
The Transformative Impact of MLIR: Key Developments in AI
Compilation and Hardware Co-Design (2022-2025)
1. Introduction: MLIR in the Era Beyond Moore's Law
The Compiler Challenge

The landscape of computing is undergoing a fundamental transformation. The
relentless pace of Moore's Law, which dictated hardware scaling for decades, is
demonstrably slowing, altering the trajectory of performance improvements.1
Simultaneously, the complexity and scale of Artificial Intelligence (AI) models,
particularly in areas like large language models (LLMs) and generative AI, are
exploding. This confluence of factors has driven the proliferation of diverse and
specialized hardware accelerators – Graphics Processing Units (GPUs), Tensor
Processing Units (TPUs), Neural Processing Units (NPUs), Intelligence Processing
Units (IPUs), AMD's AI Engines (AIEs), Field-Programmable Gate Arrays (FPGAs), and
custom Application-Specific Integrated Circuits (ASICs) – each designed to tackle
specific computational bottlenecks.1 This heterogeneity presents a profound
challenge for compiler technology. Traditional monolithic compiler infrastructures,
such as LLVM and GCC, while powerful for conventional CPU targets, struggle to
effectively manage the complexity and diversity of these modern hardware targets
and the high-level abstractions used in AI frameworks.1 The result was often a
fragmented ecosystem, with different frameworks (TensorFlow, PyTorch, JAX) and
hardware vendors developing bespoke, often incompatible, compiler stacks, leading
to duplicated effort and hindering portability.3

Enter MLIR

Multi-Level Intermediate Representation (MLIR) emerged as a direct response to
these challenges.1 Conceived within Google and now part of the LLVM project, MLIR
represents a paradigm shift in compiler infrastructure design.1 It is not merely another
Intermediate Representation (IR), but a flexible and extensible framework for building
compilers. Its core design principles – modularity, extensibility, and reusability – are
manifest in its unique ability to represent and manipulate code at multiple levels of
abstraction simultaneously.1 This is achieved through the central concept of dialects:
self-contained units that define domain-specific operations, types, and attributes.1
These dialects allow MLIR to bridge the gap between high-level programming models
used in AI frameworks and the low-level details of target hardware, facilitating
progressive lowering and optimization across different abstraction layers.6 MLIR's
Static Single Assignment (SSA)-based structure provides a robust foundation for

analysis and transformation.7

Report Scope and Purpose

This report synthesizes the most significant developments, breakthroughs, and
impactful applications within the MLIR ecosystem over the approximately 2022-2025
timeframe. It provides an expert-level analysis focusing on MLIR's evolving role in AI
software optimization, including the critical area of data processing and pipeline
management, its integration with mainstream AI frameworks, its transformative
influence on AI hardware acceleration and co-design, and the burgeoning research
landscape surrounding it. Particular attention is given to the innovative 'Transform'
dialect and its implications for compiler control. The objective is to present a
comprehensive technical assessment of MLIR's impact and trajectory for an audience
of technical leaders, engineers, and researchers engaged with AI systems and
compiler technology. The analysis underscores that MLIR's rise is not merely
incidental but a necessary evolutionary step in compiler technology, driven by the
fundamental shifts in hardware capabilities and the computational demands of
modern AI.

2. The Evolving MLIR Ecosystem: Growth, Principles, and Identity
2.1 Core Infrastructure Growth and Community Expansion

The period from 2022 to 2025 witnessed substantial growth and activity within the
MLIR project, reflecting its increasing importance and adoption. As an integral part of
the broader LLVM ecosystem, MLIR benefited from the significant development
velocity of LLVM itself. In 2024 alone, the main LLVM repository saw nearly 37,500
commits, adding over 9.3 million lines of code, roughly in line with activity in 2022 and
2023.15 While these figures represent the entire LLVM project, they indicate a healthy
and active development environment within which MLIR resides.

More telling is the dramatic expansion of the contributor base. The number of unique
authors contributing to LLVM surged from 1,573 in 2022 and 1,932 in 2023 to an
unprecedented 2,138 in 2024.15 This represents a more than six-fold increase
compared to the 336 authors a decade prior in 2014.15 This rapid growth strongly
correlates with the emergence and maturation of MLIR, signaling widespread industry
and academic investment. The increasing number of contributors from diverse
organizations signifies that MLIR has transcended its origins as a Google-internal
project 3 and is becoming a de facto standard infrastructure for compiler
development, particularly in the AI domain.

Key catalysts for this growth were the open-sourcing of MLIR and its contribution to

the LLVM Foundation, which made the technology accessible to the entire industry
and fostered collaborative development.3 The community actively engages through
platforms like the LLVM Discourse forums, which replaced the older mailing list system
to provide better structure, searchability, and integration (e.g., with GitHub
accounts).16 Furthermore, events like the biannual LLVM Developers' Meetings, which
explicitly include MLIR content and dedicated MLIR Workshops, serve as crucial hubs
for knowledge sharing, discussion, and networking among developers, researchers,
and users.17

2.2 Foundational Concepts: Dialects, Operations, Extensibility

MLIR's power and flexibility stem from a set of well-defined core concepts.7 At its
heart, MLIR represents programs as a graph-like structure of Operations, which
consume and produce Values. Each Value has a Type known at compile time, and
Operations can possess Attributes representing compile-time constant information.8
Operations are organized within Blocks, which in turn reside within Regions, allowing
for nested structures essential for representing control flow or scoped computations.8
MLIR utilizes an SSA (Static Single Assignment) form, simplifying dataflow analysis.7

The most fundamental concept enabling MLIR's modularity and extensibility is the
Dialect.1 Unlike traditional compiler infrastructures often centered around a single,
monolithic IR 4, MLIR allows developers to define custom dialects. Each dialect
encapsulates a set of operations, types, and attributes relevant to a specific domain
or abstraction level. This allows MLIR to represent diverse concepts, from high-level
framework operations (like TensorFlow or PyTorch ops) and mathematical
abstractions (like linear algebra on tensors) down to hardware-specific instructions
and control flow constructs, all within a unified infrastructure.1

Traditional IRs, operating at a single abstraction level, often face a dilemma when
compiling complex domains like AI. Representing high-level constructs directly can
make the IR unwieldy, while lowering too early ("premature lowering" 7) discards
valuable semantic information needed for effective optimization. MLIR's dialects
circumvent this by enabling a multi-level representation.8 Compilers can start with
high-level dialects preserving domain semantics and progressively lower the IR
through a series of intermediate dialects, applying optimizations at the most
appropriate level.6 This modularity significantly simplifies the construction of complex
compilers, particularly for heterogeneous hardware targets.7

Dialects are typically defined using TableGen, a configuration description language
within LLVM, which generates much of the C++ boilerplate code for operations, types,
and their interfaces.14 The MLIR project includes a rich set of standard dialects that

serve as building blocks, including func (functions), arith (standard arithmetic), scf
(structured control flow), affine (polyhedral abstractions), linalg (linear algebra on
tensors/memrefs), tensor, memref (memory buffers), vector, gpu (GPU abstractions),
and llvm (for lowering to LLVM IR).8 This dialect-based architecture represents a
fundamental shift from monolithic IRs towards composable, multi-level abstractions,
allowing compiler developers to tackle complexity by isolating concerns at appropriate
levels.

