What We Believe but Cannot Prove
by John Brockman
You have 217 highlighted passages
You have 26 notes
Last annotated on August 31, 2013
Byars inspired the idea of Edge and is responsible for its motto: To arrive at the edge of the world’s knowledge, seek out the most complex and interesting minds, put them in a room together, and have them ask each other the questions they are asking themselves. Read more at location 231
we are dealing with a surfeit of certainty. We are in the age of search culture, in which Google and other search engines are leading us into a future rich with an abundance of correct answers along with an accompanying naive sense of conviction. Read more at location 249
that’s the beauty of science—that it has this imaginative stage but then it goes on to the proving stage, the demonstrating stage.” Read more at location 255
Proof, whether in science, philosophy, criminal court or daily life, is an elastic concept, interestingly beset with all kinds of human weakness, as well as ingenuity. Read more at location 262
Great minds can sometimes guess the truth before they have either the evidence or arguments for it. Read more at location 323
Douglas Rushkoff
Though I can’t prove it more than anecdotally or experientially, I believe that evolution has purpose and direction. To me it seems obvious, if absolutely unconfirmable, that matter is groping toward complexity. Read more at location 402
Theology goes a long way toward imbuing substance and processes with meaning—describing life as “matter reaching toward divinity,” or as the process by which divinity calls matter back to itself. But theologians mistakenly ascribe this sense of purpose to history rather than to the future. Read more at location 405
Richard Dawkins
I believe that all intelligence, all creativity, and all design, anywhere in the universe, is the direct or indirect product of a cumulative process equivalent to what we here call Darwinian natural selection. It follows that design comes late in the universe, after a period of Darwinian evolution. Design cannot precede evolution and therefore cannot underlie the universe. Read more at location 426
Stephen Petranek
I believe that life is common throughout the universe and that we will find another Earthlike planet within a decade. The mathematics alone ought to be proof enough for most people: billions of galaxies with billions of stars in each galaxy and planets around many of those stars. These numbers suggest that the absence of life elsewhere in the universe is an improbable scenario. Read more at location 445
First, NASA’s Mars Rover Opportunity found incontrovertible evidence that a briny sea once covered its landing site, in the Martian plain known as Meridiani Planum. Now the only question about whether or not life once existed on Mars is whether that sea—which spread across Meridiani Planum twice in Martian history—existed long enough for life to form.
...Second, in February 2005, scientists studying images from the Mars Express Orbiter announced evidence near the planet’s equator of an existing frozen lake the size of Earth’s North Sea.
...Third, a team of astrophysicists reported in July 2004 that radio emissions from Sagittarius B2, a nebula near the center of the Milky Way, indicate the presence of aldehyde molecules, the prebiotic stuff of life. Read more at location 457
Paul C. W. Davies
why do I think we are not alone, when we have no evidence for life beyond Earth? Not for the fallacious popular reason: “The universe is so big that there must be life out there somewhere.” Simple statistics shows this argument to be bogus. If life is in fact a freak chemical event, it would be so unlikely to occur that it wouldn’t happen twice among a trillion trillion trillion planets. Rather, I believe we are not alone because life seems to be a fundamental, and not merely an incidental, property of nature. It is built into the great cosmic scheme at the deepest level and therefore is likely to be pervasive. I make this sweeping claim because life has produced mind, and through mind, beings who do not merely observe the universe but have come to understand it through science, mathematics, and reasoning. This is hardly an insignificant embellishment of the cosmic drama, but a stunning and unexpected bonus. Somehow life is able to link up with the basic workings of the cosmos, resonating with the hidden mathematical order that makes it tick. And that’s a quirk too far for me. Read more at location 524
Kenneth W. Ford
I believe in the existence of life elsewhere because chemistry seems to be so life-striving and because life, once created, propagates itself in every possible direction. Earth’s history suggests that chemicals create life given almost any old mix of substances that includes a bit of water and almost any old source of energy; further, that life spreads into every nook and cranny over a wide range of temperatures, acidity, pressure, light level, and so on. Believing in the existence of intelligent life elsewhere in the galaxy is another matter. Good luck to the SETI people and applause for their efforts, but consider that microbes have inhabited Earth for at least 75 percent of its history, whereas intelligent life has been around for just the blink of an eye—perhaps 0.02 percent of Earth’s history Read more at location 538
J. Craig Venter
I believe that life is ubiquitous in the universe and that life on our planet Earth most likely is the result of a panspermic event. The panspermia idea was first raised by Svante Arrhenius, who thought terrestrial life might have been “seeded” by microorganisms from outer space, and elaborated on by the late Francis Crick, who speculated that the primordial microorganisms came here in a rocket ship sent by an alien civilization (an act Crick called “directed panspermia”). DNA, RNA, and carbon-based life will be found wherever we find water and look with the right tools. Read more at location 572
Maria Spiropulu
I believe nothing to be true if it cannot be proved. Read more at location 614
I would suggest that belief and proof are in some way complementary: If you believe something, then you don’t need proof of it, and if you have proof, you don’t need to believe. Read more at location 627
Philip W. Anderson
My belief is based on the fact that string theory is the first science in hundreds of years to be pursued in pre-Baconian fashion—that is, without any adequate experimental guidance. It proposes that nature is the way we would like it to be, rather than the way we see it to be, and it is improbable that nature thinks the same way we do. Read more at location 641
Michael Shermer
complexity leads us to feel as though we were acting freely as uncaused causers, even though we are actually causally determined. Since no set of causes we select as the determiners of human action can be complete, the feeling of freedom arises out of this ignorance of causes. To that extent, we may act as though we were free. There is much to gain, little to lose, and personal responsibility follows. Read more at location 748
I believe but cannot prove that reality exists and science is the best method for understanding it; that there is no God; that the universe is determined but we are free; that morality evolved as an adaptive trait of humans and human communities; and that ultimately all of existence is explicable through science. Of course, I could be wrong… Read more at location 761
Randolph M. Nesse,
I’m pretty sure that people gain a selective advantage from believing in things they can’t prove. Those who are occasionally consumed by false beliefs do better in life than those who insist on evidence before they believe and act. Read more at location 787
Tor Nørretranders
It is important to have faith, but not necessarily in God. Faith is important far beyond the realm of religion: having faith in oneself, in other people, in the existence of truth and justice. There is a continuum of faith, from the basic everyday trust in others to the grand devotion to divine entities. Recent advances in behavioral sciences, such as experimental economics and game theory, demonstrate that having faith is a common human attitude toward the world. Faith is vital in human interactions; it is no coincidence that the anchoring of behavior in risky trust is emphasized in systems of thought as diverse as Søren Kierkegaard’s existentialist Christianity and modern theories of bargaining behavior in economic interactions.
