleted. It ensures a model is not deleted when they are in use.

a. Forlocal PV, the controller deletes the model in local disks
b. For custom storage class, controller deletes the PVC and then the PV can be
deleted automatically (Reclaim policy)

5. Users can specify original storage uri in their isvc yaml. KServe converts it to PVC uri
based on model cache custom resources.

6. Support custom storage protocol
7. Throttle download bandwidth
Non-Goals

1. Sharing across namespaces is not supported for custom storageclass.

2. KServe does not automatically evict models from the cache. Technically this is not a
cache.

3. Models under a storage uri (like a S3 path) are considered immutable. Model Cache
Controller would not redownload models.

4. Authn and Authz for models


https://github.com/senthilrch/kube-fledged

Proposal Design / Approach

Design

1. Workflow

Here’s the overall workflow for caching a model, deploying an isvc and then deleting the model.
For details, please check out the next section PV and PVC Management.
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Workflow for caching on local disks
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Workflow for caching on a network volume with custom storage class
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2. PV and PVC Management

KServe provides two levels of support for PV/PVC creation.
1. KServe manages both PV and PVC. This works for local models. PV spec and PVC
spec are customizable.
a. This should work for S3 Mountpoint CSI driver where they have a PV per S3
bucket.
2. KServe only manages PVC. This is mostly for non-local models where PV is created by
the provisioner in a storageClass.

Model cache controller creates and deletes PVCs for model cache resources. For local models,
the model cache controller also creates PVs. If the same model is shared in multiple
namespaces, there would be two PVs with the same local path because one PV can only be
bound to one PVC.

For example, suppose we want to cache the Llama-3 model in the namespace foo and bar.

1. Local models

As you can see in this diagram above, the model cache controller creates I.1ama-3-download
PV and L1ama-3-download PVC in the controller namespace to download the model before
service is created.

Since we have two inference services in Namespace foo and bar. We would need two PVs:
Llama-3-foo, Llama-3-bar and two PVCs in each namespace. These PVs and PVCs can
be created when the inference service is deployed.



https://docs.aws.amazon.com/eks/latest/userguide/s3-csi.html

(Preferred) Approach #1: One PV per model
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Model cache controller creates the PV and PVC for a namespace when the inference service is
deployed. The PV and PVC are deleted when no inference service uses cached models. Model
cache controller deletes all PVCs and PVs when the model cache CR is deleted.

Pros:
1. Similar to non-local model behavior
2. kubectl get pvc shows if local models are used in a namespace
Cons:
1. Forlocal PVs, we need (# models) * (# of namespaces) PVs and PVCs because one PV
can only be attached to one PVC.



Approach #2: One PV for all models
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For local PVs, we need (# of namespaces) PVs and PVCs instead of (# of namespaces)
* (# of models).
More like S3 Mountpoint CSI driver where each PV corresponds to a bucket.

It can get tricky to manage if two models use the same PV.
Security and observability

Approach #3: One PV per inference service

Now with mistral-isvc2, we need another PVC and PV pair.


https://docs.aws.amazon.com/eks/latest/userguide/s3-csi.html
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Pros:

1. PV & PVC deletion is simple because they are not shared among different inference
services.

Mistral-foo PV




Cons:
1. Too my PVs and PVCs in the namespace.
2. Different from non-local models where one model should map to one PV only.

2. Non-local models

For non-local models (this workflow), the PV is created by the PVC which is created by the
model cache controller. So there is only one PVC L1ama-3 in the namespace. Inference
services using the same model in the same namespace can share the same PVC. However,
sharing the same model across namespaces is not supported.

In this case, PVCs are created by Model cache controller instead of KServe controller.
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3. Custom Resource Definition
Cluster Model Cache Custom Resource

apiVersion: serving.kserve.io/vlalphal
kind: ClusterModelCache
metadata:
name: llama-3-76b
spec:
storageUri: 's3://1lm/llama-3-70b/"’
modelSize: Gi
nodeGroup: GPU-
pvSpec:
pvcSpec:
status:
storageStatus: pvcCreated/Downloading/Ready(Downloaded on all
nodes)/Deleting?
nodeStatus:
nodel: ready
node2: downloading

Node group custom resource

This is for local models only. Node group CR is used to decide where we should cache the
model and the storage limit per node

apiVersion: serving.kserve.io/vlalphal
kind: ModelCacheNodeGroup
metadata:

name: GPU-

spec:
storagelLimit: Gi
nodeSelector:

¢ NVIDIA-XxxXx



http://nvidia.com/gpu.product

Namespace-scoped Model Cache Resource
Without nodeGroup and nodeStatus

apiVersion: serving.kserve.io/vlalphal
kind: ModelCache
metadata:
name: llama-3-76b
spec:
storageUri: 's3://11lm/llama-3-70b’

modelSize: (Ch
pvSpec:
pvcSpec:
status:
storageStatus: pvcCreated/Downloading/Ready(Downloaded)/Deleting?