2.3 MLIR's Identity Crisis: General Infrastructure vs. AI Solution

MLIR originated within Google Brain specifically to address the fragmentation and
complexity of AI compiler stacks.3 The initial goal was to create a unified, reusable
infrastructure to replace the myriad of incompatible graph technologies and compilers
used across projects like TensorFlow, XLA, and TensorFlow Lite, particularly for
targeting hardware like TPUs.3

However, MLIR was intentionally designed as a general-purpose compiler framework,
not strictly limited to machine learning.3 Its powerful abstractions and extensibility
quickly attracted interest from other domains, leading to its adoption in areas like
quantum computing (e.g., NVIDIA's CUDA Quantum 27), hardware design and
high-level synthesis (HLS) through projects like CIRCT 3, homomorphic encryption
(HEIR 29), and potentially even database query compilation (Substrait-MLIR 13).

This broad success, fueled by its open-sourcing and contribution to the LLVM
Foundation 3, created an "identity crisis".3 While MLIR excels as domain-agnostic,
reusable infrastructure, the AI community simultaneously pushed for it to become an
end-to-end AI compiler solution.3 This led to a "dialect explosion," where numerous
AI-specific dialects (representing framework operations, intermediate optimizations,
etc.) were added to the upstream MLIR project, sometimes with limited governance.3

This situation conflates MLIR's core, general-purpose infrastructure with the specific
AI solutions built upon it. It raises questions about what "MLIR" as a project truly
encompasses and guarantees.3 While MLIR forms the foundation for major AI compiler
projects like OpenXLA and Triton, and is even used within parts of NVIDIA's CUDA
stack 3, the ambiguity between its role as a general framework and a specific AI
solution persists. This internal complexity risks creating fragmentation within the MLIR
ecosystem, potentially mirroring the external fragmentation it was designed to solve.
Recent efforts towards improved governance, such as establishing distinct Area
Teams for MLIR Core and specific dialects, aim to address this challenge and clarify
the project's structure and identity.3

3. MLIR for AI Data Pipelines: Pre-compilation, Structuring, and
Wrangling
3.1 The Critical Role of Data Pipelines in AI

Data is the fundamental input for machine learning models, and the process of
preparing this data – often termed the Extract, Transform, Load (ETL) pipeline – is
critical for successful model training and deployment.30 These pipelines extract raw
data from diverse sources (databases, files, APIs), transform it through cleaning,
normalization, feature engineering, and structuring, and finally load it into a format
suitable for consumption by ML frameworks.30 Ensuring data quality, consistency,
accuracy, and efficient processing is paramount, as the performance and reliability of
ML models are directly dependent on the data they are trained on.30

Input data pipelines often represent a significant performance bottleneck, consuming
substantial compute resources and potentially starving hardware accelerators like
GPUs and TPUs, which can process training steps much faster than data can be
supplied.32 Efficient ETL involves complex operations like handling large data volumes,
applying intricate transformations, managing data shuffling and batching, and
overlapping communication with computation.32 Common preprocessing steps include
data cleaning (handling missing values, outliers, inconsistencies), integration from
multiple sources, data reduction (aggregation, feature selection), data transformation
(normalization, scaling, encoding categorical features), and discretization.36

3.2 MLIR Approaches to Data Optimization

MLIR presents a compelling infrastructure for optimizing data pipelines due to its
ability to represent diverse computations and data structures within a unified
framework.8 While traditional ML workflows often use separate tools for ETL (e.g.,
Spark, Pandas, Airflow 19) and model training, MLIR offers the potential to represent
and optimize both stages cohesively. This co-location enables cross-stage
optimizations that are difficult to achieve otherwise.

Several MLIR-based approaches target data pipeline optimization:

●​ Data Tiling and Packing: Specialized hardware often requires data to be
arranged in specific layouts or processed in tiles for optimal performance. MLIR
can be used to model and optimize these data arrangements. For instance, work
on targeting AMD's Ryzen AI NPUs uses MLIR-based techniques to derive optimal
data tiling and packing strategies, managing data flow through the processor
array and leveraging low-level DMA control for efficient data movement.42

●​ Data Structuring and Wrangling: MLIR dialects can effectively model various

data structures beyond simple tensors, such as multi-dimensional arrays
(memrefs) 8 and potentially even dataframes or semi-structured data like JSON.13
Standard operations within dialects like tensor, memref, and arith, along with
custom operations, can represent common data transformations like reshaping,
transposing, type conversions, and element-wise operations.12

●​ Optimization Techniques: MLIR's pass infrastructure allows applying various
optimizations to data manipulation code. Canonicalization passes can simplify
redundant operations (e.g., transpose(transpose(x)) -> x, or chains of
reshapes).40 Common subexpression elimination (CSE) can remove repeated
calculations.44 Pattern rewriting frameworks (both C++ based and declarative
DRR) enable targeted optimizations like constant folding through reshape
operations.40 Furthermore, MLIR's ability to represent higher-level constructs
facilitates advanced Data Layout Optimizations (DLO) potentially applied via
Link-Time Optimization (LTO). Because MLIR can preserve information about
structures (like C structs) across modules, LTO passes can perform optimizations
like instance interleaving (rearranging fields of structs in an array for better cache
locality) and dead field elimination (removing unused struct fields), which are
simpler to implement in MLIR than in lower-level IRs like LLVM IR.43 Bufferization
passes manage the explicit allocation and deallocation of memory buffers 18, and
specialized primitives like reuse_at and buffer_at (demonstrated in HeteroCL) can
explicitly manage on-chip memory hierarchies and reuse buffers to minimize
off-chip memory access.41

