
The Transformative Impact of MLIR: Key Developments in AI 
Compilation and Hardware Co-Design (2022-2025) 
1. Introduction: MLIR in the Era Beyond Moore's Law 
The Compiler Challenge 

The landscape of computing is undergoing a fundamental transformation. The 
relentless pace of Moore's Law, which dictated hardware scaling for decades, is 
demonstrably slowing, altering the trajectory of performance improvements.1 
Simultaneously, the complexity and scale of Artificial Intelligence (AI) models, 
particularly in areas like large language models (LLMs) and generative AI, are 
exploding. This confluence of factors has driven the proliferation of diverse and 
specialized hardware accelerators – Graphics Processing Units (GPUs), Tensor 
Processing Units (TPUs), Neural Processing Units (NPUs), Intelligence Processing 
Units (IPUs), AMD's AI Engines (AIEs), Field-Programmable Gate Arrays (FPGAs), and 
custom Application-Specific Integrated Circuits (ASICs) – each designed to tackle 
specific computational bottlenecks.1 This heterogeneity presents a profound 
challenge for compiler technology. Traditional monolithic compiler infrastructures, 
such as LLVM and GCC, while powerful for conventional CPU targets, struggle to 
effectively manage the complexity and diversity of these modern hardware targets 
and the high-level abstractions used in AI frameworks.1 The result was often a 
fragmented ecosystem, with different frameworks (TensorFlow, PyTorch, JAX) and 
hardware vendors developing bespoke, often incompatible, compiler stacks, leading 
to duplicated effort and hindering portability.3 

Enter MLIR 

Multi-Level Intermediate Representation (MLIR) emerged as a direct response to 
these challenges.1 Conceived within Google and now part of the LLVM project, MLIR 
represents a paradigm shift in compiler infrastructure design.1 It is not merely another 
Intermediate Representation (IR), but a flexible and extensible framework for building 
compilers. Its core design principles – modularity, extensibility, and reusability – are 
manifest in its unique ability to represent and manipulate code at multiple levels of 
abstraction simultaneously.1 This is achieved through the central concept of dialects: 
self-contained units that define domain-specific operations, types, and attributes.1 
These dialects allow MLIR to bridge the gap between high-level programming models 
used in AI frameworks and the low-level details of target hardware, facilitating 
progressive lowering and optimization across different abstraction layers.6 MLIR's 
Static Single Assignment (SSA)-based structure provides a robust foundation for 



analysis and transformation.7 

Report Scope and Purpose 

This report synthesizes the most significant developments, breakthroughs, and 
impactful applications within the MLIR ecosystem over the approximately 2022-2025 
timeframe. It provides an expert-level analysis focusing on MLIR's evolving role in AI 
software optimization, including the critical area of data processing and pipeline 
management, its integration with mainstream AI frameworks, its transformative 
influence on AI hardware acceleration and co-design, and the burgeoning research 
landscape surrounding it. Particular attention is given to the innovative 'Transform' 
dialect and its implications for compiler control. The objective is to present a 
comprehensive technical assessment of MLIR's impact and trajectory for an audience 
of technical leaders, engineers, and researchers engaged with AI systems and 
compiler technology. The analysis underscores that MLIR's rise is not merely 
incidental but a necessary evolutionary step in compiler technology, driven by the 
fundamental shifts in hardware capabilities and the computational demands of 
modern AI. 

2. The Evolving MLIR Ecosystem: Growth, Principles, and Identity 
2.1 Core Infrastructure Growth and Community Expansion 

The period from 2022 to 2025 witnessed substantial growth and activity within the 
MLIR project, reflecting its increasing importance and adoption. As an integral part of 
the broader LLVM ecosystem, MLIR benefited from the significant development 
velocity of LLVM itself. In 2024 alone, the main LLVM repository saw nearly 37,500 
commits, adding over 9.3 million lines of code, roughly in line with activity in 2022 and 
2023.15 While these figures represent the entire LLVM project, they indicate a healthy 
and active development environment within which MLIR resides. 

More telling is the dramatic expansion of the contributor base. The number of unique 
authors contributing to LLVM surged from 1,573 in 2022 and 1,932 in 2023 to an 
unprecedented 2,138 in 2024.15 This represents a more than six-fold increase 
compared to the 336 authors a decade prior in 2014.15 This rapid growth strongly 
correlates with the emergence and maturation of MLIR, signaling widespread industry 
and academic investment. The increasing number of contributors from diverse 
organizations signifies that MLIR has transcended its origins as a Google-internal 
project 3 and is becoming a de facto standard infrastructure for compiler 
development, particularly in the AI domain. 

Key catalysts for this growth were the open-sourcing of MLIR and its contribution to 



the LLVM Foundation, which made the technology accessible to the entire industry 
and fostered collaborative development.3 The community actively engages through 
platforms like the LLVM Discourse forums, which replaced the older mailing list system 
to provide better structure, searchability, and integration (e.g., with GitHub 
accounts).16 Furthermore, events like the biannual LLVM Developers' Meetings, which 
explicitly include MLIR content and dedicated MLIR Workshops, serve as crucial hubs 
for knowledge sharing, discussion, and networking among developers, researchers, 
and users.17 

2.2 Foundational Concepts: Dialects, Operations, Extensibility 

MLIR's power and flexibility stem from a set of well-defined core concepts.7 At its 
heart, MLIR represents programs as a graph-like structure of Operations, which 
consume and produce Values. Each Value has a Type known at compile time, and 
Operations can possess Attributes representing compile-time constant information.8 
Operations are organized within Blocks, which in turn reside within Regions, allowing 
for nested structures essential for representing control flow or scoped computations.8 
MLIR utilizes an SSA (Static Single Assignment) form, simplifying dataflow analysis.7 

The most fundamental concept enabling MLIR's modularity and extensibility is the 
Dialect.1 Unlike traditional compiler infrastructures often centered around a single, 
monolithic IR 4, MLIR allows developers to define custom dialects. Each dialect 
encapsulates a set of operations, types, and attributes relevant to a specific domain 
or abstraction level. This allows MLIR to represent diverse concepts, from high-level 
framework operations (like TensorFlow or PyTorch ops) and mathematical 
abstractions (like linear algebra on tensors) down to hardware-specific instructions 
and control flow constructs, all within a unified infrastructure.1 

Traditional IRs, operating at a single abstraction level, often face a dilemma when 
compiling complex domains like AI. Representing high-level constructs directly can 
make the IR unwieldy, while lowering too early ("premature lowering" 7) discards 
valuable semantic information needed for effective optimization. MLIR's dialects 
circumvent this by enabling a multi-level representation.8 Compilers can start with 
high-level dialects preserving domain semantics and progressively lower the IR 
through a series of intermediate dialects, applying optimizations at the most 
appropriate level.6 This modularity significantly simplifies the construction of complex 
compilers, particularly for heterogeneous hardware targets.7 

Dialects are typically defined using TableGen, a configuration description language 
within LLVM, which generates much of the C++ boilerplate code for operations, types, 
and their interfaces.14 The MLIR project includes a rich set of standard dialects that 



serve as building blocks, including func (functions), arith (standard arithmetic), scf 
(structured control flow), affine (polyhedral abstractions), linalg (linear algebra on 
tensors/memrefs), tensor, memref (memory buffers), vector, gpu (GPU abstractions), 
and llvm (for lowering to LLVM IR).8 This dialect-based architecture represents a 
fundamental shift from monolithic IRs towards composable, multi-level abstractions, 
allowing compiler developers to tackle complexity by isolating concerns at appropriate 
levels. 

