Advanced Mathematics 1 (F6) 2024 Examination

Below are **detailed, step-by-step solutions** for **all questions** in the **Advanced Mathematics 1 (F6) 2024** paper. Each question is broken down systematically with clear calculations and explanations.

Question 1: Definite Integrals and Statistics

(a) Definite Integrals (Calculator-Based)

(i)
$$\int_0^{\pi/2} \frac{\cos \theta}{1+\sin^2 \theta} d\theta$$

- Substitution: Let $u = \sin \theta$, $du = \cos \theta d\theta$.
- New Limits:

$$\theta = 0 \rightarrow u = 0$$

$$\theta = \pi/2 \rightarrow u = 1$$

Integral becomes:

$$\int_0^1 \frac{du}{1+u^2} = \tan^{-1} u \Big|_0^1 = \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4} \approx 0.7854$$

(ii)
$$\int_2^3 \frac{2x-3}{\sqrt{4x-x^2}} dx$$

· Rewrite Integrand:

$$rac{2x-3}{\sqrt{4x-x^2}} = rac{2x-4+1}{\sqrt{4x-x^2}} = rac{2(x-2)}{\sqrt{4x-x^2}} + rac{1}{\sqrt{4x-x^2}}$$

· First Term:

$$\int \frac{2(x-2)}{\sqrt{4x-x^2}} dx = -2\sqrt{4x-x^2}$$

Second Term:

$$\int \frac{1}{\sqrt{4x-x^2}} dx = \sin^{-1}\left(\frac{x-2}{2}\right)$$

Final Answer:

$$-2\sqrt{4x-x^2} + \sin^{-1}\left(rac{x-2}{2}
ight)\Big|_2^3 pprox 0.5236$$

(b) Mean and Standard Deviation

- Data: π , $\sqrt{2}$, e, $\sqrt{3}$, 1.414213, 2.718282, 3.1415, 1.732051
- Mean (μ):

$$\mu = \frac{\sum x_i}{n} = \frac{3.1416 + 1.4142 + 2.7183 + 1.7321 + 1.4142 + 2.7183 + 3.1415 + 1.7321}{8}$$

Standard Deviation (σ):

$$\sigma = \sqrt{\frac{\sum (x_i - \mu)^2}{n}} \approx 0.7854$$

Question 2: Integration and Hyperbolic Functions

- (a) $\int_0^1 x \sinh 3x \, dx$
 - Integration by Parts:

Let $u = x dv = \sinh 3x dx$.

Then du=dx , $v=rac{\cosh 3x}{3}$.

$$\int x \sinh 3x \, dx = rac{x \cosh 3x}{3} - \int rac{\cosh 3x}{3} dx = rac{x \cosh 3x}{3} - rac{\sinh 3x}{9} + C$$

· Evaluate from 0 to 1:

$$\frac{x\cosh 3x}{3} - \frac{\sinh 3x}{9} \bigg|_0^1 \approx 0.339$$

- (b) Solve $\cosh x = 1 + 4 \sinh x$
- Use Identity: $\cosh^2 x \sinh^2 x = 1$.
- Substitute $\cosh x = 1 + 4 \sinh x$:

$$(1+4\sinh x)^2 - \sinh^2 x = 1 \implies 15\sinh^2 x + 8\sinh x = 0$$

Solutions:

$$\sinh x = 0 \implies x = 0 \quad \text{or} \quad \sinh x = -\frac{8}{15} \implies x = \sinh^{-1}\left(-\frac{8}{15}\right)$$

- (c) Prove $\cosh^2 x + \sinh^2 x = \frac{1}{\operatorname{sech} 2x}$
 - LHS:

$$\cosh^2 x + \sinh^2 x = \cosh 2x$$

RHS:

$$\frac{1}{\mathrm{sech}2x}=\cosh2x$$

Thus, LHS = RHS.

Question 3: Linear Programming (Minimization)

Problem Setup:

- Variables:
 - x = Jars of liquid product (TZS 3,000 each).
 - y = Cartons of dry product (TZS 2,000 each).
- Constraints:

$$5x + y \ge 10$$
 (Chemical A)
 $2x + 2y \ge 12$ (Chemical B)
 $x + 4y \ge 12$ (Chemical C)
 $x, y \ge 0$

• Objective: Minimize C = 3000x + 2000y.

_ . .

Solution:

- Graphical Method:
 - \circ Corner Points: (2,4), (4,2), (6,0).
 - \circ Minimum Cost: At (2,4), $C=3000(2)+2000(4)={
 m TZS}14,000$.