The ability to represent both data preparation steps and model computation within
the same MLIR framework opens possibilities for holistic optimizations, such as fusing
data preprocessing operations directly into compute kernels or optimizing data
layouts based on how the subsequent model consumes the data.43

3.3 Case Studies and Projects

Several research projects and tools demonstrate MLIR's application to data-centric
tasks:

●​ DAPHNE: This system explicitly targets integrated data analysis pipelines
encompassing ETL, ML, and HPC.34 It uses a custom MLIR dialect, DaphneIR, to
represent operations on frames and matrices, along with standard dialects like
SCF for control flow. DAPHNE performs multi-level optimizations within MLIR
before lowering to LLVM, aiming to optimize the entire workflow holistically.34

●​ HeteroCL: Originally based on Halide IR, HeteroCL migrated to MLIR for improved
scalability and extensibility in defining hardware customizations.41 Its HCL dialect
allows specifying compute, data type, and memory customizations. Notably, it

includes primitives like .reuse_at() and .buffer_at() to explicitly generate and
manage reuse buffers and write buffers within custom memory hierarchies,
crucial for optimizing data movement in data-intensive applications.41

●​ Substrait-MLIR: This ongoing project aims to create an MLIR dialect for
Substrait, a cross-language format for database query plans.13 By representing
database operations within MLIR, it seeks to provide a common infrastructure for
query optimization and potentially bridge the gap between traditional data
processing systems and MLIR's AI/HPC capabilities.13

●​ Noisy Arithmetic Example: While focused on homomorphic encryption (FHE) 29,
the example of tracking "noise" through integer arithmetic using an MLIR analysis
pass demonstrates a relevant capability.45 Similar analyses could track data
quality metrics, distributions, or other properties through complex ETL
transformations within MLIR.

These projects illustrate that MLIR's flexibility extends beyond tensor computations.
Its application to data management, memory hierarchy optimization, and query plan
representation signals a trend towards using MLIR as a unifying infrastructure for data
engineering and AI engineering tasks.

3.4 Comparison and Challenges

While MLIR offers significant potential for optimizing the transformation and loading
stages of ETL, particularly when tightly coupled with ML model execution, it currently
faces challenges compared to mature, dedicated ETL frameworks and libraries.

MLIR's strengths lie in its potential for deep hardware optimization, fusion of data
preparation with compute kernels, and unified representation. However, established
ETL tools like Apache Spark, Apache Airflow, Pandas, or commercial platforms 19
possess rich ecosystems with extensive connectors for diverse data sources (the
'Extract' stage), sophisticated orchestration and scheduling features, mature
monitoring capabilities, and high-level APIs optimized for data manipulation
productivity.

Representing complex data cleaning logic (e.g., intricate validation rules, fuzzy
matching) or stateful transformations might be less straightforward or efficient in
MLIR's current dialects compared to specialized Python libraries like Pandas or data
quality tools.36 Therefore, MLIR is unlikely to replace the entire data engineering stack
in the near term. Its most promising role appears to be in accelerating the
computationally intensive transformation steps within data pipelines and enabling
tighter integration and co-optimization with downstream ML model execution, rather

than managing the entire end-to-end ETL process.

4. The Transform Dialect: Unleashing Fine-Grained Compiler
Control
4.1 Motivation: Beyond Monolithic Passes

Traditional compiler optimization flows rely heavily on sequences of pre-defined
passes (pass pipelines), often configured via command-line flags.46 While effective for
general-purpose optimization, this coarse-grained approach often lacks the precision
required to optimize specific, critical sections of code for the diverse and specialized
hardware prevalent today.46 Source-level annotations or pragmas offer finer control
but are typically limited to specific transformations anticipated by compiler
developers and require invasive, non-modular compiler changes to implement.47

A significant limitation of this model is that much of the powerful transformation logic
implemented within compiler helper functions (e.g., routines for tiling, unrolling,
vectorizing specific loops) remains hidden or inaccessible to the end-user unless they
are willing to write custom compiler passes in C++ and rebuild the compiler – a task
requiring deep compiler expertise.46 Domain-specific scheduling languages like Halide
and TVM address this by separating the algorithm from its optimization schedule, but
they typically require reimplementing optimizations within their own frameworks and
do not easily integrate with existing general-purpose compiler infrastructure.46 The
MLIR Transform dialect was conceived to bridge this gap, providing a mechanism to
expose and compose existing compiler capabilities with fine-grained precision
directly within the MLIR framework.46

4.2 Core Concepts and Implementation

The Transform dialect is, itself, an MLIR dialect, but its purpose is meta-compilational:
it defines operations that manipulate and transform other MLIR code (the "payload"
IR).46 Instead of the compiler executing a fixed pipeline, it interprets a Transform
dialect script provided by the user, which explicitly directs the optimization process.46

Key concepts include:

●​ Handles: Transform operations operate on handles, which are standard MLIR SSA
values. These handles represent lists of operations within the payload IR that are
targeted by the transformation.49 Handles can be produced by matching
operations (e.g., match.op) or as results of other transform operations.

●​ Transform Operations: These are operations defined within the Transform
dialect (e.g., loop.tile, loop.unroll, bufferization.eliminate_alloc_tensor). Each

transform operation typically takes one or more handles as input, applies a
specific compiler transformation (often leveraging existing internal compiler
functions) to the associated payload operations, and produces new handles
corresponding to the newly created or modified payload operations.46

●​ Payload IR: The actual program code (e.g., user functions containing loops and
computations) that is being optimized.

●​ Transform IR: The MLIR code written using the Transform dialect that specifies
the sequence of optimizations to apply to the payload IR.