2.3 MLIR's Identity Crisis: General Infrastructure vs. AI Solution 

MLIR originated within Google Brain specifically to address the fragmentation and 
complexity of AI compiler stacks.3 The initial goal was to create a unified, reusable 
infrastructure to replace the myriad of incompatible graph technologies and compilers 
used across projects like TensorFlow, XLA, and TensorFlow Lite, particularly for 
targeting hardware like TPUs.3 

However, MLIR was intentionally designed as a general-purpose compiler framework, 
not strictly limited to machine learning.3 Its powerful abstractions and extensibility 
quickly attracted interest from other domains, leading to its adoption in areas like 
quantum computing (e.g., NVIDIA's CUDA Quantum 27), hardware design and 
high-level synthesis (HLS) through projects like CIRCT 3, homomorphic encryption 
(HEIR 29), and potentially even database query compilation (Substrait-MLIR 13). 

This broad success, fueled by its open-sourcing and contribution to the LLVM 
Foundation 3, created an "identity crisis".3 While MLIR excels as domain-agnostic, 
reusable infrastructure, the AI community simultaneously pushed for it to become an 
end-to-end AI compiler solution.3 This led to a "dialect explosion," where numerous 
AI-specific dialects (representing framework operations, intermediate optimizations, 
etc.) were added to the upstream MLIR project, sometimes with limited governance.3 

This situation conflates MLIR's core, general-purpose infrastructure with the specific 
AI solutions built upon it. It raises questions about what "MLIR" as a project truly 
encompasses and guarantees.3 While MLIR forms the foundation for major AI compiler 
projects like OpenXLA and Triton, and is even used within parts of NVIDIA's CUDA 
stack 3, the ambiguity between its role as a general framework and a specific AI 
solution persists. This internal complexity risks creating fragmentation within the MLIR 
ecosystem, potentially mirroring the external fragmentation it was designed to solve. 
Recent efforts towards improved governance, such as establishing distinct Area 
Teams for MLIR Core and specific dialects, aim to address this challenge and clarify 
the project's structure and identity.3 



3. MLIR for AI Data Pipelines: Pre-compilation, Structuring, and 
Wrangling 
3.1 The Critical Role of Data Pipelines in AI 

Data is the fundamental input for machine learning models, and the process of 
preparing this data – often termed the Extract, Transform, Load (ETL) pipeline – is 
critical for successful model training and deployment.30 These pipelines extract raw 
data from diverse sources (databases, files, APIs), transform it through cleaning, 
normalization, feature engineering, and structuring, and finally load it into a format 
suitable for consumption by ML frameworks.30 Ensuring data quality, consistency, 
accuracy, and efficient processing is paramount, as the performance and reliability of 
ML models are directly dependent on the data they are trained on.30 

Input data pipelines often represent a significant performance bottleneck, consuming 
substantial compute resources and potentially starving hardware accelerators like 
GPUs and TPUs, which can process training steps much faster than data can be 
supplied.32 Efficient ETL involves complex operations like handling large data volumes, 
applying intricate transformations, managing data shuffling and batching, and 
overlapping communication with computation.32 Common preprocessing steps include 
data cleaning (handling missing values, outliers, inconsistencies), integration from 
multiple sources, data reduction (aggregation, feature selection), data transformation 
(normalization, scaling, encoding categorical features), and discretization.36 

3.2 MLIR Approaches to Data Optimization 

MLIR presents a compelling infrastructure for optimizing data pipelines due to its 
ability to represent diverse computations and data structures within a unified 
framework.8 While traditional ML workflows often use separate tools for ETL (e.g., 
Spark, Pandas, Airflow 19) and model training, MLIR offers the potential to represent 
and optimize both stages cohesively. This co-location enables cross-stage 
optimizations that are difficult to achieve otherwise. 

Several MLIR-based approaches target data pipeline optimization: 

●​ Data Tiling and Packing: Specialized hardware often requires data to be 
arranged in specific layouts or processed in tiles for optimal performance. MLIR 
can be used to model and optimize these data arrangements. For instance, work 
on targeting AMD's Ryzen AI NPUs uses MLIR-based techniques to derive optimal 
data tiling and packing strategies, managing data flow through the processor 
array and leveraging low-level DMA control for efficient data movement.42 

●​ Data Structuring and Wrangling: MLIR dialects can effectively model various 



data structures beyond simple tensors, such as multi-dimensional arrays 
(memrefs) 8 and potentially even dataframes or semi-structured data like JSON.13 
Standard operations within dialects like tensor, memref, and arith, along with 
custom operations, can represent common data transformations like reshaping, 
transposing, type conversions, and element-wise operations.12 

●​ Optimization Techniques: MLIR's pass infrastructure allows applying various 
optimizations to data manipulation code. Canonicalization passes can simplify 
redundant operations (e.g., transpose(transpose(x)) -> x, or chains of 
reshapes).40 Common subexpression elimination (CSE) can remove repeated 
calculations.44 Pattern rewriting frameworks (both C++ based and declarative 
DRR) enable targeted optimizations like constant folding through reshape 
operations.40 Furthermore, MLIR's ability to represent higher-level constructs 
facilitates advanced Data Layout Optimizations (DLO) potentially applied via 
Link-Time Optimization (LTO). Because MLIR can preserve information about 
structures (like C structs) across modules, LTO passes can perform optimizations 
like instance interleaving (rearranging fields of structs in an array for better cache 
locality) and dead field elimination (removing unused struct fields), which are 
simpler to implement in MLIR than in lower-level IRs like LLVM IR.43 Bufferization 
passes manage the explicit allocation and deallocation of memory buffers 18, and 
specialized primitives like reuse_at and buffer_at (demonstrated in HeteroCL) can 
explicitly manage on-chip memory hierarchies and reuse buffers to minimize 
off-chip memory access.41 

The ability to represent both data preparation steps and model computation within 
the same MLIR framework opens possibilities for holistic optimizations, such as fusing 
data preprocessing operations directly into compute kernels or optimizing data 
layouts based on how the subsequent model consumes the data.43 

3.3 Case Studies and Projects 

Several research projects and tools demonstrate MLIR's application to data-centric 
tasks: 

●​ DAPHNE: This system explicitly targets integrated data analysis pipelines 
encompassing ETL, ML, and HPC.34 It uses a custom MLIR dialect, DaphneIR, to 
represent operations on frames and matrices, along with standard dialects like 
SCF for control flow. DAPHNE performs multi-level optimizations within MLIR 
before lowering to LLVM, aiming to optimize the entire workflow holistically.34 

●​ HeteroCL: Originally based on Halide IR, HeteroCL migrated to MLIR for improved 
scalability and extensibility in defining hardware customizations.41 Its HCL dialect 
allows specifying compute, data type, and memory customizations. Notably, it 



includes primitives like .reuse_at() and .buffer_at() to explicitly generate and 
manage reuse buffers and write buffers within custom memory hierarchies, 
crucial for optimizing data movement in data-intensive applications.41 

●​ Substrait-MLIR: This ongoing project aims to create an MLIR dialect for 
Substrait, a cross-language format for database query plans.13 By representing 
database operations within MLIR, it seeks to provide a common infrastructure for 
query optimization and potentially bridge the gap between traditional data 
processing systems and MLIR's AI/HPC capabilities.13 

●​ Noisy Arithmetic Example: While focused on homomorphic encryption (FHE) 29, 
the example of tracking "noise" through integer arithmetic using an MLIR analysis 
pass demonstrates a relevant capability.45 Similar analyses could track data 
quality metrics, distributions, or other properties through complex ETL 
transformations within MLIR. 

These projects illustrate that MLIR's flexibility extends beyond tensor computations. 
Its application to data management, memory hierarchy optimization, and query plan 
representation signals a trend towards using MLIR as a unifying infrastructure for data 
engineering and AI engineering tasks. 

3.4 Comparison and Challenges 

While MLIR offers significant potential for optimizing the transformation and loading 
stages of ETL, particularly when tightly coupled with ML model execution, it currently 
faces challenges compared to mature, dedicated ETL frameworks and libraries. 