...modern behavioral science is rediscovering the importance of faith—something that has been known to religions for a long time. I would argue that this rediscovery shows us that the very act of having faith can be decoupled from a belief in divine entities. Read more at location 823
David G. Myers
As a Christian monotheist, I start with two unproved axioms:
1. 1. There is a God.
2. 2. It’s not me Read more at location 848
Within psychology, this “ever reforming” process has many times changed my mind, leading me now to believe,
...that America’s economic growth has not improved our morale, that the automatic unconscious mind dwarfs the conscious mind,
...and that sexual orientation is not a choice. Read more at location 860
Sam Harris
The instant we accept a given representation of the world as true, it becomes the basis for further thought and action; rejected as false, it remains a string of words. What I believe, though cannot yet prove, is that belief is a content-independent process. Read more at location 882
we know that different regions of the brain are involved in judging the truth of statements drawn from different content domains. What I do believe, however, is that the neural processes governing the final acceptance of a statement as “true” rely on more fundamental, reward-related circuitry in our frontal lobes—probably the same regions that judge the pleasantness of tastes and odors. Truth may be beauty, and beauty truth, in more than a metaphorical sense. And false statements may quite literally disgust us. Read more at location 886
The only thing that guarantees that (sufficiently complex) beliefs actually represent the world are chains of evidence and argument linking them to the world. Read more at location 893
Denis Dutton
What’s going on most days in New York’s Metropolitan Museum of Art, and most nights at Lincoln Center, are aesthetic experiences that will be continually revived and relived by our descendants into an indefinite future. This makes the creation of a great artist as permanent an achievement as the discovery of a great scientist. That much I think I know. The question we should now ask is, What makes this possible? What is it about the highest works of art that gives them eternal appeal? Read more at location 951
Verena Huber-Dyson
since Goedel’s proof of 1931, we know that the limitations of what can be proved are inherent in the concept of proof, not just in the limitations of the human mind. In fact, to every formal system, satisfying some natural minimal requirements, there exists a mathematical truth expressible in the system’s language but not provable by its proof procedure. Read more at location 1155
I believe in the creative power of boredom. Read more at location 1159
Keith Devlin
Gödel’s theorem showed that you cannot prove that an axiomatically based theory like arithmetic is free of contradiction within that theory itself. But that doesn’t mean you can’t prove it in some larger, richer theory. In fact, in the standard axiomatic set theory, you can prove that arithmetic is free of contradictions. And personally, I buy that proof. For me, as a living, human mathematician, the consistency of arithmetic has been proved to my complete satisfaction. Read more at location 1194
I think I can be of more use by using my mathematician’s perspective to point out the uncertainties in the idea of proof. Which I believe (but cannot prove) I have. Read more at location 1200
Freeman Dyson
Rebecca Goldstein
That the penetration into unobservable nature is accomplished via abstract mathematics is a large part of what makes it mystifying—mystifying enough to be coherently (if unpersuasively, at least to me) denied by scientific antirealists. It’s difficult to explain exactly how science manages to do what it does—notoriously difficult when you are trying to explain how quantum mechanics, in particular, describes unobserved reality. The unobservable aspects of nature that yield themselves to our knowledge must be both mathematically expressible and connected to our observations in requisite ways. Read more at location 1234
there are aspects of nature we will never get to by way of science; thus our scientific theories—just like our formalized mathematical systems (as proved by Gödel)—must be forever incomplete. The very fact of consciousness—an aspect of the material world we know about but not because science revealed it to us—demonstrates this necessary incompleteness. Read more at location 1243
Stuart A. Kauffman
Before life, there were perhaps a few hundred organic-molecule species on Earth; now there are perhaps a trillion or more. We have no law governing this expansion into the adjacent possible in this non-ergodic process. My hoped-for law is that biospheres everywhere in the universe expand as fast as possible while maintaining the rough diversity of what already exists. The law otherwise stated: The diversity of things that can happen next increases, on average, as fast as it can. Read more at location 1261
Donald D. Hoffman
******* I believe that consciousness and its contents are all that exists. Spacetime, matter, and fields never were the fundamental denizens of the universe but have always been among the humbler contents of consciousness, dependent on it for their very being. The world of our daily experience—the world of tables, chairs, stars, and people, with their attendant shapes, smells, feels, and sounds—is a species-specific user interface between ourselves and a realm far more complex, whose essential character is conscious. It is unlikely that the contents of our interface in any way resemble that realm; indeed, the usefulness of an interface requires, in general, that they do not. The point of an interface (such as the Windows interface on a computer) is simplification and ease of use. Read more at location 1307
If this is right—if consciousness is fundamental—then we should not be surprised that despite centuries of effort by the most brilliant minds there is as yet no physicalist theory of consciousness—no theory that explains how mindless matter or energy or fields could be, or cause, conscious experience. There are many proposals for where to find such a theory—perhaps in information theory, complexity, neurobiology, neural Darwinism, discriminative mechanisms, quantum effects, or functional organization. But no proposal remotely approaches the minimal standards for a scientific theory: quantitative precision and novel prediction. Read more at location 1316
The mind-body problem will be to physicalist ontology what blackbody radiation was to classical mechanics: first a goad to its heroic defense, later the provenance of its final supersession. The heroic defense of physicalist ontology will, I suspect, not soon be abandoned, for the defenders doubt that a replacement grounded in consciousness could attain the mathematical precision or impressive scope of physicalist science. It remains to be seen to what extent and how effectively mathematics can model consciousness. But there are fascinating hints: According to some of its interpretations, the mathematics of quantum theory is already a major advance in this project, and perhaps much of the mathematical progress in the perceptual and cognitive sciences can also be so interpreted. We shall see. Read more at location 1321
if we assume that consciousness is fundamental, then the mind-body problem changes from an attempt to bootstrap consciousness from matter into an attempt to bootstrap matter from consciousness. The latter bootstrap is, in principle, elementary: Matter, fields, and spacetime are among the contents of consciousness. Read more at location 1329
**** What we lose in this process are physical objects that exist independent of any observer. There is no sun or moon, unless a conscious mind perceives them; both are constructs of consciousness, icons in a species-specific user interface. To some this seems a reductio ad absurdum readily contradicted by experience and our best science. But our best science, which is our theory of the quantum, gives no such assurance, and experience once led us to believe that the earth was flat and the stars were near. Perhaps mind-independent objects will one day go the way of the flat earth. Read more at location 1333
Consider for instance the quest for the neural correlates of consciousness. This holy grail of physicalism can and should proceed, if consciousness is fundamental, for it constitutes a central investigation of our user interface. To the physicalist, such neural correlates are potentially a causal source of consciousness. But if consciousness is fundamental, then its neural correlates are a feature of our interface, corresponding to, but never causally responsible for, alterations of consciousness. Damage the brain, destroy the neural correlates, and consciousness is, no doubt, impaired. Yet neither the brain nor the neural correlates cause consciousness; instead, consciousness constructs the brain. This is no mystery. Drag a file’s icon to the recycle bin and the file is, no doubt, deleted. Yet neither the icon nor the recycle bin, each a mere pattern of pixels on a screen, causes its deletion. The icon is a simplification, a graphical correlate of the file’s contents, intended to hide, not to instantiate, the complex web of causal relations. Read more at location 1338
Terrence Sejnowski
If memories are stored as changes to molecules inside brain cells—molecules that are constantly being replaced—how can a memory remain stable over fifty years? My hunch is that the substrate of old memories is located not inside the cells but outside, in the extracellular space. That space is not empty but filled with a matrix of tough material that connects cells and helps them maintain their shape. Read more at location 1357
John Horgan
The neural code is the software, algorithm, or set of rules whereby the brain transforms raw sensory data into perceptions, memories, decisions, meanings. A complete solution to the neural code could, in principle, allow scientists to monitor and manipulate minds with exquisite precision. Read more at location 1378
The neural pattern that underpins my concept of “George Bush” or “Heathrow Airport” or “surface-to-air missile” differs from yours. The only way to know how my brain encodes this kind of specific information would be to monitor its activity—ideally with thousands or even millions of implanted electrodes that can detect the chatter of individual neurons—while I tell you as precisely as possible what I am thinking. But the data that you glean from studying me will be of no use for interpreting the signals of any other person. Read more at location 1382
Ned Block
I am optimistic that the so-called Hard Problem of consciousness will be solved by empirical and conceptual advances—working in tandem—made in cognitive neuroscience.