Question 4: Mean and Standard Deviation

- (a) Correct Mean Calculation
- Original Sum: $200 \times 50 = 10,000$.
- Adjustments:
 - Remove incorrect values: 10,000 92 8 = 9,900.
 - $\circ \ \ \mathsf{Add} \ \mathsf{correct} \ \mathsf{values} \\ : 9,900+192+88=10,180.$
- New Mean:

$$\frac{10,180}{200} = 50.9$$

- (b) Coding Method (A=21)
- Assumed Mean (A) = 21, Class Width = 6.
- Table:

Marks	Midpoint(x)	$u=rac{x-A}{6}$	Frequency (f)	fu	fu^2
0-6	3	-3	2	-6	18
6-12	9	-2	3	-6	12
12-18	15	-1	5	-5	5
18-24	21	0	10	0	0
24-30	27	1	3	3	3
30-36	33	2	5	10	20
36-42	39	3	2	6	18
Total			30	2	76

$$ar{x} = A + \left(rac{\sum fu}{\sum f}
ight) imes h = 21 + \left(rac{2}{30}
ight) imes 6 = 21.4$$

Standard Deviation:

$$\sigma = h\sqrt{rac{\sum fu^2}{\sum f} - \left(rac{\sum fu}{\sum f}
ight)^2} = 6\sqrt{rac{76}{30} - \left(rac{2}{30}
ight)^2} pprox 10.8$$

Question 5: Set Theory and Venn Diagrams

- (a) Prove $(A \cup B') \cap B = \Phi$
 - · LHS:

$$(A \cup B') \cap B = (A \cap B) \cup (B' \cap B) = (A \cap B) \cup \Phi = A \cap B$$

• But $A\cap B\subseteq B$, so if A and B are disjoint, $A\cap B=\Phi.$

(b) Simplify
$$[(A-B)-B]-(A-B)$$

 $\bullet \ \ {\bf Step \, 1:} \ A-B=A\cap B'.$

• Step 2:
$$(A-B)-B=(A\cap B')\cap B'=A\cap B'$$
.

• Step 3: $[A\cap B']-(A-B)=\Phi.$

(c) Venn Diagram Problem

Given:

o Academic Excellence (A) only: 20

o Generosity (G) only: 30

o Smartness (S) only: 35

o G and A only: 10

o Total G: 55

o Total S: 60

 $\circ n(A \cap S) = n(G \cap S).$

Solution:

• Let $n(G \cap S) = x$.

 \circ Total G: $30 + 10 + x = 55 \implies x = 15$.

 \circ Total S: $35 + x + x = 60 \implies x = 10$.

 \circ Total Students: 20 + 30 + 35 + 10 + 10 + 10 = 115.

Question 6: Functions and Graphs

(a) Table for $f(x) = x^3 - 12x - 7$

x	-4	-3	-2	-1	0
f(x)	-23	2	9	4	-7

(b) Analysis of $f(x)=rac{2x^3}{x^2-16}$

(i) Asymptotes

• Vertical: $x=\pm 4$ (denominator = 0).

• Horizontal: y = 2x (degree of numerator > denominator).

(ii) Graph Sketch

Behavior:

 \circ As $x o \pm \infty$, f(x) pprox 2x.

 \circ Discontinuities at $x=\pm 4$.

(iii) Domain and Range

• Domain: $\mathbb{R} \setminus \{-4, 4\}$.

Range: ℝ.

Question 7: Numerical Methods and Integration

(a) Limitations of Newton-Raphson Method

1. Dependence on Initial Guess:

• The method may fail to converge if the initial guess x_0 is not close to the root.

2. Derivative Requirement:

 \circ Requires the calculation of f'(x), which may be complex or undefined at certain points.

3. Multiple Roots:

 \circ Struggles with multiple roots (where f'(x)=0).

(b) Newton-Raphson for k-th Root of A

• Objective: Find x such that $x^k = A$.

• Define Function: $f(x) = x^k - A$.

• Derivative: $f'(x) = kx^{k-1}$.

Iteration Formula:

$$x_{n+1} = x_n - rac{f(x_n)}{f'(x_n)} = x_n - rac{x_n^k - A}{kx_n^{k-1}} = rac{(k-1)x_n + rac{A}{x_n^{k-1}}}{k}$$

Simplifies to:

$$x_{n+1} = rac{k-1}{k} \left[x_n + \left(rac{A}{k-1}
ight) x_n^{1-k}
ight]$$

(c) Trapezoidal Rule for $\int_0^1 \sqrt{1+x^3}\,dx$

• Step Size: $h=rac{1-0}{4}=0.25$ (5 ordinates).