MLIR's strengths lie in its potential for deep hardware optimization, fusion of data 
preparation with compute kernels, and unified representation. However, established 
ETL tools like Apache Spark, Apache Airflow, Pandas, or commercial platforms 19 
possess rich ecosystems with extensive connectors for diverse data sources (the 
'Extract' stage), sophisticated orchestration and scheduling features, mature 
monitoring capabilities, and high-level APIs optimized for data manipulation 
productivity. 

Representing complex data cleaning logic (e.g., intricate validation rules, fuzzy 
matching) or stateful transformations might be less straightforward or efficient in 
MLIR's current dialects compared to specialized Python libraries like Pandas or data 
quality tools.36 Therefore, MLIR is unlikely to replace the entire data engineering stack 
in the near term. Its most promising role appears to be in accelerating the 
computationally intensive transformation steps within data pipelines and enabling 
tighter integration and co-optimization with downstream ML model execution, rather 



than managing the entire end-to-end ETL process. 

4. The Transform Dialect: Unleashing Fine-Grained Compiler 
Control 
4.1 Motivation: Beyond Monolithic Passes 

Traditional compiler optimization flows rely heavily on sequences of pre-defined 
passes (pass pipelines), often configured via command-line flags.46 While effective for 
general-purpose optimization, this coarse-grained approach often lacks the precision 
required to optimize specific, critical sections of code for the diverse and specialized 
hardware prevalent today.46 Source-level annotations or pragmas offer finer control 
but are typically limited to specific transformations anticipated by compiler 
developers and require invasive, non-modular compiler changes to implement.47 

A significant limitation of this model is that much of the powerful transformation logic 
implemented within compiler helper functions (e.g., routines for tiling, unrolling, 
vectorizing specific loops) remains hidden or inaccessible to the end-user unless they 
are willing to write custom compiler passes in C++ and rebuild the compiler – a task 
requiring deep compiler expertise.46 Domain-specific scheduling languages like Halide 
and TVM address this by separating the algorithm from its optimization schedule, but 
they typically require reimplementing optimizations within their own frameworks and 
do not easily integrate with existing general-purpose compiler infrastructure.46 The 
MLIR Transform dialect was conceived to bridge this gap, providing a mechanism to 
expose and compose existing compiler capabilities with fine-grained precision 
directly within the MLIR framework.46 

4.2 Core Concepts and Implementation 

The Transform dialect is, itself, an MLIR dialect, but its purpose is meta-compilational: 
it defines operations that manipulate and transform other MLIR code (the "payload" 
IR).46 Instead of the compiler executing a fixed pipeline, it interprets a Transform 
dialect script provided by the user, which explicitly directs the optimization process.46 

Key concepts include: 

●​ Handles: Transform operations operate on handles, which are standard MLIR SSA 
values. These handles represent lists of operations within the payload IR that are 
targeted by the transformation.49 Handles can be produced by matching 
operations (e.g., match.op) or as results of other transform operations. 

●​ Transform Operations: These are operations defined within the Transform 
dialect (e.g., loop.tile, loop.unroll, bufferization.eliminate_alloc_tensor). Each 



transform operation typically takes one or more handles as input, applies a 
specific compiler transformation (often leveraging existing internal compiler 
functions) to the associated payload operations, and produces new handles 
corresponding to the newly created or modified payload operations.46 

●​ Payload IR: The actual program code (e.g., user functions containing loops and 
computations) that is being optimized. 

●​ Transform IR: The MLIR code written using the Transform dialect that specifies 
the sequence of optimizations to apply to the payload IR. 

Consider this illustrative example adapted from 49: 

 

MLIR 

 
 
// Transform IR Script​
transform.named_sequence @optimize_loops(%payload_func :!transform.any_op) {​
  // Find the first 'scf.for' loop inside the payload function​
  %outer_loop = transform.structured.match ops{["scf.for"]} in %payload_func​
    ->!transform.op<"scf.for">​
​
  // Define tile sizes​
  %c8 = transform.param.constant 8 : index​
​
  // Tile the outer loop with size 8​
  %tiled_loops:2 = transform.structured.tile_using_for %outer_loop tile_sizes [%c8]​
    interchange​
    -> (!transform.op<"scf.for">,!transform.op<"scf.for">)​
​
  // Unroll the inner tiled loop (handle: %tiled_loops#1) completely​
  %unrolled_inner = transform.loop.unroll %tiled_loops#1 { factor = 0 } // factor=0 
means full unroll​
    ->!transform.any_op​
​
  transform.yield​
}​
 
This script finds a loop in the payload, tiles it, and then unrolls the inner loop resulting 
from the tiling. The Transform dialect is implemented within MLIR and features an 



extensible design, allowing new transform operations to be added easily.46 An 
interface mechanism allows existing C++ helper functions within the compiler to be 
exposed as Transform dialect operations.47 

4.3 Key Capabilities 

The Transform dialect provides several powerful capabilities: 

●​ Composition: Simple, atomic transform operations can be chained together, 
using the handles produced by one transform as input to the next, allowing the 
construction of arbitrarily complex optimization pipelines.46 

●​ Extensibility: New transformations can be exposed by defining new Transform 
dialect operations and associating them with the corresponding C++ 
implementation, without altering the core dialect or requiring users to rebuild the 
entire compiler for every new optimization strategy.46 

●​ Static Verification: A crucial feature is the system of pre- and post-conditions 
associated with transform operations.46 Handle types (e.g., 
!transform.op<"scf.for">) specify the expected type of payload operation a 
transform can be applied to. Attributes can add further constraints. This allows 
the MLIR infrastructure to statically verify the Transform script, catching errors 
like applying a loop transformation to a non-loop operation or applying a 
destructive transform twice to the same handle before executing the potentially 
expensive compilation.46 The transform.cast operation allows explicit type 
checking between transforms.51 

●​ Parameterization: Transformations can be configured using parameters, which 
can be compile-time constants (like tile sizes or unroll factors) or even values 
derived dynamically from the payload IR itself, enabling more adaptive 
optimization strategies.49 

By representing the optimization strategy itself as MLIR IR, the Transform dialect 
elevates compiler control from a simple configuration task to a programmable one. 
This "compiler programming" paradigm opens the door to analyzing, verifying, and 
potentially even automatically generating or optimizing the compilation strategy itself, 
integrating naturally with techniques like autotuning. 

4.4 Applications and Impact (Case Studies from CGO 2025 Paper) 

The practical utility and impact of the Transform dialect were demonstrated through 
five case studies presented in the CGO 2025 paper 46: 

1.​ Expressing Pass Pipelines: This study showed that existing, coarse-grained 
pass pipelines can be faithfully replicated using Transform dialect scripts with 



negligible compilation time overhead, confirming its efficiency as a control 
mechanism.46 

2.​ Robust Lowering: This case study focused on lowering IR containing a complex 
mix of dialects. It highlighted the critical role of the Transform dialect's static pre- 
and post-conditions in building robust and reliable lowering sequences, 
preventing errors that might occur in less explicitly controlled pass pipelines.46 

3.​ Debugging Performance: The Transform dialect proved effective in diagnosing 
performance regressions. By enabling fine-grained control over which 
optimizations were applied where, developers could quickly isolate and disable 
counter-productive transformation patterns that were hurting performance.46 

4.​ Fine-Grained Optimization: This study demonstrated the power of precise 
control. By meticulously applying loop tiling, vectorization, and importantly, 
integrating calls to specialized, highly optimized microkernel library functions 
(exposed via custom transform ops), significant performance improvements were 
achieved on relevant benchmarks, surpassing what standard pass pipelines could 
deliver.49 

5.​ Autotuning Integration: The final case study showed the ease with which the 
Transform dialect integrates with state-of-the-art autotuning frameworks. The 
parameterized nature of the Transform script allowed search algorithms to 
effectively explore the optimization space (e.g., different tile sizes, unroll factors) 
to find high-performing configurations automatically.48 

These case studies collectively validate the Transform dialect's practical value across 
the compiler development and performance engineering lifecycle. They provide 
concrete evidence that it delivers on its promise of fine-grained control, reusability of 
compiler internals, improved robustness, and seamless integration with automated 
tuning methods, offering tangible advantages over traditional compiler control 
mechanisms. 