...The Hard Problem is conceptually and explanatorily prior to the issue of what the nature of the self is, as can be seen in part by noting that the problem would persist even for experiences that are not organized into selves. Read more at location 1411
Janna Levin
I believe that there is an external reality, and that you are not all figments of my imagination. Read more at location 1419
It is rational to believe what all of my empirical and logical tests of the world confirm—that there is a reality that exists independent of me. Read more at location 1424
(Note: view is based on intellectual aesthetics) Maybe nothing is real—not the mercury, not the glass, not the coffee, not my friend. They are all products of a florid imagination. There is no external reality, just me. Einstein? My creation. Picasso? My mind’s forgery. But this solipsism is ugly and arrogant. Read more at location 1432
Daniel Gilbert
In the not too distant future, we will be able to construct artificial systems that give every appearance of consciousness—systems that act like us in every way. Read more at location 1442
We take each other’s consciousness on faith, because we must, but after 2,000 years of worrying about this issue, no one has ever devised a definitive test of its existence. Most cognitive scientists believe that consciousness is a phenomenon that emerges from the complex interaction of decidedly nonconscious parts (neurons), but even when we finally understand the nature of that complex interaction we still won’t be able to prove that it produces the phenomenon in question. And yet I haven’t the slightest doubt that everyone I know has an inner life—a subjective experience, a sense of self—that is very much like mine. Read more at location 1446
Alan Kay
Einstein said “You must learn to distinguish between what is true and what is real.” Science is a relationship between what we can represent and think about and what’s actually “out there;” it’s an extension of good mapmaking. When we guess in science, we are guessing about approximations and mappings to languages, not guessing about “the truth”—and we are not in a good state of mind for doing science if we think we are “guessing the truth” or “finding the truth.” This is not at all well understood outside science, and unfortunately some people with science degrees don’t seem to understand it either. Read more at location 1558
Steven Pinker
In 1974 Marvin Minsky wrote that “there is room in the anatomy and genetics of the brain for much more mechanism than anyone today is prepared to propose.” Today, many advocates of evolutionary and domain-specific psychology are willing to propose the richness of mechanism that Minsky called for thirty years ago.
...I believe that the homogeneity is an illusion, owing to the fact that the brain is a system for information processing.
...the cortex may look homogeneous to the eye but nonetheless contain different patterns of connectivity and synaptic biases that allow it to compute very different functions. I believe that these differences will be revealed in different patterns of gene expression in the developing cortex. I also believe that the apparent interchangeability of cortex occurs only in early stages of sensory systems that happen to have similar computational demands, such as isolating sharp signal transitions in time and space. Read more at location 1592
I believe that geneticists will find that there is a large store of information in the noncoding regions of the genome (the so-called junk DNA), whose size, spacing, and composition could have large effects on how genes are expressed. The genes themselves may code largely for the meat and juices of the organism, which are pretty much the same across species, whereas how gene products are sculpted into brain circuits may depend on a much larger body of genetic information. I also believe that many examples of what we call “the same genes” in different species may differ in tiny ways at the sequence level—ways that have large consequences for how the organism is put together. Read more at location 1597
Daniel C. Dennett
**** (Note: I think I fully agree) I believe, but cannot yet prove, that acquiring a human language (an oral or sign language) is a necessary precondition for consciousness—in the strong sense of there being a subject, an I, a “something it is like something to be.” It would follow that nonhuman animals and prelinguistic children—although they can be sensitive, alert, responsive to pain and suffering, and cognitively competent in many remarkable ways (including ways that exceed normal adult human competence)—are not really conscious, in this strong sense: There is no organized subject (yet) to be the enjoyer or sufferer, no owner of the experiences as contrasted with a mere cerebral locus of effects. Read more at location 1618
1. a well-confirmed model of the functional architecture of adult human consciousness, showing how long-distance pathways of reverberant interactions in the cortex have to be laid down and sustained by the sorts of cascades of self-stimulation children engage in when they are first acquiring language; 2. an interpretation of the dynamics of the model that explains why, absent these well-traveled pathways of neural micro habit, there is no functional unity to the nervous system—no unity to distinguish an I from a we (or from a multitude) as the candidate subject (s) occupying that nervous system; 3. further experimental work demonstrating the importance of what Thomas Metzinger calls “the phenomenal model of the intentionality relation” in enabling the sorts of experiences we consider central to our own adult consciousness. Read more at location 1632
This is an empirical hypothesis, and it could just as well be proved false. It could be proved false by showing that the necessary pathways functionally uniting the relevant brain systems (in the ways I claim are required for consciousness) are already provided in normal infant or fetal development and are present in, say, all mammalian nervous systems of a certain maturity. Read more at location 1642
Finally, since there is often misunderstanding on this score, I am not saying that all human consciousness consists in talking to oneself silently, although a great deal of it does. I am saying that the ability to talk to yourself silently, as it develops, also brings along with it the abilities to review, to muse, to rehearse, to recollect, and in general to engage the contents of events in one’s nervous system that would otherwise leave no memories in their wake and hence contribute to one’s guidance in ways that are well described as unconscious. If a nervous system can come to sustain all those abilities without having language, then I am wrong. Read more at location 1655
Alun Anderson
I believe that cockroaches are conscious. Read more at location 1664
the bee, whose eyes are extraordinarily sensitive to flicker and to colors we can’t see. I imagined it as a visual screen, in the same way that I can sit back and “see” my own visual screen of everything happening around me, with sights and sounds coming in and out of prominence. The objects in the bees’ world have significances or “meanings” quite different from our own, which is why a bee’s attention is drawn to things we would barely perceive. That’s what I mean by “consciousness”—the feeling of “seeing” the world and its associations. For the bee, it is the feeling of being a bee. I don’t mean that a bee is self-conscious or spends time thinking about itself. But the problem of how the bee has its own “feeling” is the same incomprehensible “hard problem” of how the activity of our nervous system gives rise to our own “feelings.” At least the bee’s world is highly visual and capable of being imagined. Some creatures live in sensory worlds that are much harder to access. Read more at location 1684