Inference service

annotations:
serving.kserve.io/enable-model-cache: true
spec:

predictor:
storageUri: s3://models/llama-3

4. Downloading models to the PV

(Preferred) Approach #1: Kubernetes Job

Kubernetes Job that runs storage initializer containers to download models. We can select
different images to run based on ClusterStorageContainer CRs.

Pros:
1. Easy to implement - Reuse ClusterStorageContainer CRD to support custom images.
2. Low overhead compared to daemonset

1. Cannot detect files deleted on local disk
2. Reconcile on new node joining

Approach #2: DaemonSet

Pros:
1. New node joining - pick up download job immediately
Cons:
1. Additional resources
2. A bit tricky to support custom storage initializer images.
3. Difficult to limit throughput, i.e. number of nodes downloading at the same time.



5. Cleaning up models

When the model cache CR is deleted, the model should be deleted from the PV. For local
models, the model cache controller would schedule a deletion job to delete all modes on all
nodes. For network volume, the controller deletes the PVC and then the PV can be deleted
automatically by setting reclaim policy to delete.

Model cache controller would reject deletion requests if the model is used by any inference
service. This can be done by checking annotations on all inference services.

6. Pod scheduling

This section only applies to local models. Pods may be scheduled on nodes where the model is
not cached.

Case #1: Pod getting scheduled on a node not in the NodeGroup because the user attached a
different node label or nodeSelector in the pod spec in the isvc yaml.

Case #2: Model is not on the node because download is not finished, network issues or disk
issues.

For #1, the pod cannot be scheduled to a node because the local PV does not exist.
For #2, the pod will be in CLBO if the container crashes when it cannot get the model locally. It
would not be rescheduled.

We have three options here
1. Make sure pod do not get scheduled on nodes without models
2. Crash the pod if model is not on local disks
3. Fallback to default download behavior

Approach #0: KServe does not affect scheduling

Pros:
1. Keep it simple - do not mess with scheduling
Cons:
1. Some serving runtimes may not terminate if the model does not exist, so the inference
service may report ready status.

Approach #1: Add node affinity to pods to schedule on ready nodes

affinity:
nodeAffinity:
requiredDuringSchedulingIgnoredDuringExecution:
nodeSelectorTerms:
- matchExpressions:
- key: kubernetes.io/hostname
operator: In
values:



- nodel
- node?2
Pros:
1. In most cases, the controller injects a list of nodes that are not ready, the pod would not
be scheduled to these nodes unless the node status is not up to date.
Cons:
1. Complexity - we influence scheduling decision
2. Pod get stuck on the list of nodes after getting killed. The list is not up to date.

Approach #2: Add model name label to nodes and use nodeSelector in Pods

Model cache controller add labels to nodes
kubectl label nodes <your-node-name>
model-cache-ready-1llama-3-70b=true
Pod:
nodeSelector:
model-cache-ready-llama-3-70b: true

Pros:

1. Compared to Approach #1, if the pod gets killed, it can be scheduled on other nodes

using the latest model ready status

Cons:

1. We would add many node labels.

Approach #3: Use lifecycle poststart handler to crash the pod if model is not on local
disks

Example: test -f /mnt/models/modell/.completed
Similarly
Pros:
1. Easy to implement
Cons:
1. Assuming the user container has commands like “test”, otherwise we can build a small
image and use it as an init container.
2. May be stuck in CLBO - one node doesn’t have a model - same node.

Approach #4: Fallback to download in the storage initializer

Pros:
1. May reduce the chance of failure. However this is debatable since the storage initializer
are likely to fail if the download job has failed.
Cons:
1. Long startup time - we might prefer fail early
2. Need to handle race condition - too much complexity


https://kubernetes.io/docs/tasks/configure-pod-container/attach-handler-lifecycle-event/

7. Changes to Inference Service Spec

Cluster admin can enable/disable model cache in the config map. Users can set an annotation
to enable/disable model cache per service.

For storage uri, we can either keep the original storage uri or introduce a cache: // prefix.