5. MLIR Integration in Mainstream AI Frameworks: Bridging the 
Gap 
5.1 The Need for Framework Integration 

Modern AI frameworks like TensorFlow, PyTorch, and JAX provide high-level, 
productive interfaces for defining complex machine learning models. However, 
translating these high-level descriptions into efficient code that runs optimally across 
a diverse landscape of hardware accelerators (CPUs, GPUs, TPUs, etc.) is a major 
challenge.1 This necessitates sophisticated compiler backends capable of 
understanding both the semantics of the ML framework and the intricacies of the 



target hardware. MLIR, along with related projects like XLA and IREE, has emerged as 
a critical technology for building these compiler backends, enabling performance 
optimization, hardware targeting, and improved portability. 

5.2 TensorFlow & OpenXLA 

TensorFlow has long utilized XLA (Accelerated Linear Algebra) as a compiler backend 
to optimize performance, particularly on Google's TPUs and also for GPUs and CPUs.52 
XLA aims to improve execution speed by fusing operations and specializing code, 
enhance memory usage via buffer analysis, and reduce reliance on custom ops by 
optimizing fused low-level ops automatically.52 

XLA's architecture heavily involves MLIR.52 While historically using its own HLO (High 
Level Operations) representation, the modern XLA pipeline increasingly relies on MLIR 
dialects. The StableHLO dialect now serves as the primary, versioned interface layer 
between ML frameworks (including TensorFlow, PyTorch via Torch-MLIR, and JAX) 
and MLIR-based compilers like XLA and IREE.52 Models are lowered from the 
framework's representation to StableHLO, which is then consumed by the compiler 
backend. XLA performs target-independent optimizations on StableHLO/HLO (like 
CSE, fusion) before invoking target-specific backends (e.g., GPU, CPU) for further 
optimization and code generation, often via the MLIR LLVM dialect.52 

The TOSA (Tensor Operator Set Architecture) dialect is another MLIR dialect relevant 
to TensorFlow, particularly for TensorFlow Lite (TFLite) inference.61 However, the 
incremental upgrade of TOSA to v1.0 exposed significant compatibility challenges 
between TensorFlow/TFLite (which generated the older TOSA version) and 
downstream compilers like IREE (which adopted the newer v1.0).61 This breakage, 
occurring around late 2024 / early 2025, necessitated users pinning to older versions 
of TensorFlow, IREE, and associated tooling to maintain compatibility, highlighting the 
critical need for careful versioning and coordination across the decoupled 
components of the MLIR ecosystem.61 

To simplify the integration of diverse hardware backends with frameworks like 
TensorFlow and JAX, the PJRT (Plugin-based Runtime) interface was developed and 
open-sourced as part of OpenXLA.58 PJRT provides a standardized API for frameworks 
to discover, load, and interact with different compiler runtimes and hardware devices 
dynamically. This allows hardware vendors to provide PJRT plugins for their devices, 
enabling framework support without requiring deep integration into the framework's 
core codebase.59 Intel, for example, uses PJRT to provide its GPU backend for 
TensorFlow and JAX.59 



The OpenXLA project represents a collaborative effort by Google and numerous 
industry partners (including AMD, NVIDIA, Intel, Arm, Meta, AWS) to develop an 
open-source ecosystem of ML compiler technologies, with XLA, StableHLO, IREE, and 
PJRT as key components, all leveraging MLIR.52 This initiative aims to standardize 
interfaces, promote portability, and reduce the N*M integration complexity between 
frameworks and hardware targets. 

5.3 PyTorch 

PyTorch, known for its dynamic nature and Pythonic interface, presents different 
challenges for compiler integration compared to TensorFlow or JAX. The Torch-MLIR 
project serves as the primary bridge connecting the PyTorch ecosystem to 
MLIR-based backends.62 It is designed as core infrastructure for building end-to-end 
compilation flows, rather than being a complete compiler itself.62 

Torch-MLIR's architecture features a frontend and a backend.62 The frontend ingests 
various PyTorch program representations (primarily via PyTorch's JIT IR, which can be 
produced by TorchScript, TorchDynamo/torch.compile, torch.fx, etc.) and lowers them 
to the MLIR torch dialect. This dialect mirrors many PyTorch concepts, including its 
type system and operators.62 

A critical stage in the frontend is lowering the torch dialect representation to conform 
to the "backend contract". This contract defines a subset of the torch dialect with 
specific properties required by downstream MLIR backends: tensors must have value 
semantics (be immutable and non-aliased), and tensors must have known ranks 
(number of dimensions) and data types (dtypes), ideally with fully known shapes.62 
Achieving this contract, especially when starting from TorchScript (which represents 
stateful nn.Module hierarchies and lacks static shape information), requires significant 
transformations handled by pipelines like 
torchscript-module-to-torch-backend-pipeline. These include functionalization 
(converting stateful modules to functional code), shape and dtype inference (often 
requiring user hints), and simplification of Pythonic constructs.62 The impedance 
mismatch between PyTorch's dynamic, object-oriented nature and the typically static, 
functional nature expected by MLIR compiler backends necessitates this dedicated 
bridging infrastructure. 

Once the IR conforms to the backend contract, Torch-MLIR's backend can lower it to 
various target MLIR dialects, including Linalg (for CPU/GPU codegen via LLVM), TOSA, 
and StableHLO (for integration with XLA/IREE).62 This modular design allows different 
compiler backends to consume PyTorch models via the standardized backend 



contract provided by Torch-MLIR. 

5.4 JAX 

JAX leverages a functional programming paradigm combined with transformations like 
jax.jit (just-in-time compilation), jax.grad (automatic differentiation), and jax.vmap 
(auto-vectorization).65 For its JIT compilation capabilities, JAX relies heavily on the 
XLA compiler.65 

The integration between JAX and MLIR-based backends like XLA and IREE is 
facilitated primarily through StableHLO and the PJRT runtime interface.52 When jax.jit 
is invoked, the JAX function is traced and converted into JAX IR, which is then lowered 
to StableHLO.67 This StableHLO representation is passed via the PJRT interface to the 
selected backend (e.g., XLA compiler for GPU/TPU, IREE compiler, or potentially other 
PJRT plugins) for optimization and code generation.52 

JAX's functional nature generally maps more cleanly onto compiler IRs like StableHLO 
compared to the complexities of handling PyTorch's stateful modules. This relatively 
direct mapping simplifies the compiler integration task and likely contributes to JAX's 
strong performance and adoption on accelerators via XLA and IREE.54 Research 
efforts also explore extending JAX's capabilities using MLIR backends, such as the 
experimental work on providing MLIR-based sparse tensor support for JAX.68 JAX, 
combined with XLA's capabilities for automatic parallelization (GSPMD) 54 and PJRT's 
multi-device support, is widely used for large-scale model training.54 

5.5 Framework Integration Summary 

The integration of MLIR into major AI frameworks is a dynamic and evolving process, 
aiming to provide portability and performance across diverse hardware. The move 
towards standardized interfaces like StableHLO and PJRT within the OpenXLA 
ecosystem represents a significant effort to create a more modular and interoperable 
landscape. However, challenges related to dialect versioning, maintaining 
performance parity, and bridging the gap between dynamic framework features and 
static compiler requirements remain active areas of development. 