As for the cockroaches, they are a little more human than the spiders. Like the owners of the New York apartments who detest them, they suffer from stress and can die from it, even without injury. They are also hierarchical and they know their little territories well. When they are running for it, think twice before crushing out another world. Read more at location 1700
Joseph LeDoux
Because so much of human experience is tied up with language, consciousness is often said to depend on it. If so, then other animals are ruled out of the consciousness game. But even if consciousness doesn’t depend on language, language certainly changes consciousness, so that whatever consciousness another animal has is likely to differ from most of our states of consciousness. For these reasons, it is hard to know what consciousness might be like in another animal. If we can’t measure it (because it is internal and subjective) and can’t use our own experience to frame questions about it (because the hardware that makes it possible is different), it becomes difficult to study. Read more at location 1719
Christof Koch and Francis Crick, investigates the neural correlates of consciousness rather than the causal mechanisms. The correlates and the mechanisms may be the same—but they may not. Interestingly, this approach also emphasizes the importance of the prefrontal cortex in making visual awareness possible. So what about feelings? My view is that a feeling is what happens when an emotion system, like the fear system, is active in a brain that can be aware of its own activities. That is, what we call “fear” is the mental state we are in when the activity of the defense system of the brain (or the consequences of its activity, such as bodily responses) occupies working memory. Viewed this way, feelings are strongly tied to those areas of the cortex that are fairly unique to primates and especially well developed in people. Read more at location 1728
A cockroach will escape from danger—does it, too, feel fear as it runs away? I don’t think behavioral similarity is sufficient grounds for proving that experience is similar. Neural similarity helps—rats and people have similar brainstems, and a roach doesn’t even have a brain. But is the brainstem responsible for feelings? Even if that were proved to be the case in people, how would you prove it in a rat? So we’re back where we started. I think rats and other mammals, and maybe even roaches (who knows?), have feelings. But I don’t know how to prove it. And because I have reason to think that their feelings might be fundamentally different from ours (since human consciousness seems to depend on special circuits and on language), I prefer to study emotional behavior in rats, rather than emotional feelings. I study rats because you can make progress at the neural level, provided that what you measure is the same in rats and people. I wouldn’t study language or consciousness in rats, so I don’t study feelings either, because I don’t know that they exist. Read more at location 1739
Alison Gopnik
ALISON GOPNIK is a professor of cognitive science in the Psychology Department of the University of California at Berkeley. She is the author of, among other books, The Scientist in the Crib: What Early Learning Tells Us About the Mind Read more at location 1761
I believe, but cannot prove, that babies and young children are actually more conscious, more vividly aware of their external world and internal life, than adults are. I believe this because there is strong evidence for a functional trade-off with development. Young children are much better than adults at learning new things and flexibly changing what they think about the world. On the other hand, they are much worse at using their knowledge to act in a swift, efficient, and automatic way. They can learn three languages at once, but they can’t tie their shoelaces. Read more at location 1763
Human childhood is a protected period in which we are free to learn without being forced to act. There is even some neurological evidence for this. Young children have substantially more neural connections than adults—more potential to put different kinds of information together. With experience, some connections are strengthened and many others disappear entirely. As the neuroscientists say, we gain conductive efficiency but lose plasticity. Read more at location 1769
What does this have to do with consciousness? Consider the experiences we adults associate with these two kinds of functions. When we know how to do something really well and efficiently, we typically lose, or at least reduce, our conscious awareness of that action. We literally don’t see the familiar houses and streets on the well-worn route home, Read more at location 1772
(Note: habit loop takes hold) when we as adults need to learn something new—say, when we learn to skydive, or when we work out a new scientific idea, or even when we are dealing with a new computer—we become vividly, even painfully, conscious of what we’re doing; we need, as we say, to pay attention. As we become expert, we need to pay less and less attention, and we experience the movements and thoughts and keystrokes less and less. Read more at location 1778
Some brain areas, like the dorsolateral prefrontal cortex, consistently light up in adults when they are deeply engaged in learning something new. For more everyday tasks, these areas light up much less extensively. In children, the pattern is different—these areas light up even for mundane tasks. Read more at location 1783
**** The vividness and intensity of our attentive awareness, for example, may be completely divorced from our experience of a constant first-person I. Babies may be more conscious in one way and less in the other. The consciousness of pain may be entirely different from the consciousness of red, which may be entirely different from the babbling stream of Joyce and Woolf. Certainly, however, the vivid, even ecstatic awareness of the world that accompanies discovery is at least one kind of consciousness; indeed, it is the kind of consciousness that makes us grateful to be human. I think that for babies every wobbly step is skydiving, every game of hide-and-seek is Einstein in 1905, and every day is first love in Paris. Read more at location 1788
The McGill psychologist John Macnamara once proposed that children come to learn about right and wrong, good and evil, in much the same way they learn about geometry and mathematics.
...moral development involves the construction of an intricate formal system that makes contact with the external world in a significant way. Read more at location 1801
It allows for the existence of moral truths that people discover, just as we discover truths of mathematics. We can reject the nihilist position (held by many researchers) that our moral intuitions are nothing more than accidents of biology or culture. And so I believe (though I cannot prove it) that the development of moral reasoning is the same sort of process as the development of mathematical reasoning. Read more at location 1804
William H. Calvin
Dan Dennett has it right when he puts the emphasis on acquiring language, not having language, as a precondition for our kind of consciousness. I have some (likely unprovable) beliefs about why the preschooler’s acquisition of a structured language is so important for all the rest of her higher intellectual function. Besides syntax, intellect includes structured stuff such as multistage contingent planning, chains of logic, games with arbitrary rules, and our passion for discovering “how things hang together.”