Consider this illustrative example adapted from 49:

MLIR

// Transform IR Script​
transform.named_sequence @optimize_loops(%payload_func :!transform.any_op) {​
 // Find the first 'scf.for' loop inside the payload function​
 %outer_loop = transform.structured.match ops{["scf.for"]} in %payload_func​
 ->!transform.op<"scf.for">​
​
 // Define tile sizes​
 %c8 = transform.param.constant 8 : index​
​
 // Tile the outer loop with size 8​
 %tiled_loops:2 = transform.structured.tile_using_for %outer_loop tile_sizes [%c8]​
 interchange​
 -> (!transform.op<"scf.for">,!transform.op<"scf.for">)​
​
 // Unroll the inner tiled loop (handle: %tiled_loops#1) completely​
 %unrolled_inner = transform.loop.unroll %tiled_loops#1 { factor = 0 } // factor=0
means full unroll​
 ->!transform.any_op​
​
 transform.yield​
}​

This script finds a loop in the payload, tiles it, and then unrolls the inner loop resulting
from the tiling. The Transform dialect is implemented within MLIR and features an

extensible design, allowing new transform operations to be added easily.46 An
interface mechanism allows existing C++ helper functions within the compiler to be
exposed as Transform dialect operations.47

4.3 Key Capabilities

The Transform dialect provides several powerful capabilities:

●​ Composition: Simple, atomic transform operations can be chained together,
using the handles produced by one transform as input to the next, allowing the
construction of arbitrarily complex optimization pipelines.46

●​ Extensibility: New transformations can be exposed by defining new Transform
dialect operations and associating them with the corresponding C++
implementation, without altering the core dialect or requiring users to rebuild the
entire compiler for every new optimization strategy.46

●​ Static Verification: A crucial feature is the system of pre- and post-conditions
associated with transform operations.46 Handle types (e.g.,
!transform.op<"scf.for">) specify the expected type of payload operation a
transform can be applied to. Attributes can add further constraints. This allows
the MLIR infrastructure to statically verify the Transform script, catching errors
like applying a loop transformation to a non-loop operation or applying a
destructive transform twice to the same handle before executing the potentially
expensive compilation.46 The transform.cast operation allows explicit type
checking between transforms.51

●​ Parameterization: Transformations can be configured using parameters, which
can be compile-time constants (like tile sizes or unroll factors) or even values
derived dynamically from the payload IR itself, enabling more adaptive
optimization strategies.49

By representing the optimization strategy itself as MLIR IR, the Transform dialect
elevates compiler control from a simple configuration task to a programmable one.
This "compiler programming" paradigm opens the door to analyzing, verifying, and
potentially even automatically generating or optimizing the compilation strategy itself,
integrating naturally with techniques like autotuning.

4.4 Applications and Impact (Case Studies from CGO 2025 Paper)

The practical utility and impact of the Transform dialect were demonstrated through
five case studies presented in the CGO 2025 paper 46:

1.​ Expressing Pass Pipelines: This study showed that existing, coarse-grained
pass pipelines can be faithfully replicated using Transform dialect scripts with

negligible compilation time overhead, confirming its efficiency as a control
mechanism.46

2.​ Robust Lowering: This case study focused on lowering IR containing a complex
mix of dialects. It highlighted the critical role of the Transform dialect's static pre-
and post-conditions in building robust and reliable lowering sequences,
preventing errors that might occur in less explicitly controlled pass pipelines.46

3.​ Debugging Performance: The Transform dialect proved effective in diagnosing
performance regressions. By enabling fine-grained control over which
optimizations were applied where, developers could quickly isolate and disable
counter-productive transformation patterns that were hurting performance.46

4.​ Fine-Grained Optimization: This study demonstrated the power of precise
control. By meticulously applying loop tiling, vectorization, and importantly,
integrating calls to specialized, highly optimized microkernel library functions
(exposed via custom transform ops), significant performance improvements were
achieved on relevant benchmarks, surpassing what standard pass pipelines could
deliver.49

5.​ Autotuning Integration: The final case study showed the ease with which the
Transform dialect integrates with state-of-the-art autotuning frameworks. The
parameterized nature of the Transform script allowed search algorithms to
effectively explore the optimization space (e.g., different tile sizes, unroll factors)
to find high-performing configurations automatically.48

These case studies collectively validate the Transform dialect's practical value across
the compiler development and performance engineering lifecycle. They provide
concrete evidence that it delivers on its promise of fine-grained control, reusability of
compiler internals, improved robustness, and seamless integration with automated
tuning methods, offering tangible advantages over traditional compiler control
mechanisms.

5. MLIR Integration in Mainstream AI Frameworks: Bridging the
Gap
5.1 The Need for Framework Integration

Modern AI frameworks like TensorFlow, PyTorch, and JAX provide high-level,
productive interfaces for defining complex machine learning models. However,
translating these high-level descriptions into efficient code that runs optimally across
a diverse landscape of hardware accelerators (CPUs, GPUs, TPUs, etc.) is a major
challenge.1 This necessitates sophisticated compiler backends capable of
understanding both the semantics of the ML framework and the intricacies of the

target hardware. MLIR, along with related projects like XLA and IREE, has emerged as
a critical technology for building these compiler backends, enabling performance
optimization, hardware targeting, and improved portability.

5.2 TensorFlow & OpenXLA

TensorFlow has long utilized XLA (Accelerated Linear Algebra) as a compiler backend
to optimize performance, particularly on Google's TPUs and also for GPUs and CPUs.52
XLA aims to improve execution speed by fusing operations and specializing code,
enhance memory usage via buffer analysis, and reduce reliance on custom ops by
optimizing fused low-level ops automatically.52

XLA's architecture heavily involves MLIR.52 While historically using its own HLO (High
Level Operations) representation, the modern XLA pipeline increasingly relies on MLIR
dialects. The StableHLO dialect now serves as the primary, versioned interface layer
between ML frameworks (including TensorFlow, PyTorch via Torch-MLIR, and JAX)
and MLIR-based compilers like XLA and IREE.52 Models are lowered from the
framework's representation to StableHLO, which is then consumed by the compiler
backend. XLA performs target-independent optimizations on StableHLO/HLO (like
CSE, fusion) before invoking target-specific backends (e.g., GPU, CPU) for further
optimization and code generation, often via the MLIR LLVM dialect.52

The TOSA (Tensor Operator Set Architecture) dialect is another MLIR dialect relevant
to TensorFlow, particularly for TensorFlow Lite (TFLite) inference.61 However, the
incremental upgrade of TOSA to v1.0 exposed significant compatibility challenges
between TensorFlow/TFLite (which generated the older TOSA version) and
downstream compilers like IREE (which adopted the newer v1.0).61 This breakage,
occurring around late 2024 / early 2025, necessitated users pinning to older versions
of TensorFlow, IREE, and associated tooling to maintain compatibility, highlighting the
critical need for careful versioning and coordination across the decoupled
components of the MLIR ecosystem.61

To simplify the integration of diverse hardware backends with frameworks like
TensorFlow and JAX, the PJRT (Plugin-based Runtime) interface was developed and
open-sourced as part of OpenXLA.58 PJRT provides a standardized API for frameworks
to discover, load, and interact with different compiler runtimes and hardware devices
dynamically. This allows hardware vendors to provide PJRT plugins for their devices,
enabling framework support without requiring deep integration into the framework's
core codebase.59 Intel, for example, uses PJRT to provide its GPU backend for
TensorFlow and JAX.59

The OpenXLA project represents a collaborative effort by Google and numerous
industry partners (including AMD, NVIDIA, Intel, Arm, Meta, AWS) to develop an
open-source ecosystem of ML compiler technologies, with XLA, StableHLO, IREE, and
PJRT as key components, all leveraging MLIR.52 This initiative aims to standardize
interfaces, promote portability, and reduce the N*M integration complexity between
frameworks and hardware targets.