Table 1: MLIR Integration in Major AI Frameworks (ca. 2022-2025) 

 
Framework Key MLIR 

Integration 
Project(s) 

Core Input 
Dialect(s) to 
Compiler 

Integration 
Interface/La
yer 

Notable 
Successes/
Capabilities 

Key 
Challenges/
Recent 



Issues 

TensorFlow OpenXLA 
(XLA, IREE), 
TensorFlow 
Lite 

StableHLO, 
TOSA 

PJRT, TF C 
API 

Strong 
TPU/GPU/CP
U support 
via XLA, 
TFLite 
inference 
ecosystem 

TOSA v1.0 
compatibility 
issues 61, 
Historical 
complexity 

PyTorch Torch-MLIR, 
OpenXLA 
(IREE, XLA) 

torch -> 
StableHLO, 
TOSA, Linalg 

torch.compil
e, PJRT 

Growing 
backend 
support 
(IREE, XLA), 
Modular 
bridge 
design 

Lowering 
complexity 
(state, 
dynamic 
shapes) 62, 
Performance 
tuning 

JAX OpenXLA 
(XLA, IREE) 

StableHLO jax.jit, PJRT High 
performance 
on 
accelerators, 
Clean 
functional 
mapping 

Reliance on 
XLA/IREE 
backend 
maturity, 
Custom op 
handling 63 

6. MLIR Reshaping Hardware: AI Accelerators and Co-Design 
6.1 The Imperative for Hardware-Specific Compilation 

The proliferation of specialized AI accelerators is a direct consequence of the need to 
overcome the limitations of general-purpose processors for demanding AI workloads.1 
Achieving peak performance on these diverse architectures—ranging from massively 
parallel GPUs to dataflow-oriented TPUs/IPUs and VLIW-based AIEs—requires 
compilers that can understand and exploit their unique features.2 Generic compilation 
strategies are often insufficient.4 MLIR's extensible dialect system provides a powerful 
mechanism for hardware designers and compiler engineers to create domain-specific 
compilers that effectively map high-level AI models onto specialized hardware, 
significantly reducing the cost and complexity compared to building compilers from 
scratch.1 

6.2 Tenstorrent 

Tenstorrent provides a compelling example of deep, native MLIR adoption for 



targeting specialized AI hardware. Their core compiler is TT-Forge, explicitly built 
upon MLIR.58 The associated TT-MLIR open-source project defines a hierarchy of 
custom MLIR dialects to represent computations targeting Tenstorrent accelerators 58: 

●​ TTIR (Tenstorrent Intermediate Representation): A primary IR level for 
Tenstorrent hardware. 

●​ TTNN (Tenstorrent Neural Network): Likely represents higher-level neural 
network constructs or fused operations suitable for their architecture. 

●​ TTKernel: Represents lower-level kernel details. 
●​ (Future dialects like .ttm, .ttnn mentioned in TT-Explorer roadmap 73) 

TT-Forge supports multiple frontends to ingest models from standard frameworks, 
leveraging open standards: tt-torch (using PyTorch 2.X/torch-mlir, outputting 
StableHLO), tt-forge-fe (using TVM to handle PyTorch, ONNX, TF), and tt-xla (using 
PJRT to ingest JAX via StableHLO).58 

A particularly innovative aspect of Tenstorrent's toolchain is TT-Explorer, a graphical 
tool designed for "Human-In-Loop" compilation.58 TT-Explorer allows users to 
visualize the TTIR graph, inspect operation attributes, view performance and accuracy 
metrics overlaid on the graph, edit parameters via an "Overrides" mechanism, trigger 
re-compilation, and observe the results.73 Its roadmap includes support for more 
dialects, visualizing graph transformations, and integration with other tools.73 This 
interactive approach, enabled by MLIR's structured IR, empowers developers to 
directly tune and optimize models for Tenstorrent hardware. Tenstorrent's strategy 
showcases a full commitment to the MLIR philosophy, building a comprehensive, 
MLIR-native toolchain with custom dialects and novel interactive tooling, while also 
embracing interoperability through standards like StableHLO and PJRT. 

6.3 NVIDIA 

NVIDIA's CUDA platform remains the dominant ecosystem for GPU computing. While 
CUDA itself predates MLIR, NVIDIA is actively integrating MLIR into its compiler stack, 
leveraging its capabilities while building upon its existing, mature infrastructure.3 
NVIDIA contributes significantly to the LLVM project, upon which its CUDA Compiler 
(NVCC) is based.74 

MLIR's integration appears primarily as intermediate layers bridging high-level 
representations to NVIDIA's established backend: 

●​ NVVM IR: This is NVIDIA's internal, LLVM IR-based representation for GPU 
kernels, featuring specific conventions, address spaces (global, shared, 
constant), and intrinsic functions.74 NVCC compiles source languages or 



higher-level IRs down to NVVM IR, which is then optimized and translated to PTX 
(Parallel Thread Execution) assembly.74 NVVM IR has its own versioning and debug 
metadata specifications.75 

●​ MLIR gpu Dialect: This standard MLIR dialect provides target-agnostic 
abstractions for common GPU programming concepts, such as kernel launches 
(gpu.launch), kernel functions (gpu.func), thread and block IDs (gpu.thread_id, 
gpu.block_id), barriers, and memory spaces (global, workgroup/shared).26 A 
typical compilation pipeline involves outlining the body of a gpu.launch into a 
separate gpu.func kernel, attaching target-specific information (like SM 
architecture via nvvm.attach_target), and then lowering the gpu dialect 
operations to the nvvm dialect using passes like convert-gpu-to-nvvm.26 

●​ MLIR nvgpu Dialect: This dialect serves as a bridge between the target-agnostic 
gpu and vector dialects and the target-specific nvvm dialect.76 It represents 
NVIDIA-specific hardware features and PTX-level operations directly in MLIR, 
such as asynchronous data copies between global and shared memory 
(nvgpu.device_async_copy, managed via groups), memory barriers 
(nvgpu.mbarrier.*), matrix load operations (nvgpu.ldmatrix), Tensor Memory 
Accelerator (TMA) operations for efficient memory access (nvgpu.tma.*), and 
Matrix Multiply-Accumulate (MMA) instructions, including support for sparse 
MMA and warpgroup-level operations targeting newer architectures.76 This allows 
optimizations related to these specific hardware features to be expressed and 
performed within MLIR before the final lowering to NVVM/PTX. 

●​ CUDA Quantum: For its quantum computing platform, NVIDIA adopted a more 
MLIR-native approach from the outset.27 The nvq++ compiler uses Clang to parse 
C++ code and then leverages custom MLIR dialects (Quake for quantum 
operations, CC for classical control) to represent the quantum kernels.28 Tools like 
cudaq-quake perform the C++ AST to MLIR conversion, and cudaq-opt applies 
MLIR passes for optimization.28 The platform even allows users to register and run 
their own custom MLIR passes on the Quake IR.27 

Overall, NVIDIA's strategy appears evolutionary, integrating MLIR into its highly 
optimized CUDA/NVCC/LLVM toolchain primarily as intermediate abstraction layers 
(gpu, nvgpu) rather than replacing the entire backend. This leverages MLIR's 
strengths in handling higher-level structures while retaining the mature and 
performant NVVM/PTX code generation infrastructure. Newer initiatives like CUDA 
Quantum demonstrate a deeper, ground-up MLIR adoption. Public details on future 
MLIR roadmap specifics beyond existing dialects are limited, though GTC 
presentations hint at ongoing work, potentially around runtime compilation or 



enhanced Python integration.77 

6.4 AMD 

AMD is actively utilizing and contributing to the LLVM/MLIR ecosystem to support its 
diverse range of hardware, including CPUs, ROCm-based GPUs, Ryzen AI NPUs, and 
Versal AI Engines (AIEs). 