(Preferred) Approach #1: Keeping the original storage uri

Pros:
1.
2.

Cons:

Users can deploy the same isvc yaml when the model cache CR is disabled or deleted
Users can see the original storage uri easily

Users may expect the model to be cached when it is not. There would be no errors when
creating the inference service. To mitigate this, we can add an annotation on the pod or
a status on the isvc.

Approach #2: Use cache://model-name

Pros and cons are the exact opposite of the first approach.

Implementation

Major changes

1.

New CRDs
a. ClusterModelCache CRD, NodeGroup CRD, Namespace-scoped ModelCache
CRD.
Model Cache Controller to create model download/deletion jobs, create/delete PVs, and
manage Model Cache resources.
KServe controller
a. Forlocal model cache, KServe controller creates PV and PVC when an inference
service is deployed.
b. [TBD] KServe controller modifies storage uri to use pvc
[TBD] Storage initializer image writes a COMPLETION file so we know whether the
model is on the PV. The lifestyle poststart handler can crash the pod.
[TBD] KServe controller may add nodeLabels to the pod to make sure the node has the
model.

Milestones

Milestone 1: Basic support for local model cache, pods can be scheduled on nodes without

models

1.

[PO] ClusterModelCache CRD and NodeGroup CRD



2. [PO] Model Cache controller that triggers jobs for downloading and deleting files, and
updating status.
3. [PO] KServe controller mutates the storage uri, and creates PV and PVC when an
inference service is deployed.
Milestone 2: Handle cases where some node may not have the model
1. Update Storage Initializer Image to write completion file, or poststart hook/custom init
container, scheduling (node affinity)
Milestone 3: Support custom storage class in a single namespace
1. Namespace-scoped ModelCache CRD to support PVC with any Storageclass.

Prerequisites / Dependencies

Integration Checklist

Operations

Observability

Test Plan

Documentation

Exit Criteria



[What are the requirements to exit each stage]

Alpha

Beta

GA

Alternatives Considered

Mapping between models and PVs

Suppose we have M models to cache and they are used in N namespaces.

(Preferred) Approach #1: One PV per model

Pros:

3. For non-local PVs, we can just delete the PV once the model cache is deleted
4. Make sure one model would not affect another.
Cons:

2. Forlocal PVs, we need N * M PVs and PVCs because one PV can only be attached to
one PVC.

Approach #2: One PV for all models

Pros:

3. Forlocal PVs, we need N PVs and PVCs instead of N*M.
Cons:

3. It can get tricky to manage if two models use the same PV.



Appendix

How does KServe download a model?

KServe injects an init container to provision model data for the serving container, it also creates
a shared volume (emptyDir) between the storage-initializer and kserve-container.

/I Create a volume that is shared between the storage-initializer and kserve-container
sharedVolume := v1.Volume{
Name: StoragelnitializerVolumeName,
VolumeSource: v1.VolumeSource{
EmptyDir: &v1.EmptyDirVolumeSource(},

2
}

podVolumes = append(podVolumes, sharedVolume)

/I Create a write mount into the shared volume
sharedVolumeWriteMount := v1.VolumeMount{
Name: StoragelnitializerVolumeName,
MountPath: constants.DefaultModelLocalMountPath,
ReadOnly: false,

}

KServe container:
- mountPath: /mnt/models
name: kserve-provision-location
readOnly: true
Storage initalizer:
volumeMounts:
- mountPath: /mnt/models
name: kserve-provision-location
volumes:
- emptyDir: {}
name: kserve-provision-location

How does Kubernetes local Persistent Volumes work?

Kubernetes Persistent Volume is a piece of storage provisioned by a StorageClass. Kubernetes
supports local Persistent Volumes with this storageClass. With this, Kubernetes waits to bind a

PVC until a Pod using it is scheduled.



https://kubernetes.io/docs/concepts/storage/volumes/#emptydir
https://kubernetes.io/docs/concepts/storage/storage-classes/#provisioner
https://kubernetes.io/docs/concepts/storage/volumes/#local
https://kubernetes.io/blog/2019/04/04/kubernetes-1.14-local-persistent-volumes-ga/#how-to-use-a-local-persistent-volume

Example

We can provision a local PV and a PVC in namespace foo. Then we can specify the pvc in the
storage uri of the inference service yaml. KServe controller would skip the storage initializer and
attach pvc directly to the KServe container.