...Tuning up the workspace for structured language in the preschool years would likely carry over to those other structured aspects of intellect. That’s why I like the emphasis on acquiring language as a precondition for consciousness: Tuning up to sentence structure might make a child better able to perform non-language tasks that also need some structuring. Improve one, improve them all? Read more at location 1832
Robert R. Provine
**** (Note: I agree with this) Until it’s proved otherwise, why not assume that consciousness does not play a significant role in human behavior? Although this idea may seem radical at first, it is actually the conservative position, the one that makes the fewest assumptions. The null position is an antidote to philosopher’s disease—the inappropriate attribution of rational, conscious control over processes that may be irrational and unconscious. The argument is not that we lack consciousness but that we overestimate the conscious control of behavior. I believe that statement to be true, but proving it is a challenge, because it’s difficult to think about consciousness. We are misled by an inner voice that generates a reasonable but often fallacious narrative and explanation of our actions. Read more at location 1840
Laughter appears at those places where punctuation would appear in the transcript of a conversation; it seldom interrupts the phrase structure of speech. Read more at location 1855
The discovery of structured but unconsciously controlled laughter produced by people who could not accurately explain their actions led me to consider generalizing this situation to other kinds of behavior. Do we go through life listening to an inner voice that provides similar confabulations about the causes of our action? Are essential details of the neurological process that governs human behavior inaccessible to introspection? Read more at location 1859
Stanislas Dehaene
I believe (but cannot prove) that we vastly underestimate the differences that set the human brain apart from the brains of other primates. Read more at location 1872
If we compare the primary visual regions of macaques and humans, there is already a two-fold difference in surface area; this ratio becomes a twenty- to fifty-fold increase in higher areas of the parietal and frontal lobes. Read more at location 1878
I believe that we humans have a much more developed conscious workspace—a set of brain areas that can fluidly exchange signals, allowing us to internally manipulate information and perform unique mental syntheses. Using the workspace’s long-distance connections, we can mobilize, in a top-down manner, essentially any brain area and bring it into consciousness. Once the internal connectivity of a system exceeds a certain threshold, it begins to be dominated by self-sustained states of activity. I believe that the human workspace system has passed this threshold and gained a considerable autonomy: That is, the human brain is much less at the mercy of signals from the outside world than the brains of other primates are. Its activity never ceases to reverberate from area to area, generating a highly structured spontaneous flow of thoughts, which we project on the outside world. Read more at location 1887
When we learn to read, we recycle a specific region of our visual system known as the visual word-form area, enabling us to recognize strings of letters and connect them to language areas. Likewise, when we learn Arabic numerals we build a circuit to quickly convert those shapes into quantities—a fast connection from bilateral visual areas to the parietal quantity area. Even an invention as elementary as finger-counting changes our cognitive abilities dramatically. Amazonian people who have not invented counting are unable to make exact calculations as simple as, say, 6–2. Read more at location 1901
Stephen Kosslyn
Your mind may arise not simply from your own brain but in part from the brains of other people. Let me explain. This idea rests on three key observations. The first is that our brains are limited, so we use crutches to supplement and extend our abilities. Read more at location 1916
The second observation is that the major prosthetic system we use is other people. We set up what I call social prosthetic systems, or SPSs, in which we rely on others to extend our reasoning abilities and help us regulate and constructively employ our emotions. Read more at location 1920
The third observation is that a key element of serving as an SPS is learning how best to help someone. Those who function as your SPSs adapt to your particular needs, desires, and predilections. Read more at location 1923
In short, parts of other people’s brains come to serve as extensions of your own. And if the mind is what the brain does, then your mind arises from the activity of not only your own brain but also those of your social prosthetic systems. Read more at location 1925
Howard Gardner
I believe that human talents are based on distinct patterns of brain connectivity. These patterns can be observed as the individual encounters and ultimately masters an organized activity or domain in his or her culture. Consider three competing accounts: 1. Talent is a question of practice. We could all become Mozarts or Einsteins if we persevered. 2. Talents are fungible. A person who is good in one thing could be good in everything. 3. The basis of talents is genetic. While true, this account misleadingly implies that people with a “musical gene” will necessarily evince their musicianship, just as they evince their eye color or, less happily, Huntington’s disease. My account: The most apt analogy is language learning. Nearly all of us can easily master natural languages in the first years of life; we might say that nearly all of us are talented speakers. An analogous process occurs with respect to various talents, with two differences: a. There is greater genetic variance in the potential to evince talent in areas like music, chess, golf, mathematics, leadership, written (as opposed to oral) language, and so on. b. Compared to language, the set of relevant activities is more variable within and across cultures. Consider the set of games. A person who masters chess easily in one culture would not necessarily master poker or “go” in another. Read more at location 2007
If account No.1 is true, hours of practice will explain all. If No.2 is true, those best at music should excel at all activities. If No.3 is true, individual brain differences should be observable from the start. If my account is true, the most talented students will be distinguished not by differences observable prior to training but rather by the ways in which their neural connections alter during the first years of training. Read more at location 2028
Brian Goodwin
I believe that nature and culture can be understood as one unified process, not two distinct domains separated by some property of human beings, such as written or spoken language, consciousness, or ethics. Read more at location 2103
These properties are similar to the structure of languages, which are also self-referential networks described by power laws (as discovered years ago by the Harvard linguist G. K. Zipf). A conclusion is that organisms use proto-languages to make sense both of their inherited history (written in DNA and its molecular modifications) and of their external context (the environment), in the process of making themselves as functional agents. Organisms thus become participants in cultures with histories that have meaning, expressed in the forms (morphologies and behaviors) distinctive to their species. This is embodied or tacit meaning, which cognitive scientists now recognize as also primary in human culture. Read more at location 2117
Leo M. Chalupa
When the scientific endeavor is considered in relation to the obvious limitations of the human brain, the knowledge we have gained in all fields is astonishing. Consider the well-documented variability in the functional properties of neurons. When recordings are made of responses from a single neuron—for example, in the visual cortex, to a flashing spot of light—one can’t help but be amazed by the trial-to-trial variations. In one instance, this simple stimulus might elicit a high-frequency burst of discharges, while in the next trial there might be just the hint of a response. The same phenomenon obtains in EEG recordings: Brain waves change in frequency and amplitude in seemingly random fashion, even when the subject is lying prone with no variation in behavior or environment. Such variability is also evident in brain imaging; the pretty pictures of brain states seen in publications are averages of many trials that have been massaged by computer. Read more at location 2146
Margaret Wertheim
I believe, though I cannot prove it, that there will always be things we do not know—large things, small things, interesting things, and important things. If theoretical physics is any guide, we might suppose that science is a march toward a finite goal. For the past few decades, theoretical physicists have been searching for the so-called Theory of Everything—what Nobel laureate Steven Weinberg has also called a “final theory.” This ultimate set of equations would tie together all the fundamental forces that physicists recognize today: gravity, electromagnetism, and the nuclear forces inside the cores of atoms. But such a theory, if we are lucky enough to extract it from the current mass of competing contenders, would not tell us anything about how proteins form or how DNA came into being. Less still would it illuminate the machinations of a living cell or the workings of the human mind. A Theory of Everything would not even help us to understand how snowflakes form. In an age when we have discovered the origin of the universe and observed the warping of space and time, it is shocking to hear that scientists do not understand something as seemingly paltry as the formation of ice crystals. But that is indeed the case. Read more at location 2163