5.3 PyTorch

PyTorch, known for its dynamic nature and Pythonic interface, presents different
challenges for compiler integration compared to TensorFlow or JAX. The Torch-MLIR
project serves as the primary bridge connecting the PyTorch ecosystem to
MLIR-based backends.62 It is designed as core infrastructure for building end-to-end
compilation flows, rather than being a complete compiler itself.62

Torch-MLIR's architecture features a frontend and a backend.62 The frontend ingests
various PyTorch program representations (primarily via PyTorch's JIT IR, which can be
produced by TorchScript, TorchDynamo/torch.compile, torch.fx, etc.) and lowers them
to the MLIR torch dialect. This dialect mirrors many PyTorch concepts, including its
type system and operators.62

A critical stage in the frontend is lowering the torch dialect representation to conform
to the "backend contract". This contract defines a subset of the torch dialect with
specific properties required by downstream MLIR backends: tensors must have value
semantics (be immutable and non-aliased), and tensors must have known ranks
(number of dimensions) and data types (dtypes), ideally with fully known shapes.62
Achieving this contract, especially when starting from TorchScript (which represents
stateful nn.Module hierarchies and lacks static shape information), requires significant
transformations handled by pipelines like
torchscript-module-to-torch-backend-pipeline. These include functionalization
(converting stateful modules to functional code), shape and dtype inference (often
requiring user hints), and simplification of Pythonic constructs.62 The impedance
mismatch between PyTorch's dynamic, object-oriented nature and the typically static,
functional nature expected by MLIR compiler backends necessitates this dedicated
bridging infrastructure.

Once the IR conforms to the backend contract, Torch-MLIR's backend can lower it to
various target MLIR dialects, including Linalg (for CPU/GPU codegen via LLVM), TOSA,
and StableHLO (for integration with XLA/IREE).62 This modular design allows different
compiler backends to consume PyTorch models via the standardized backend

contract provided by Torch-MLIR.

5.4 JAX

JAX leverages a functional programming paradigm combined with transformations like
jax.jit (just-in-time compilation), jax.grad (automatic differentiation), and jax.vmap
(auto-vectorization).65 For its JIT compilation capabilities, JAX relies heavily on the
XLA compiler.65

The integration between JAX and MLIR-based backends like XLA and IREE is
facilitated primarily through StableHLO and the PJRT runtime interface.52 When jax.jit
is invoked, the JAX function is traced and converted into JAX IR, which is then lowered
to StableHLO.67 This StableHLO representation is passed via the PJRT interface to the
selected backend (e.g., XLA compiler for GPU/TPU, IREE compiler, or potentially other
PJRT plugins) for optimization and code generation.52

JAX's functional nature generally maps more cleanly onto compiler IRs like StableHLO
compared to the complexities of handling PyTorch's stateful modules. This relatively
direct mapping simplifies the compiler integration task and likely contributes to JAX's
strong performance and adoption on accelerators via XLA and IREE.54 Research
efforts also explore extending JAX's capabilities using MLIR backends, such as the
experimental work on providing MLIR-based sparse tensor support for JAX.68 JAX,
combined with XLA's capabilities for automatic parallelization (GSPMD) 54 and PJRT's
multi-device support, is widely used for large-scale model training.54

5.5 Framework Integration Summary

The integration of MLIR into major AI frameworks is a dynamic and evolving process,
aiming to provide portability and performance across diverse hardware. The move
towards standardized interfaces like StableHLO and PJRT within the OpenXLA
ecosystem represents a significant effort to create a more modular and interoperable
landscape. However, challenges related to dialect versioning, maintaining
performance parity, and bridging the gap between dynamic framework features and
static compiler requirements remain active areas of development.

Table 1: MLIR Integration in Major AI Frameworks (ca. 2022-2025)

Framework Key MLIR

Integration
Project(s)

Core Input
Dialect(s) to
Compiler

Integration
Interface/La
yer

Notable
Successes/
Capabilities

Key
Challenges/
Recent

Issues

TensorFlow OpenXLA
(XLA, IREE),
TensorFlow
Lite

StableHLO,
TOSA

PJRT, TF C
API

Strong
TPU/GPU/CP
U support
via XLA,
TFLite
inference
ecosystem

TOSA v1.0
compatibility
issues 61,
Historical
complexity

PyTorch Torch-MLIR,
OpenXLA
(IREE, XLA)

torch ->
StableHLO,
TOSA, Linalg

torch.compil
e, PJRT

Growing
backend
support
(IREE, XLA),
Modular
bridge
design

Lowering
complexity
(state,
dynamic
shapes) 62,
Performance
tuning

JAX OpenXLA
(XLA, IREE)

StableHLO jax.jit, PJRT High
performance
on
accelerators,
Clean
functional
mapping

Reliance on
XLA/IREE
backend
maturity,
Custom op
handling 63

6. MLIR Reshaping Hardware: AI Accelerators and Co-Design
6.1 The Imperative for Hardware-Specific Compilation

The proliferation of specialized AI accelerators is a direct consequence of the need to
overcome the limitations of general-purpose processors for demanding AI workloads.1
Achieving peak performance on these diverse architectures—ranging from massively
parallel GPUs to dataflow-oriented TPUs/IPUs and VLIW-based AIEs—requires
compilers that can understand and exploit their unique features.2 Generic compilation
strategies are often insufficient.4 MLIR's extensible dialect system provides a powerful
mechanism for hardware designers and compiler engineers to create domain-specific
compilers that effectively map high-level AI models onto specialized hardware,
significantly reducing the cost and complexity compared to building compilers from
scratch.1

6.2 Tenstorrent

Tenstorrent provides a compelling example of deep, native MLIR adoption for

targeting specialized AI hardware. Their core compiler is TT-Forge, explicitly built
upon MLIR.58 The associated TT-MLIR open-source project defines a hierarchy of
custom MLIR dialects to represent computations targeting Tenstorrent accelerators 58:

●​ TTIR (Tenstorrent Intermediate Representation): A primary IR level for
Tenstorrent hardware.