●​ Ryzen AI NPUs: For its NPUs based on XDNA architecture (found in Ryzen AI 
processors like Phoenix, Hawk Point, and the upcoming Strix Point with XDNA2), 
AMD open-sourced "Peano".15 Peano is an LLVM compiler backend designed 
specifically for these AI engines, enabling compilation for this specialized 
hardware within the standard LLVM/MLIR framework.15 Complementing this, work 
presented at FOSDEM 2025 focuses on using MLIR dialects and passes for 
optimizing data tiling and packing specifically for Ryzen AI NPUs, aiming to 
efficiently manage data movement and utilize DMA capabilities.42 

●​ ROCm & GPUs: AMD continues to enhance its ROCm platform for GPU 
computing. Research efforts showcased include running standard, unmodified 
C/C++ code directly on AMD GPUs via LLVM/ROCm, bypassing the need for 
specific GPU languages.15 The porting of the classic game DOOM to run almost 
entirely on the GPU using ROCm and LLVM libc serves as a demonstration of this 
capability.15 Frameworks like IREE utilize MLIR to compile models (e.g., from 
PyTorch) for execution on AMD GPUs (often via SPIR-V or ROCm backends), 
offering an alternative to lower-level programming models like OpenCL or HIP.69 

●​ AI Engines (AIEs): Targeting the complex, heterogeneous Versal ACAP devices 
containing AIE arrays requires sophisticated compilation flows. The ARIES 
project, developed at Cornell and collaborators, provides an MLIR-based 
compilation flow specifically for AIE architectures.2 It addresses limitations of 
previous AIE programming frameworks by introducing a novel tile-based 
programming model in Python that allows users to explicitly map tasks and exploit 
task-level, tile-level, and instruction-level parallelism (via primitives like .to(), 
.pipeline(), .vectorize()).2 ARIES uses a unified MLIR representation, leveraging the 
existing AIEVec dialect for core-level intrinsics and introducing a new ADF 
(Adaptive Data Flow) dialect to model the inter-tile parallelism and dataflow 
connections within the AIE array. It performs multi-level optimizations (global: 
broadcast detection, data forwarding; local: DMA-to-IO conversion, core 
placement, vectorization, buffer management) before generating executable 
code (AIE intrinsics, ADF APIs, HLS C++, XRT host code).2 ARIES demonstrates a 
deep integration of MLIR, using custom dialects to effectively manage the 
complexity and parallelism of the AIE architecture. 



AMD's strategy involves leveraging MLIR across its hardware portfolio, developing 
targeted compiler solutions (Peano, ARIES) and contributing backends to the 
open-source ecosystem. This approach allows them to tailor compilation strategies to 
the specific needs of their NPUs, GPUs, and AIEs within a common infrastructure 
framework. 

6.5 IPUs (Graphcore) 

Graphcore's Intelligence Processing Unit (IPU) features a unique massively parallel 
architecture with numerous independent cores, each with fast local memory.71 The 
software stack for the IPU is the Poplar SDK, which was co-designed with the 
hardware.79 Poplar provides a C++ graph programming framework and libraries 
(PopLibs 82), along with integrations for standard ML frameworks like TensorFlow, 
PyTorch, and ONNX.81 

Poplar's relationship with LLVM and MLIR is that of using them as components within 
its larger, bespoke graph compilation system: 

●​ LLVM: The Poplar graph compiler uses LLVM as a backend to generate code for 
the individual IPU cores.79 

●​ MLIR: Poplar utilizes MLIR for some high-level optimizations within its graph 
compiler.71 The specific nature and extent of these MLIR-based optimizations are 
internal details of the Poplar compiler. 

The Poplar compiler itself manages the complex tasks of scheduling the computation 
graph across the IPU's parallel cores, partitioning work, managing data movement 
between tiles using the IPU's interconnect, and optimizing memory allocation.71 
Poplar's programming model is centered around computational graphs composed of 
fine-grained tasks (vertices).71 

Unlike Tenstorrent's TT-Forge or AMD's ARIES, Poplar is not fundamentally an 
MLIR-based compiler. Instead, it incorporates MLIR technology for specific 
optimization tasks within its own established graph compilation framework, which 
ultimately relies on LLVM for final code generation for the IPU cores. No public, 
specific "IPU dialect" for MLIR is documented as part of the Poplar SDK, suggesting 
MLIR's role is more internal compared to other accelerator vendors who expose MLIR 
dialects as primary interfaces. 

6.6 Other Accelerator Projects & Trends 

The use of MLIR for targeting AI accelerators extends beyond the major players: 



●​ TPU-MLIR: An open-source project specifically targeting Sophgo's TPUs.87 It 
provides a full toolchain, converting models from ONNX, PyTorch, TFLite, and 
Caffe into an MLIR representation using a high-level TOP (Tensor Operation) 
dialect, which is then lowered to a device-specific TPU dialect. The toolchain 
includes quantization capabilities (F16, INT8 with calibration) and generates a final 
executable bmodel file.11 

●​ ONNX-MLIR: This project focuses on providing a direct compilation path from 
ONNX models using an ONNX dialect within MLIR.88 It supports code generation 
for generic CPUs and IBM's Telum AI accelerator, offering compiler interfaces and 
a runtime environment.88 

●​ Intel Graph Compiler: Intel is developing an MLIR-based graph compiler 
designed to optimize deep learning workloads.89 It accepts MLIR (primarily linalg 
on tensors) as input, applies optimizations, and generates code for Intel CPUs and 
GPUs (requiring OpenCL runtime).89 

●​ Hardware/Software Co-design: MLIR's multi-level nature inherently facilitates 
hardware/software co-design.2 By allowing hardware features, constraints, and 
specialized instructions to be represented in dedicated dialects early in the 
compilation flow (as seen in ARIES 2 or the nvgpu dialect 76), MLIR enables tighter 
integration between software compilation strategies and hardware capabilities. 
This allows optimizations to be aware of hardware specifics much earlier than in 
traditional flows that only target hardware late in the process via low-level IR like 
LLVM IR. 

The widespread development of MLIR-based compilers for a variety of accelerators 
(Sophgo TPU, IBM Telum, Intel GPU, AMD NPU/AIE, Tenstorrent IPU) underscores 
MLIR's success as a foundational framework. It significantly lowers the barrier for 
hardware vendors and researchers to build specialized, high-performance compiler 
toolchains, enabling faster support for standard ML frameworks on new and existing 
hardware compared to developing entirely new compiler infrastructures. 

6.7 Hardware Acceleration Summary 

MLIR has become a central technology in the development of compilers for diverse AI 
hardware. Different vendors adopt varying strategies, from deep MLIR-native 
toolchains to using MLIR as a component within larger systems. The ability to define 
custom dialects is key to targeting specialized accelerator features effectively. 

Table 2: MLIR Adoption in Hardware Acceleration (ca. 2022-2025) 

Vendor/Proj Key Relevant Primary Use Integration Key 



ect Compiler/Pr
oject(s) 

MLIR 
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NVIDIA NVCC, CUDA 
Quantum 

gpu, nvgpu, 
nvvm 
(target), 
Quake, CC 
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el Opt & 
Codegen 
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in 
LLVM/CUDA 
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CUDA 
ecosystem, 
C++ 
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AMD 
(GPU/ROCm
) 

ROCm 
Compiler, 
IREE 
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amdgpu, 
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(via IREE) 
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Codegen, 
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Target 

LLVM 
Backend, 
IREE 
Integration 

HIP, OpenCL, 
PyTorch, TF, 
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AMD (Ryzen 
AI NPU) 
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linalg, 
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Backend 
Codegen 

LLVM 
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Source) 
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AMD 
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ARIES AIEVec, ADF 
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Flow 

Python 
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Tenstorrent TT-Forge 
(TT-MLIR) 

TTIR, TTNN, 
TTKernel 
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Toolchain 
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PyTorch, 
JAX, TF, 
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TVM) 
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MLIR 
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High-Level 
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PyTorch, TF, 
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(TPU-MLIR) 

TPU-MLIR TOP, TPU 
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Intel (Graph 
Comp.) 