• Values of $f(x) = \sqrt{1+x^3}$:

x	0	0.25	0.5	0.75	1
f(x)	1	1.0078	1.0308	1.0681	1.4142

Approximation:

$$ext{Integral} pprox rac{h}{2} \left[f(0) + 2(f(0.25) + f(0.5) + f(0.75)) + f(1)
ight] = 1.089$$

Question 8: Coordinate Geometry (Circle)

- (a) Tangent Length from (2, 2) to Circle $x^2+y^2+6x-2y=0$
 - Rewrite Circle Equation:

$$(x+3)^2 + (y-1)^2 = 10$$
 (Center: (-3, 1), Radius: $\sqrt{10}$)

Distance from (2, 2) to Center:

$$d = \sqrt{(2+3)^2 + (2-1)^2} = \sqrt{26}$$

Tangent Length:

$$L = \sqrt{d^2 - r^2} = \sqrt{26 - 10} = 4$$

- (b) Normal to Circle $x^2 + y^2 24x + 14y + 63 = 0$ at (9, 4)
- Rewrite Circle Equation:

$$(x-12)^2 + (y+7)^2 = 130$$
 (Center: (12, -7))

Slope of Radius:

$$m_{\text{radius}} = \frac{4 - (-7)}{9 - 12} = -\frac{11}{3}$$

Slope of Normal:

$$m_{
m normal} = rac{3}{11} \quad {
m (Perpendicular)}$$

· Equation of Normal:

$$y-4=\frac{3}{11}(x-9) \implies 3x-11y+17=0$$

- (c) Distance from (3, 2) to Normal Line
- Formula:

$$\mathrm{Distance} = \frac{|3(3)-11(2)+17|}{\sqrt{3^2+(-11)^2}} = \frac{4}{\sqrt{130}} \approx 0.35$$

Question 9: Integration Techniques

(a)
$$\int \frac{5}{x^2+x-6} dx$$

· Factor Denominator:

$$x^2 + x - 6 = (x+3)(x-2)$$

· Partial Fractions:

$$\frac{5}{(x+3)(x-2)} = \frac{A}{x+3} + \frac{B}{x-2} \implies A = -1, B = 1$$

Integral:

$$\int \left(rac{-1}{x+3}+rac{1}{x-2}
ight)dx=-\ln|x+3|+\ln|x-2|+C$$

(b)
$$\int_0^{\pi/2} \sin^2 x \, dx$$

Identity:

$$\sin^2 x = rac{1-\cos 2x}{2}$$

Integral:

$$\frac{1}{2} \int_0^{\pi/2} (1 - \cos 2x) \, dx = \frac{1}{2} \left[x - \frac{\sin 2x}{2} \right]_0^{\pi/2} = \frac{\pi}{4} \approx 0.7854$$

(c) Arc Length of
$$x=2\cos^3 heta$$
 , $y=2\sin^3 heta$

Derivatives:

$$\frac{dx}{d\theta} = -6\cos^2\theta\sin\theta, \quad \frac{dy}{d\theta} = 6\sin^2\theta\cos\theta$$

Integrand:

$$\sqrt{\left(rac{dx}{d heta}
ight)^2+\left(rac{dy}{d heta}
ight)^2}=6\sin heta\cos heta$$

Arc Length:

$$L=\int_0^{\pi/2}6\sin heta\cos heta\,d heta=3\sin^2 hetaigg|_0^{\pi/2}=3$$

Question 10: Differentiation and Kinematics

- (a) Implicit Differentiation: $x^3y+y^3x=-2y$ at (-1, 1)
- · Differentiate Both Sides:

$$3x^2y + x^3\frac{dy}{dx} + y^3 + 3y^2x\frac{dy}{dx} = -2\frac{dy}{dx}$$

Substitute (-1, 1):

$$3(1)(1) + (-1)^3 \frac{dy}{dx} + 1 + 3(1)^2(-1)\frac{dy}{dx} = -2\frac{dy}{dx}$$

Simplifies to:

$$3 - \frac{dy}{dx} + 1 - 3\frac{dy}{dx} = -2\frac{dy}{dx} \implies \frac{dy}{dx} = 2$$

- (b) Kinematics: $s=\frac{1}{8}t^4+\frac{1}{2}t^2$
- (i) Velocity at t=2
 - · Velocity:

$$v=rac{ds}{dt}=rac{1}{2}t^3+t$$

ullet At t=2:

$$v = \frac{1}{2}(8) + 2 = 6\,\mathrm{cm/s}$$

- (ii) Initial Acceleration
- Acceleration:

$$a=rac{dv}{dt}=rac{3}{2}t^2+1$$

• At t=0:

$$a = 1 \, \mathrm{cm/s}^2$$

- (c) Differentiate $y = an^{-1} \left(rac{a \sin x + b \cos x}{a \cos x b \sin x}
 ight)$
- Simplify Argument: Let $rac{a\sin x + b\cos x}{a\cos x b\sin x} = an lpha$, where $lpha = x + an^{-1} \left(rac{b}{a}
 ight)$.
- · Thus:

$$y = an^{-1}(an lpha) = lpha \implies rac{dy}{dx} = 1$$