●​ TTNN (Tenstorrent Neural Network): Likely represents higher-level neural
network constructs or fused operations suitable for their architecture.

●​ TTKernel: Represents lower-level kernel details.
●​ (Future dialects like .ttm, .ttnn mentioned in TT-Explorer roadmap 73)

TT-Forge supports multiple frontends to ingest models from standard frameworks,
leveraging open standards: tt-torch (using PyTorch 2.X/torch-mlir, outputting
StableHLO), tt-forge-fe (using TVM to handle PyTorch, ONNX, TF), and tt-xla (using
PJRT to ingest JAX via StableHLO).58

A particularly innovative aspect of Tenstorrent's toolchain is TT-Explorer, a graphical
tool designed for "Human-In-Loop" compilation.58 TT-Explorer allows users to
visualize the TTIR graph, inspect operation attributes, view performance and accuracy
metrics overlaid on the graph, edit parameters via an "Overrides" mechanism, trigger
re-compilation, and observe the results.73 Its roadmap includes support for more
dialects, visualizing graph transformations, and integration with other tools.73 This
interactive approach, enabled by MLIR's structured IR, empowers developers to
directly tune and optimize models for Tenstorrent hardware. Tenstorrent's strategy
showcases a full commitment to the MLIR philosophy, building a comprehensive,
MLIR-native toolchain with custom dialects and novel interactive tooling, while also
embracing interoperability through standards like StableHLO and PJRT.

6.3 NVIDIA

NVIDIA's CUDA platform remains the dominant ecosystem for GPU computing. While
CUDA itself predates MLIR, NVIDIA is actively integrating MLIR into its compiler stack,
leveraging its capabilities while building upon its existing, mature infrastructure.3
NVIDIA contributes significantly to the LLVM project, upon which its CUDA Compiler
(NVCC) is based.74

MLIR's integration appears primarily as intermediate layers bridging high-level
representations to NVIDIA's established backend:

●​ NVVM IR: This is NVIDIA's internal, LLVM IR-based representation for GPU
kernels, featuring specific conventions, address spaces (global, shared,
constant), and intrinsic functions.74 NVCC compiles source languages or

higher-level IRs down to NVVM IR, which is then optimized and translated to PTX
(Parallel Thread Execution) assembly.74 NVVM IR has its own versioning and debug
metadata specifications.75

●​ MLIR gpu Dialect: This standard MLIR dialect provides target-agnostic
abstractions for common GPU programming concepts, such as kernel launches
(gpu.launch), kernel functions (gpu.func), thread and block IDs (gpu.thread_id,
gpu.block_id), barriers, and memory spaces (global, workgroup/shared).26 A
typical compilation pipeline involves outlining the body of a gpu.launch into a
separate gpu.func kernel, attaching target-specific information (like SM
architecture via nvvm.attach_target), and then lowering the gpu dialect
operations to the nvvm dialect using passes like convert-gpu-to-nvvm.26

●​ MLIR nvgpu Dialect: This dialect serves as a bridge between the target-agnostic
gpu and vector dialects and the target-specific nvvm dialect.76 It represents
NVIDIA-specific hardware features and PTX-level operations directly in MLIR,
such as asynchronous data copies between global and shared memory
(nvgpu.device_async_copy, managed via groups), memory barriers
(nvgpu.mbarrier.*), matrix load operations (nvgpu.ldmatrix), Tensor Memory
Accelerator (TMA) operations for efficient memory access (nvgpu.tma.*), and
Matrix Multiply-Accumulate (MMA) instructions, including support for sparse
MMA and warpgroup-level operations targeting newer architectures.76 This allows
optimizations related to these specific hardware features to be expressed and
performed within MLIR before the final lowering to NVVM/PTX.

●​ CUDA Quantum: For its quantum computing platform, NVIDIA adopted a more
MLIR-native approach from the outset.27 The nvq++ compiler uses Clang to parse
C++ code and then leverages custom MLIR dialects (Quake for quantum
operations, CC for classical control) to represent the quantum kernels.28 Tools like
cudaq-quake perform the C++ AST to MLIR conversion, and cudaq-opt applies
MLIR passes for optimization.28 The platform even allows users to register and run
their own custom MLIR passes on the Quake IR.27

Overall, NVIDIA's strategy appears evolutionary, integrating MLIR into its highly
optimized CUDA/NVCC/LLVM toolchain primarily as intermediate abstraction layers
(gpu, nvgpu) rather than replacing the entire backend. This leverages MLIR's
strengths in handling higher-level structures while retaining the mature and
performant NVVM/PTX code generation infrastructure. Newer initiatives like CUDA
Quantum demonstrate a deeper, ground-up MLIR adoption. Public details on future
MLIR roadmap specifics beyond existing dialects are limited, though GTC
presentations hint at ongoing work, potentially around runtime compilation or

enhanced Python integration.77

6.4 AMD

AMD is actively utilizing and contributing to the LLVM/MLIR ecosystem to support its
diverse range of hardware, including CPUs, ROCm-based GPUs, Ryzen AI NPUs, and
Versal AI Engines (AIEs).