Gino Segrè
The Big Bang, that primeval explosion more than 13 billion years ago, provides the accepted description of our universe’s beginning. We can trace with exquisite precision what happened during the expansion and cooling that followed that cataclysm, but the presence of neutrinos in the earliest phase continues to elude direct experimental confirmation. Neutrinos, once they were in thermal equilibrium, were supposedly freed from their bonds to other particles about two seconds after the Bang. Since then, they should have been roaming undisturbed through intergalactic space, some 200 of them in every cubic centimeter of our universe, altogether a billion of them for every single atom. Their presence is noted indirectly in the universe’s expansion; however, though they are presumably by far the most numerous type of material particle in existence, not a single one of those primordial neutrinos has ever been detected. Read more at location 2199
Haim Harari
The electron has been with us for over a century, laying the foundations for the electronic revolution and all of information technology. It is believed to be a pointlike, elementary, and indivisible particle. Is it? The neutrino, more than a million times lighter than the electron, was predicted in the 1920s and discovered in the 1950s. It plays a crucial role in the creation of the stars, the sun, and the heavy elements. It is elusive, invisible, and weakly interacting. It is also considered fundamental and indivisible. Is it? Quarks do not exist as free objects, except at extremely tiny distances deep within the confines of the particles—protons and neutrons, the constituents of atomic nuclei—that are constructed from them. Since the 1960s, we have believed that quarks are indivisible and the most fundamental nuclear building blocks. Are they? Nature has created two sets of additional, totally unexplained replicas of the electron, the neutrino, and the two most abundant quarks (the up quark and the down quark). Each set is identical to the other two in all properties, except that the particle masses are radically different. Since each set includes four fundamental particles, we end up with twelve different particles, which are allegedly indivisible, pointlike, and elementary. Are they? The atom, the atomic nucleus, and the proton, each in its own time, were considered elementary and indivisible, only to be subdivided later into new fundamental building blocks. How can we be so arrogant as to exclude the possibility that this will happen again? Read more at location 2220
Based on common sense and on an observation of the pattern of the known particles, without any experimental evidence and without any comprehensive theory, I have believed for many years, and I continue to believe, that the electron, the neutrino, and the quarks are divisible. They are presumably made of different combinations of the same small number (two?) of more fundamental subparticles. The latter may or may not have the string structure, and may or may not be themselves composites. Read more at location 2240
Donald I. Williamson
Ian Wilmut
We take for granted the process by which a single-celled embryo gives rise to all of the many different tissues of an adult. Because almost all adult cells have the exact same genetic information, the differences among them must have arisen from sequential differences in the function of the genes. We are beginning to learn something of the factors promoting these sequential changes, although very little is known of the hierarchy of their influence. I believe that a greater understanding of these mechanisms will allow us to cause cells from one kind of adult tissue to form another kind of tissue. Read more at location 2284
Daniel Goleman
I believe but cannot prove that today’s children are unintended victims of economic and technological progress. Read more at location 2303
What I believe but can’t prove is that this decline is due in large part to economic and technological forces. The ratcheting upward of global competition means that over the last two decades or so, parents have had to work longer to maintain the same standard of living their own parents enjoyed. Virtually every American family nowadays has two working parents; fifty years ago, one working parent was the norm. It’s not that today’s parents love their children less but that they have less free time to spend with them.
...Today’s children—in the developed, and increasingly in the developing, world—spend more time than ever in human history alone, staring at a video monitor. These circumstances amount to a natural experiment in child rearing on an unprecedented scale. Read more at location 2324
Esther Dyson
We’re living longer and thinking shorter. It’s all about time.
...It used to be that machines automated work, giving us more time to do other things, but now machines automate the production of attention-consuming information, which takes our time. For example, if one person sends the same e-mail message to ten people, then ten people (in theory) should give it their attention. And that’s a low-end example. The physical friction of everyday life—the time it took Isaac Newton to travel by coach from London to Cambridge, the dead spots of walking to work (no iPod), the darkness that kept us from reading—has disappeared, making every minute not used productively into an opportunity lost. Read more at location 2341
And finally, we can measure more, over smaller chunks of time. From airline miles to calories (and carbs and fat grams), from friends on Friendster to steps on a pedometer, from real-time stock prices to millions of burgers consumed, we count things by the minute and the second. Unfortunately, this carries over into how we think and plan: Businesses focus on short-term results; politicians focus on elections; school systems focus on test results; most of us focus on the weather rather than on the climate. Everyone knows about the big problems, but their behavior focuses on the here and now. Read more at location 2346
but I think it may also herald a mental one—which I imagine as a sort of mental diabetes. Most of us grew up reading books (at least occasionally) and playing with noninteractive toys that required us to make up our own stories, dialogue, and behavior for them. But today’s children are living in an information-rich, time-compressed environment that often seems to stifle a child’s imagination rather than stimulate it. Being fed so much processed information—video, audio, images, flashing screens, talking toys, simulated action games—is like being fed too much processed, sugar-rich food. It may seriously mess up children’s informational metabolism—their ability to process information for themselves. Read more at location 2357
James J. O’Donnell
In a strict Popperian reading, all the things I “know” are only propositions I have not yet falsified. They are best estimates—hypotheses that so far make sense of all the data I possess. Read more at location 2370
let me propose this challenge to practitioners of my own historical craft. I believe there are in principle better descriptions and explanations for the development and sequence of human affairs than historians are capable of providing. We draw our data mainly from witnesses, who share our mortality—and, for that matter, often our limited viewpoint. And so we explain history in terms of human choices and the behavior of organized social units. Read more at location 2376
An awareness of the powerful possibility of other orders of description and explanation should at least teach us some humility and give us thoughtful pause when we are tempted to insist too strongly on one version of history—the one we happen to think is true. Even a Popperian could see this kind of intuition as beneficial. Read more at location 2389
Jean Paul Schmetz
one has to remember the basis of the scientific method: formulating hypotheses that can be disproved. Those hypotheses that are not disproved can be believed to be true until disproved. Since it is more glamorous for a scientist to formulate hypotheses than it is to spend years disproving existing ones proposed by other scientists, and unlikely that someone will spend time and energy trying to disprove his or her own statements, our body of scientific knowledge is surely full of hypotheses that we believe to be true but will eventually be proved false. So I turn the question around: What scientific ideas that have not been disproved do you believe are false? Read more at location 2396
As a theoretical economist, I believe that most ideas taught in Economics 101 will be proved false someday. Read more at location 2400
Nassim Nicholas Taleb
We are good at fitting explanations to the past, all the while living in the illusion that we understand the dynamics of history. I believe there is a severe overestimation of knowledge in what I call the “ex-post” historical disciplines, meaning almost all of social science (economics, sociology, political science) and the humanities—everything that depends on the nonexperimental analysis of past data. I am convinced that these disciplines do not provide much understanding of the world—or even of their own subject matter. Mostly, they fit a narrative that satisfies our desire (even need) for a story. The implications defy conventional wisdom: You do not gain much by reading the newspapers, history books, analyses, economic reports; all you get is misplaced confidence about what you know. The difference between a cab driver and a history professor is only one of degree; the latter is probably better at expressing himself.