Intel Graph 
Compiler 

linalg, vector, 
gpu, spirv? 
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Graph 
Optimization 
& Codegen 

MLIR-based 
Compiler 
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7. Key Research Trends and Open Source Impact 
7.1 Influential Research Papers & Themes (Last 2-3 Years) 

The academic and research communities have actively embraced MLIR, pushing its 
capabilities and exploring new application domains. Several key themes and influential 
papers have emerged in the 2022-2025 timeframe: 

●​ Explicit Compiler Control (Transform Dialect): The work culminating in the 
CGO 2025 paper by Lücke, Zinenko, Moses, Steuwer, and Cohen formally 
introduced the Transform dialect.46 This research provides a foundational 
mechanism for fine-grained, programmable control over the compilation process, 
moving beyond static pass pipelines. 

●​ Heterogeneous System Compilation: Addressing the complexity of modern 
systems with multiple, diverse processing units is a major focus. The ARIES paper 
(Zhuang et al., FPGA'25) presented a comprehensive MLIR-based flow for AMD's 
AIEs, demonstrating custom dialects for managing parallelism and memory 
hierarchies.2 Similarly, the HETOCompiler work (arXiv:2407.09333) introduced a 
generic hyper dialect within MLIR to abstract data management and parallel 
computation for general heterogeneous platforms.6 

●​ Integrated Data Analysis Pipelines: The DAPHNE project (Damme et al., 
CIDR'22) pioneered the use of MLIR to build a unified system for pipelines 
combining ETL, ML, and HPC tasks, showcasing MLIR's potential to bridge data 
management and high-performance computation.34 

●​ Modular Compiler Construction and Optimization: Research continues on 
leveraging MLIR for building more modular and reusable compiler components. 
The work by Vasilache et al. (LCPC'22/arXiv'22) focused on composable and 
modular code generation techniques within MLIR, particularly for tensor 
compilers.18 Performance studies, such as achieving near-peak theoretical 
performance for DGEMM using MLIR-based code generation, demonstrate the 
effectiveness of these approaches.60 



●​ Compiler Robustness and Testing: As MLIR's complexity grows, ensuring its 
correctness becomes crucial. Recent research has focused on developing 
specialized fuzzing and testing techniques tailored for MLIR's multi-dialect 
structure. Projects like MLIRSmith, MLIRod, and DESIL aim to automatically 
generate or mutate MLIR code to uncover bugs, including challenging "silent 
bugs" (incorrect results without crashes) and undefined behavior (UB) arising 
from dialect interactions or lowering processes.5 

●​ Hardware Synthesis: MLIR, particularly through the CIRCT project, is being 
explored for high-level synthesis (HLS), translating high-level languages like Julia 
directly into hardware description languages like Verilog.22 

This research activity indicates a maturing MLIR ecosystem. While early work focused 
on establishing the core infrastructure and basic AI compilation, recent efforts are 
tackling more advanced challenges: managing heterogeneity, integrating data 
processing, enhancing compiler programmability and robustness, and extending 
MLIR's reach into adjacent domains like hardware design. 

7.2 Notable Open Source Projects & Libraries 

MLIR's success is intrinsically linked to its vibrant open-source ecosystem. Key 
projects and libraries leveraging MLIR include: 

●​ Core Infrastructure: The upstream LLVM/MLIR project itself remains the central 
hub.15 

●​ Framework Integration: 
○​ Torch-MLIR: Provides the bridge for lowering PyTorch models to MLIR 

dialects.62 

○​ OpenXLA: An ecosystem encompassing XLA (compiler), IREE 
(compiler+runtime), and StableHLO (portability dialect), heavily utilizing MLIR 
for compiling TensorFlow, PyTorch, and JAX.52 

○​ ONNX-MLIR: A dedicated project for compiling ONNX models via an MLIR 
ONNX dialect.88 

●​ Hardware Backends & Toolchains: 
○​ TPU-MLIR: Open-source compiler for Sophgo TPUs.87 

○​ tt-mlir: Tenstorrent's open-source MLIR compiler components.58 

○​ Peano: AMD's open-source LLVM backend for Ryzen AI NPUs.15 

○​ CIRCT: A sub-project focused on MLIR dialects and tools for circuit design 
and HLS.22 

●​ Specialized Domains: 
○​ HEIR: Developing MLIR dialects and tools for compiling Homomorphic 

Encryption computations.29 



○​ Substrait-MLIR: Building an MLIR dialect for the Substrait database query 
plan representation.13 

The diversity of these projects, spanning framework integration, hardware 
enablement, and specialized computational domains, validates MLIR's role as a 
versatile and powerful foundational technology. It provides the essential building 
blocks 1 that enable various communities and companies to construct tailored 
compiler solutions, fulfilling its promise as a reusable and extensible infrastructure.1 

7.3 Community Engagement 

A thriving community is essential for the continued development and adoption of an 
open-source project like MLIR. Key engagement mechanisms include: 

●​ LLVM Developers' Meetings: These biannual conferences are major events for 
the entire LLVM community, including MLIR. They feature technical talks, tutorials, 
workshops (often with dedicated MLIR tracks), panels, and networking 
opportunities.17 Presentations cover topics ranging from core MLIR features like 
bufferization 18 and pattern rewriting 18 to specific applications and dialect 
developments. 

●​ Open Design Meetings: Historically, regular online Open Design Meetings 
provided a forum for discussing MLIR's evolution and design proposals, fostering 
collaboration between Google's initial team and external contributors.3 

●​ LLVM Discourse: The primary platform for online discussion, questions, 
proposals (RFCs), and announcements related to MLIR and LLVM.16 This forum 
replaced older mailing lists, offering better organization and features. 

●​ Tutorials and Documentation: While the official MLIR documentation provides 
language references and some tutorials (e.g., Toy language, mlir-opt usage, 
dialect creation) 8, the rapid pace of development means documentation and 
introductory materials can sometimes lag.92 Community members and projects 
like HEIR often contribute additional tutorials and talks.29 

These avenues facilitate knowledge sharing, collaborative design, and the growth of 
the MLIR user and developer base. 

8. Comparative Analysis and Future Outlook 
8.1 Comparing MLIR-based Approaches 

The flexibility inherent in MLIR means that there isn't a single, monolithic "MLIR 
approach." Instead, different projects and vendors leverage the infrastructure in 
diverse ways, leading to varied architectural patterns: 



●​ MLIR vs. Precursors/Alternatives (TVM, Glow): Projects like Apache TVM and 
Facebook's Glow were early pioneers in ML compilation, addressing the need for 
optimizing framework graphs for diverse hardware.55 TVM, in particular, 
introduced influential concepts like the separation of algorithm and schedule 46 
and employed techniques like autotuning extensively.56 However, TVM faced 
challenges in keeping pace with rapidly evolving hardware (especially specialized 
units like Tensor Cores), suffered from fragmentation as vendors created 
incompatible forks, and its development slowed relative to framework evolution.56 
MLIR, emerging slightly later, focused heavily on providing a robust, multi-level 
infrastructure with dialects, aiming for greater modularity and extensibility from 
the outset.7 While TVM and Glow were initially more focused on being end-to-end 
solutions, MLIR positioned itself as a framework for building such solutions.94 
There is potential for interoperability, perhaps by defining TVM dialects within 
MLIR or translating between their respective IRs.94 Recent research also suggests 
that MLIR-based autotuning approaches (potentially leveraging the Transform 
dialect) might achieve comparable results with significantly fewer samples than 
TVM's methods.95 

●​ Hardware Backend Strategies: Hardware vendors exhibit different MLIR 
adoption strategies. Tenstorrent represents a deep, MLIR-native approach, 
building its entire TT-Forge compiler around custom MLIR dialects.58 NVIDIA 
integrates MLIR more incrementally, using standard (gpu) and custom (nvgpu) 
dialects as intermediate layers above its existing, mature NVVM IR and PTX 
generation backend.26 Graphcore appears to use MLIR as a component for 
specific high-level optimizations within its broader, C++-based Poplar graph 
compiler framework, which relies on LLVM for core-level code generation.71 AMD 
employs MLIR strategically across different product lines, developing specific 
backends (Peano for NPUs 15) and full compilation flows (ARIES for AIEs 2). 