●​ Ryzen AI NPUs: For its NPUs based on XDNA architecture (found in Ryzen AI
processors like Phoenix, Hawk Point, and the upcoming Strix Point with XDNA2),
AMD open-sourced "Peano".15 Peano is an LLVM compiler backend designed
specifically for these AI engines, enabling compilation for this specialized
hardware within the standard LLVM/MLIR framework.15 Complementing this, work
presented at FOSDEM 2025 focuses on using MLIR dialects and passes for
optimizing data tiling and packing specifically for Ryzen AI NPUs, aiming to
efficiently manage data movement and utilize DMA capabilities.42

●​ ROCm & GPUs: AMD continues to enhance its ROCm platform for GPU
computing. Research efforts showcased include running standard, unmodified
C/C++ code directly on AMD GPUs via LLVM/ROCm, bypassing the need for
specific GPU languages.15 The porting of the classic game DOOM to run almost
entirely on the GPU using ROCm and LLVM libc serves as a demonstration of this
capability.15 Frameworks like IREE utilize MLIR to compile models (e.g., from
PyTorch) for execution on AMD GPUs (often via SPIR-V or ROCm backends),
offering an alternative to lower-level programming models like OpenCL or HIP.69

●​ AI Engines (AIEs): Targeting the complex, heterogeneous Versal ACAP devices
containing AIE arrays requires sophisticated compilation flows. The ARIES
project, developed at Cornell and collaborators, provides an MLIR-based
compilation flow specifically for AIE architectures.2 It addresses limitations of
previous AIE programming frameworks by introducing a novel tile-based
programming model in Python that allows users to explicitly map tasks and exploit
task-level, tile-level, and instruction-level parallelism (via primitives like .to(),
.pipeline(), .vectorize()).2 ARIES uses a unified MLIR representation, leveraging the
existing AIEVec dialect for core-level intrinsics and introducing a new ADF
(Adaptive Data Flow) dialect to model the inter-tile parallelism and dataflow
connections within the AIE array. It performs multi-level optimizations (global:
broadcast detection, data forwarding; local: DMA-to-IO conversion, core
placement, vectorization, buffer management) before generating executable
code (AIE intrinsics, ADF APIs, HLS C++, XRT host code).2 ARIES demonstrates a
deep integration of MLIR, using custom dialects to effectively manage the
complexity and parallelism of the AIE architecture.

AMD's strategy involves leveraging MLIR across its hardware portfolio, developing
targeted compiler solutions (Peano, ARIES) and contributing backends to the
open-source ecosystem. This approach allows them to tailor compilation strategies to
the specific needs of their NPUs, GPUs, and AIEs within a common infrastructure
framework.

6.5 IPUs (Graphcore)

Graphcore's Intelligence Processing Unit (IPU) features a unique massively parallel
architecture with numerous independent cores, each with fast local memory.71 The
software stack for the IPU is the Poplar SDK, which was co-designed with the
hardware.79 Poplar provides a C++ graph programming framework and libraries
(PopLibs 82), along with integrations for standard ML frameworks like TensorFlow,
PyTorch, and ONNX.81

Poplar's relationship with LLVM and MLIR is that of using them as components within
its larger, bespoke graph compilation system:

●​ LLVM: The Poplar graph compiler uses LLVM as a backend to generate code for
the individual IPU cores.79

●​ MLIR: Poplar utilizes MLIR for some high-level optimizations within its graph
compiler.71 The specific nature and extent of these MLIR-based optimizations are
internal details of the Poplar compiler.

The Poplar compiler itself manages the complex tasks of scheduling the computation
graph across the IPU's parallel cores, partitioning work, managing data movement
between tiles using the IPU's interconnect, and optimizing memory allocation.71
Poplar's programming model is centered around computational graphs composed of
fine-grained tasks (vertices).71

Unlike Tenstorrent's TT-Forge or AMD's ARIES, Poplar is not fundamentally an
MLIR-based compiler. Instead, it incorporates MLIR technology for specific
optimization tasks within its own established graph compilation framework, which
ultimately relies on LLVM for final code generation for the IPU cores. No public,
specific "IPU dialect" for MLIR is documented as part of the Poplar SDK, suggesting
MLIR's role is more internal compared to other accelerator vendors who expose MLIR
dialects as primary interfaces.

6.6 Other Accelerator Projects & Trends

The use of MLIR for targeting AI accelerators extends beyond the major players:

●​ TPU-MLIR: An open-source project specifically targeting Sophgo's TPUs.87 It
provides a full toolchain, converting models from ONNX, PyTorch, TFLite, and
Caffe into an MLIR representation using a high-level TOP (Tensor Operation)
dialect, which is then lowered to a device-specific TPU dialect. The toolchain
includes quantization capabilities (F16, INT8 with calibration) and generates a final
executable bmodel file.11

●​ ONNX-MLIR: This project focuses on providing a direct compilation path from
ONNX models using an ONNX dialect within MLIR.88 It supports code generation
for generic CPUs and IBM's Telum AI accelerator, offering compiler interfaces and
a runtime environment.88

●​ Intel Graph Compiler: Intel is developing an MLIR-based graph compiler
designed to optimize deep learning workloads.89 It accepts MLIR (primarily linalg
on tensors) as input, applies optimizations, and generates code for Intel CPUs and
GPUs (requiring OpenCL runtime).89

●​ Hardware/Software Co-design: MLIR's multi-level nature inherently facilitates
hardware/software co-design.2 By allowing hardware features, constraints, and
specialized instructions to be represented in dedicated dialects early in the
compilation flow (as seen in ARIES 2 or the nvgpu dialect 76), MLIR enables tighter
integration between software compilation strategies and hardware capabilities.
This allows optimizations to be aware of hardware specifics much earlier than in
traditional flows that only target hardware late in the process via low-level IR like
LLVM IR.

The widespread development of MLIR-based compilers for a variety of accelerators
(Sophgo TPU, IBM Telum, Intel GPU, AMD NPU/AIE, Tenstorrent IPU) underscores
MLIR's success as a foundational framework. It significantly lowers the barrier for
hardware vendors and researchers to build specialized, high-performance compiler
toolchains, enabling faster support for standard ML frameworks on new and existing
hardware compared to developing entirely new compiler infrastructures.

6.7 Hardware Acceleration Summary

MLIR has become a central technology in the development of compilers for diverse AI
hardware. Different vendors adopt varying strategies, from deep MLIR-native
toolchains to using MLIR as a component within larger systems. The ability to define
custom dialects is key to targeting specialized accelerator features effectively.

Table 2: MLIR Adoption in Hardware Acceleration (ca. 2022-2025)

Vendor/Proj Key Relevant Primary Use Integration Key

ect Compiler/Pr
oject(s)

MLIR
Dialects
(Standard &
Custom)

Case Approach Frameworks
Supported
(via
Compiler)

NVIDIA NVCC, CUDA
Quantum

gpu, nvgpu,
nvvm
(target),
Quake, CC
(Quantum)

Mid/Low-lev
el Opt &
Codegen

Component
in
LLVM/CUDA
stack

CUDA
ecosystem,
C++
(Quantum)

AMD
(GPU/ROCm
)

ROCm
Compiler,
IREE

gpu, rocdl
(target),
amdgpu,
StableHLO
(via IREE)

Backend
Codegen,
Framework
Target

LLVM
Backend,
IREE
Integration

HIP, OpenCL,
PyTorch, TF,
JAX (via
IREE)

AMD (Ryzen
AI NPU)

Peano Custom
(Peano
backend),
linalg,
vector?