...It is said that “The wise see things coming.” To me, the wise are those who know they cannot see things coming. Read more at location 2425
Simon Baron-Cohen
In my chosen field of autism, I believe that the cause will turn out to be assortative mating of two hyper-systemizers. I believe this because we already have three pieces of the jigsaw puzzle: 1. Fathers of children with autism are more likely to work in the engineering field, compared to fathers of children without autism. (Note that engineering is a chosen example because it involves strong systematizing. But other related scientific and technical fields, such as math or physics, would have been equally good examples to study.) 2. Grandfathers of autistic children—on both sides of the family—are also more likely to work in the engineering field, compared to grandfathers of children without autism. 3. Both mothers and fathers of children with autism are super-fast at the embedded-figures test, a task requiring analysis of patterns and rules. Read more at location 2433
Kevin Kelly
The orthodoxy in biology states that every cell in your body contains exactly the same DNA. It’s your identity, your indelible fingerprint, and since all the cells in your body have been duplicated from your initial unique stem cell, these zillions of offspring cells all maintain your singular DNA sequence. Read more at location 2452
I believe, but cannot prove, that the DNA in your body (and in the bodies of all living organisms) varies from part to part. I make this prediction based on something we know about biology, which is that nature abhors uniformity. Nowhere else in nature do we see identity maintained to such exactness. Nowhere else is there such fixity. Read more at location 2456
A few biologists already know (even if most of the public doesn’t) that the full sequence of DNA in your cells changes over time, since your chromosomes are shortened each time they divide in growth. Because of a bug in the system, DNA is unable to duplicate itself when it gets to the very tip of its chain, so at each cell division it winds up a few hundred bases short. This slight reduction after each of the cell’s scores of divisions is currently seen as the chief culprit in cell death, and thus your own death. But the variation I believe is happening is more fundamental. My guess is that DNA mutates in a population of the cells in your body, much as it does in a population of bodies. Read more at location 2461
Steven Giddings
(Note: Does this same idea apply to God? Another infinite and thus singularity...) I believe that black holes do not—as Stephen Hawking argued long ago—destroy information, thereby violating quantum mechanics. Read more at location 2515
If black holes do emit information instead of destroying it, this probably comes from a breakdown of what is known in physics as locality, the notion that phenomena at widely separated points cannot instantaneously influence each other. Read more at location 2523
Lawrence M. Krauss
We now realize that we are near the edge of a galaxy that is itself located nowhere special in a large, potentially infinite universe full of other galaxies. Moreover, we know that even the stars and the visible galaxies are themselves but an insignificant bit of visible pollution in a universe otherwise dominated by stuff that doesn’t shine. Dark matter outnumbers normal matter by a factor of ten, and now we have discovered that even matter (dark or not) is relatively insignificant. Empty space contains more than twice as much energy Read more at location 2565
know of suggests that the Big Bang that created our visible universe was not unique. There are likely to be a large and possibly infinite number of other universes out there, some of which may be experiencing Big Bangs as I write, and some of which may have already collapsed inward into Big Crunches. Read more at location 2570
isn’t—I find it satisfying to speculate that not only are we not in a particularly special place in our universe but that our universe itself may be insignificant on a larger cosmic scale. The idea represents perhaps the ultimate Copernican Revolution. Read more at location 2579
Paul J. Steinhardt
I believe that our universe is not accidental, but I cannot prove it. Read more at location 2592
an increasing number of my most respected colleagues have become enamored of the anthropic principle—the idea that there is an enormous multiplicity of universes with widely different physical properties and that the properties of our particular, observable universe arise from pure accident. The features of our universe happen to be compatible with the evolution of intelligent life, but otherwise there is nothing remarkable about it. The change in attitude arises in part from the failure (so far) to find a unified theory that predicts our universe as the unique possibility. According to some recent calculations, superstring theory, the current best hope for a unified theory, allows an exponentially large number of different universes, most of which look nothing like our own. String theorists have turned to the anthropic principle for salvation. Read more at location 2595
I don’t have much patience with the anthropic principle: The concept is, at heart, nonscientific.