●​ Data Pipeline Strategies: For data processing, the DAPHNE project exemplifies 
an ambitious approach, using MLIR to build an integrated system covering ETL, 
ML, and HPC.34 A more common, perhaps pragmatic, approach involves using 
MLIR to optimize specific compute-intensive kernels within a larger, traditional 
ETL workflow managed by tools like Spark or Airflow. 

This diversity demonstrates MLIR's adaptability. It functions as a versatile toolkit rather 
than a prescriptive solution. Different users select and combine MLIR's components 
(dialects, passes, infrastructure) based on their specific needs, legacy systems, and 
target domains, leading to varied integration depths and architectural choices. 

8.2 Synthesizing Major Trends and Breakthroughs (Last 2-3 Years) 



Analyzing the developments from 2022-2025 reveals several significant trends and 
breakthroughs shaping the MLIR landscape: 

●​ Trend 1: Standardization via Interfaces: A clear trend is the push towards 
standardizing the interfaces between ML frameworks and MLIR-based compilers. 
StableHLO is emerging as the de facto standard input dialect for compilers like 
XLA and IREE, promoting framework portability.52 Simultaneously, PJRT is gaining 
traction as the standard runtime interface, allowing frameworks to dynamically 
load and interact with different hardware backends in a plug-and-play manner.59 

●​ Trend 2: Proliferation of Hardware-Specific Dialects: As more hardware 
vendors adopt MLIR, there is a corresponding increase in the creation of custom, 
vendor-specific dialects (e.g., nvgpu, amdgpu, TTIR, TPU, ADF) designed to 
expose unique hardware features and enable targeted optimizations within the 
MLIR framework.2 

●​ Trend 3: Rise of Explicit Compiler Control: The development and application of 
the Transform dialect represent a significant shift towards giving performance 
engineers direct, programmable control over the compilation process.46 Its 
successful use in debugging, fine-grained optimization, and autotuning 
integration indicates growing adoption. 

●​ Trend 4: Broadening Scope: MLIR's application space is expanding considerably 
beyond its initial focus on core ML model compilation. Active research and 
development are applying MLIR to data analysis pipelines (DAPHNE 34), 
hardware design and synthesis (CIRCT 22), quantum computing (CUDA 
Quantum 27), and homomorphic encryption (HEIR 29). 

●​ Breakthrough 1: Achieving Critical Mass: MLIR has firmly established itself as 
the foundational compiler infrastructure underpinning major industry efforts in AI 
compilation, including OpenXLA, Torch-MLIR, and numerous vendor-specific 
toolchains. Its adoption by key players across the hardware and software 
spectrum signifies it has reached critical mass. 

●​ Breakthrough 2: Demonstrating Performance: MLIR-based compilation 
techniques have proven capable of generating highly optimized code, achieving 
performance close to theoretical hardware peaks for critical computational 
kernels like GEMM, demonstrating its viability for high-performance computing 
tasks.60 

8.3 Future Directions and Challenges 

Despite its successes, MLIR faces ongoing challenges and has clear areas for future 
development: 

●​ Addressing Fragmentation and Identity: The "dialect explosion" and the 



ambiguity between MLIR as core infrastructure versus an AI solution require 
careful management.3 Continued efforts in community governance, potentially 
through mechanisms like the LLVM Area Teams, are needed to ensure coherence, 
manage dialect contributions effectively, and perhaps clarify the boundaries 
between the domain-agnostic core and domain-specific extensions.3 Robust 
mechanisms for dialect versioning and ensuring compatibility between different 
MLIR components (framework frontends, dialects, backends) are crucial to avoid 
issues like the TOSA v1.0 breakage.61 

●​ Improving Usability and Accessibility: While powerful, MLIR currently requires 
significant compiler expertise.47 Making the infrastructure more accessible to 
domain experts (e.g., ML researchers, data scientists) who are not compiler 
specialists is important for broader adoption. This could involve developing 
higher-level abstractions, improving tooling, enhancing documentation and 
tutorials, or further developing programmable interfaces like the Transform 
dialect.47 

●​ Maturing Data Pipeline Integration: While projects like DAPHNE and 
Substrait-MLIR show promise, MLIR's capabilities for handling the full spectrum of 
ETL tasks (especially data extraction, complex cleaning, orchestration) need 
further development to compete with dedicated data engineering frameworks.13 
Defining more comprehensive dialects or libraries for common data processing 
tasks could be beneficial. 

●​ Enhancing End-to-End Optimization: Realizing the full potential of MLIR 
requires enabling more holistic optimizations that span across different dialects, 
abstraction levels, and pipeline stages (e.g., co-optimizing data layout based on 
compute patterns, fusing data transformations with model layers). This requires 
sophisticated analyses and transformation capabilities that can operate across 
dialect boundaries. 

●​ Debugging and Verification: As compilation flows become more complex, 
involving multiple dialects and intricate lowering paths, robust tools and 
techniques for debugging transformations and verifying the correctness of the 
generated code are essential.5 Continued research in areas like MLIR fuzzing and 
formal verification is needed. 

MLIR has successfully established a powerful and flexible foundation. The next phase 
of its evolution will likely focus on refining the ecosystem built upon this foundation, 
improving the developer experience, enhancing its capabilities in adjacent domains 
like data processing, and tackling the complexities arising from its own success to 
fully realize its potential as a unifying force in compilation technology. 



9. Conclusion 
Over the past three years, Multi-Level Intermediate Representation (MLIR) has rapidly 
transitioned from a promising research project to a cornerstone technology 
underpinning the modern AI compilation landscape. Its emergence was driven by the 
fundamental need for a more flexible, extensible, and modular compiler infrastructure 
capable of handling the growing complexity of AI models and the increasing diversity 
of hardware accelerators in the post-Moore's Law era. 

MLIR's core contribution lies in its dialect-based architecture, which enables the 
representation of computation at multiple levels of abstraction within a single, unified 
framework. This has proven instrumental in bridging the gap between high-level AI 
frameworks (TensorFlow, PyTorch, JAX) and the specifics of hardware targets ranging 
from NVIDIA and AMD GPUs to specialized accelerators like Tenstorrent IPUs, AMD 
NPUs and AIEs, and Sophgo TPUs. Vendors are increasingly leveraging MLIR to build 
specialized compilers, often defining custom dialects to expose unique hardware 
capabilities, thereby accelerating the enablement of standard ML frameworks on their 
platforms. 

Key trends during this period include a concerted effort towards standardization 
through common interfaces like StableHLO and PJRT, aiming to decouple frameworks 
from backends and enhance portability. Concurrently, the proliferation of 
hardware-specific dialects highlights MLIR's role in enabling hardware innovation. The 
development and application of the Transform dialect mark a significant 
advancement, offering performance engineers unprecedented fine-grained, 
programmable control over the compilation process itself. Furthermore, MLIR's scope 
has demonstrably broadened beyond core ML compilation, with active research and 
development extending its application to data analysis pipelines, hardware design, 
quantum computing, and cryptography. 

While MLIR's foundational role appears secure, challenges remain. Managing the 
complexity and potential fragmentation arising from its own extensibility, improving 
usability for a wider range of developers, deepening its integration with data 
processing workflows, and enhancing end-to-end optimization capabilities are critical 
areas for future work. Nonetheless, MLIR has fundamentally reshaped the compiler 
landscape for AI and heterogeneous computing. Its trajectory indicates it will continue 
to be a driving force behind innovation, enabling the efficient deployment of 
increasingly sophisticated AI models on current and future generations of computing 
hardware. 
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