Persistent Volume

apiVersion: v1
kind: PersistentVolume
metadata:
name: local-models-pv
spec:
accessModes:
- ReadWriteOnce
capacity:

storage: 1700G
claimRef:

apiVersion: v1

kind: PersistentVolumeClaim

name: local-models

namespace: s-foo
local:

path: /opt/bb/models/
nodeAffinity:

required:

nodeSelectorTerms:

- matchExpressions:

- key: nvidia.com/gpu.product

operator: In

values:

- NVIDIA-XYZ
persistentVolumeReclaimPolicy: Retain
storageClassName: local-storage
volumeMode: Filesystem

status:
phase: Bound

Persistent Volume Claim

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
annotations:
pv.kubernetes.io/bind-completed: "yes"
name: local-models



namespace: foo
spec:
accessModes:
- ReadWriteOnce
resources:
requests:
storage: 1700G
storageClassName: local-storage
volumeMode: Filesystem
volumeName: local-models-pv
status:
accessModes:
- ReadWriteOnce
capacity:
storage: 1700G
phase: Bound

Inference Service

apiVersion: serving.kserve.io/v1ibeta1
kind: InferenceService
metadata:

name: llama-3-70b-instruct

namespace: foo
spec:

predictor:

model:
storageUri: pvc://local-models/llama-3-70b-instruct/huggingface/

Pod

KServe Container
volumes:
- name: kserve-pvc-source
persistentVolumeClaim:
claimName: local-models
volumeMounts:
- mountPath: /mnt/models
name: kserve-pvc-source
readOnly: true
subPath: llama-3-70b-instruct/huggingface/

1. One PV can only be used by one PVC even for local PVs.
2. PVC are namespace scoped but not PVs.
3. To enable sharing between namespaces, we can point two PVs to the same folder



Discussions

Jun 5, 2024

1. PV and PVC management
a. Support Custom StorageClass
b. Forlocal PVs, we need n pvs and n pvcs where n is the number of namespaces.
i.  An annotation on the namespace? Feature flag
c. Support a custom PVC/PV?
d. When a new node joins. No action is required.
2. Can we avoid downloading models in the storage initializer by tainting nodes?
a. Approach #1: download models in both places because some nodes may not
have the model, e.g. when a new node joins
i. Cons: Race conditions
1. Two pods on the same host download at the same time.
2. Storage initializer starts while the model is being cached by
Job/DaemonSet
ii.  Write down a time and temp files. However it’s still very messy.
b. Approach #2: For each model, the controller updates cache status for each node.
KServe controller will add taints to nodes or tolerations.
i.  Cons: Per model taints/tolerations? Would it be too many?
ii. Make sure it doesn’t evict existing pods
3. Support custom model registry. Should be easy to manage custom model download
code and authorization.
a. Would be nice if we can reuse “ClusterStorageContainer” CR and use custom
images for downloading
4. Daemonset or Job?
a. Common requirement: manage throughput
b. DaemonSet
i. Pros: Report node status
ii. Cons: Resource usage?

i.  Pros: does not require resources?
i. Cons:
1. Delay in updating resources or reporting status
2. Same job for updating all models vs 1 model
d. As Zoram mentioned, when a node joins, daemonset makes more sense,
however a job can work too if a controller starts a job for a new node or we have
fallback on the storage initializer.
5. Auth - same credential for all cached models?



a. Configure envvar for the job or the image used to download.
i. Isthis enough?
6. Manage storage limit and node affinity
a. Some models are cached on GPU Type X, Some on GPU Type y
i. KServe does not influence scheduling?
i.  Manage model limits based on a label.
1. New model cache CR: do we have enough disk space for GPU
Type X.
b. Model size can be misleading because some models can be compressed?
i.  Ask people to provide accurate size?
7. Garbage collection
a. When do we delete models from the pvc?
i.  When the CRis deleted?
1. Do not allow deletion when the uri is in use?
a. What if an old revision still uses it? Ignore?
ii.  When the inference service is deleted?
8. Handle race conditions - we can put temp files on cache?
a. Not aissue if we taint nodes
b. Two pods on the same host download at the same time.
c. Storage initializer starts while the model is being cached by Job/DaemonSet
9. Provide options
a. From Zoram - make storage class an optional part of the spec, and also PV
access mode (RWO/RWX). Node selector should be optional in case one goes
for an RWX PV, such as NFS or CephFS.

Daemon Set/Job
1. Pre-download model when model does not exist
2. Delete models on the pv when the ModelCache CR is deleted
3. KServe controller reconciles creates PVCs in all namespaces



semaphore

Status: which nodes have this model
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