...In the case of string theory, the anthropic principle is invoked only to explain known observations, not to predict new ones. Read more at location 2605
I see no evidence that our universe arose in a random process. Quite the contrary: Recent observations and experiments suggest that our universe is simple. The distribution of matter and energy is remarkably uniform. The hierarchy of complex structures, ranging from galaxy clusters to subnuclear particles, can be described in terms of a few dozen elementary constituents and less than a handful of forces, all related by simple symmetries. A simple universe demands a simple explanation. Why do we need to postulate an infinite number of universes with all sorts of different properties just to explain our own? Read more at location 2609
Lee Smolin
I am convinced that quantum mechanics is not a final theory. Read more at location 2621
(Note: strictly relative spacetime) Quantum mechanics must then be an approximate description of a more fundamental physical theory. There must then be hidden variables, which are averaged to derive the approximate, probabilistic description that is quantum theory. We know from the experimental falsifications of the Bell inequalities that any theory that agrees with quantum mechanics on a range of experiments where it has been checked must be nonlocal. Quantum mechanics is nonlocal, as are all proposals for replacing it with something that makes more sense. So any additional hidden variables must be nonlocal. But I believe we can say more. I believe that the hidden variables represent relationships between the particles we do see—relationships that are hidden because they are nonlocal and connect widely separated particles. Read more at location 2625
This fits in with another core belief of mine, deriving from general relativity, which is that the fundamental properties of physical entities are a set of relationships that evolve dynamically. There are no intrinsic, nonrelational properties, and there is no fixed background—such as Newtonian space and time—that exists just to give things properties. Read more at location 2630
quantum uncertainty must be a residue of the resulting nonlocality, which restricts our ability to predict the future of any small region of the universe. Read more at location 2636
Anton Zeilinger
What I believe but cannot prove is that quantum physics requires us to abandon the distinction between information and reality. Read more at location 2650
it is impossible to make an operational distinction between reality and information. Whenever we make any statement about the world, about an object, about a feature of an object, we are making a statement about the information we have. Read more at location 2651
One might therefore be tempted to believe that everything is just information; the danger here is solipsism and subjectivism. But we know (even though we cannot prove it) that reality is “out there.” For me, the strongest argument for a reality independent of myself is the randomness of the individual quantum event—the decay of a radioactive atom, for instance.
So, if reality exists, and if we will never be able to make an operational distinction between reality and information, it would seem that reality and information are one and the same. Read more at location 2657
This is the message of the quantum. It is the natural extension of the so-called Copenhagen interpretation, which holds that we must never assign features to an object without having actually observed them. Once you adopt the notion that reality and information are the same, all quantum paradoxes and puzzles—like the measurement problem, or the nine lives of Schrödinger’s cat—disappear. Yet the price of reconciliation is high. If my hypothesis is true, many questions become meaningless. There is no sense asking what is “really” going on out there. Schrödinger’s cat is neither dead nor alive unless we obtain information about its state. Read more at location 2658
Gregory Benford
We physicists explain the origin and structure of matter and energy but not the origin of the laws behind them. Read more at location 2671
One can imagine a universe in which laws are not truly lawful. Talk of miracles does just this, invoking God to make things work. Physics aims to find the laws instead, and hopes that they will be uniquely constrained, as when Einstein wondered whether God had any choice when He made the universe. One fashionable escape hatch from the problem of choice is to assert that there are infinitely many universes,
...This “multiverse” view represents the failure of our grand agenda and seems to me contrary to the prescribed simplicity of Occam’s Razor, Read more at location 2677
Perhaps it is a similar philosophical failure of imagination to think, as I do, that when we see order there is usually an ordering principle. But what can constrain the nature of physical law? Natural selection gave us our ornately structured biosphere, and perhaps a similar evolutionary principle operates in the genesis of universes. ...An Ur-universe that had intelligence could make others, and this reproduction, with perhaps slight “genetic” variation, would drive the evolution of physical law. The astrophysicist Edward Harrison has had similar ideas. Selection arises because only firm laws can yield constant, benign conditions to form new life. Once life-forms realized this, they could intentionally make more smart universes with the right fixed laws to produce ever grander structures. Read more at location 2683
The fitness of our cosmic environment is then no accident. If we continue to find signs of cosmological fine-tuning, is it evidence for such views? Read more at location 2688
Carlo Rovelli
I think the notions of space and time will turn out to be useful only within some approximation. They are similar to notions like “the surface of the water,” which loses meaning when we describe the dynamics of the individual atoms forming water and air; on the smallest of scales, there isn’t really any surface there. Read more at location 2720
I am also convinced but cannot prove that there are no objects, only relations. By this I mean that there is a consistent way of thinking about nature that refers only to interactions between systems and not to states of or changes in individual systems. Read more at location 2725
Jeffrey Epstein
I believe that the mechanism for the human perception of time will be discovered. Almost another sense—the ability to distinguish past from present, in intervals long enough to convey a thought and create memories—will establish a new boundary for consciousness. Read more at location 2738
Kai Krause
**** (Note: So true. In human experience, there is no "Now") I have always felt, but cannot prove, that Zen is wrong. Then is right. Everything is not about the now, as in “the here and now,” “living for the moment,” and so on. On the contrary: I believe that everything is about the before then and the back then. It is about the anticipation of the moment and the memory of the moment, but not the moment. Read more at location 2841
In German, there is a beautiful little word for it: Vorfreude, which is a shade different from “delight” or “pleasure” or even “anticipation.” It is the “pre-delight,” the “before joy,” or, as a little linguistic concoction, the “fore-fun.” A single word captures the relationship of time, the pleasure of waiting for the moment to arrive, the can’t wait moments of elation, of hoping for something, someone, some event to happen—whether Read more at location 2845
once it passes, in the blink of an eye, it will be the memory that stays with you, the reflection, the remembrance of that time. Nothing ever is as beautiful as its abstraction seen through the rose-colored glasses of anticipation. Read more at location 2852
Bluntly put: Spend your life in the eternal bliss of always having something to hope for, something to wait for, plans not realized, dreams not yet come true. Make sure you have new points on the horizon, that you deliberately create. And at the same time relive your memories, uphold and cherish them, keep them alive and share them, talk about them. Make plans and take pictures. Read more at location 2862
W. Daniel Hillis
I believe that people are getting better. In other words, I believe in moral progress. Read more at location 2889
I believe, but cannot prove, that our species is passing through a transitional stage from being animals to being true humans. Read more at location 2891
Mihaly Csikszentmihalyi
I can prove almost nothing I believe in. I believe the earth is round but I cannot prove it, nor can I prove that the earth revolves around the sun or that the naked fig tree in the garden will have leaves in a few months. I can’t prove that quarks exist or that there was a Big Bang—all of these and millions of other beliefs are based on faith in a community of knowledge whose proofs I am willing to accept, hoping they will accept on faith the few measly claims to proof I might advance. But now I realize, having read some of the other postings, that everyone else has assumed implicitly that the “you” in “even if you cannot prove it” refers not to the individual respondent but to the community of knowledge. It actually stands for “one” rather than for “you.” That everyone seems to have understood this seems to me a remarkable achievement, a merging of the self with the collective that only great religions and profound ideologies occasionally achieve. Read more at location 2934
I do believe in evolution, including cultural evolution, which means that I tend to trust ancient beliefs about good and bad, the sacred and the profane, the meaningful and the worthless—not because they are amenable to proof but because they have been selected over time and in different situations and therefore might be worthy of belief. Read more at location 2941