Backend
Codegen

LLVM
Backend
(Open
Source)

C/C++,
Frameworks
via higher
layers?

AMD
(AIE/Versal)

ARIES AIEVec, ADF
(custom),
affine, scf,
memref

Full
Heterogeneo
us
Compilation

MLIR-native
Flow

Python
(Custom API)

Tenstorrent TT-Forge
(TT-MLIR)

TTIR, TTNN,
TTKernel
(custom),
StableHLO
(input)

Full
Compilation
Toolchain

MLIR-native
Flow

PyTorch,
JAX, TF,
ONNX (via
TVM)

Graphcore Poplar SDK Standard
MLIR
dialects
(internal use)

High-Level
Graph Opt.

Component
in Poplar
stack

PyTorch, TF,
ONNX (via
Poplar)

Sophgo
(TPU-MLIR)

TPU-MLIR TOP, TPU
(custom)

Full
Compilation
Toolchain

MLIR-native
Flow (Open
Source)

PyTorch,
ONNX,
TFLite, Caffe

Intel (Graph
Comp.)

Intel Graph
Compiler

linalg, vector,
gpu, spirv?
(target)

Graph
Optimization
& Codegen

MLIR-based
Compiler

Frameworks
emitting
linalg?

IBM
(ONNX-MLI
R)

ONNX-MLIR ONNX
(custom)

ONNX Model
Compilation

MLIR-based
Compiler
(Open
Source)

ONNX

7. Key Research Trends and Open Source Impact
7.1 Influential Research Papers & Themes (Last 2-3 Years)

The academic and research communities have actively embraced MLIR, pushing its
capabilities and exploring new application domains. Several key themes and influential
papers have emerged in the 2022-2025 timeframe:

●​ Explicit Compiler Control (Transform Dialect): The work culminating in the
CGO 2025 paper by Lücke, Zinenko, Moses, Steuwer, and Cohen formally
introduced the Transform dialect.46 This research provides a foundational
mechanism for fine-grained, programmable control over the compilation process,
moving beyond static pass pipelines.

●​ Heterogeneous System Compilation: Addressing the complexity of modern
systems with multiple, diverse processing units is a major focus. The ARIES paper
(Zhuang et al., FPGA'25) presented a comprehensive MLIR-based flow for AMD's
AIEs, demonstrating custom dialects for managing parallelism and memory
hierarchies.2 Similarly, the HETOCompiler work (arXiv:2407.09333) introduced a
generic hyper dialect within MLIR to abstract data management and parallel
computation for general heterogeneous platforms.6

●​ Integrated Data Analysis Pipelines: The DAPHNE project (Damme et al.,
CIDR'22) pioneered the use of MLIR to build a unified system for pipelines
combining ETL, ML, and HPC tasks, showcasing MLIR's potential to bridge data
management and high-performance computation.34

●​ Modular Compiler Construction and Optimization: Research continues on
leveraging MLIR for building more modular and reusable compiler components.
The work by Vasilache et al. (LCPC'22/arXiv'22) focused on composable and
modular code generation techniques within MLIR, particularly for tensor
compilers.18 Performance studies, such as achieving near-peak theoretical
performance for DGEMM using MLIR-based code generation, demonstrate the
effectiveness of these approaches.60

●​ Compiler Robustness and Testing: As MLIR's complexity grows, ensuring its
correctness becomes crucial. Recent research has focused on developing
specialized fuzzing and testing techniques tailored for MLIR's multi-dialect
structure. Projects like MLIRSmith, MLIRod, and DESIL aim to automatically
generate or mutate MLIR code to uncover bugs, including challenging "silent
bugs" (incorrect results without crashes) and undefined behavior (UB) arising
from dialect interactions or lowering processes.5

●​ Hardware Synthesis: MLIR, particularly through the CIRCT project, is being
explored for high-level synthesis (HLS), translating high-level languages like Julia
directly into hardware description languages like Verilog.22

This research activity indicates a maturing MLIR ecosystem. While early work focused
on establishing the core infrastructure and basic AI compilation, recent efforts are
tackling more advanced challenges: managing heterogeneity, integrating data
processing, enhancing compiler programmability and robustness, and extending
MLIR's reach into adjacent domains like hardware design.

7.2 Notable Open Source Projects & Libraries

MLIR's success is intrinsically linked to its vibrant open-source ecosystem. Key
projects and libraries leveraging MLIR include:

●​ Core Infrastructure: The upstream LLVM/MLIR project itself remains the central
hub.15

●​ Framework Integration:
○​ Torch-MLIR: Provides the bridge for lowering PyTorch models to MLIR

dialects.62

○​ OpenXLA: An ecosystem encompassing XLA (compiler), IREE
(compiler+runtime), and StableHLO (portability dialect), heavily utilizing MLIR
for compiling TensorFlow, PyTorch, and JAX.52

○​ ONNX-MLIR: A dedicated project for compiling ONNX models via an MLIR
ONNX dialect.88

●​ Hardware Backends & Toolchains:
○​ TPU-MLIR: Open-source compiler for Sophgo TPUs.87

○​ tt-mlir: Tenstorrent's open-source MLIR compiler components.58

○​ Peano: AMD's open-source LLVM backend for Ryzen AI NPUs.15

○​ CIRCT: A sub-project focused on MLIR dialects and tools for circuit design
and HLS.22

●​ Specialized Domains:
○​ HEIR: Developing MLIR dialects and tools for compiling Homomorphic

Encryption computations.29

○​ Substrait-MLIR: Building an MLIR dialect for the Substrait database query
plan representation.13

The diversity of these projects, spanning framework integration, hardware
enablement, and specialized computational domains, validates MLIR's role as a
versatile and powerful foundational technology. It provides the essential building
blocks 1 that enable various communities and companies to construct tailored
compiler solutions, fulfilling its promise as a reusable and extensible infrastructure.1

7.3 Community Engagement

A thriving community is essential for the continued development and adoption of an
open-source project like MLIR. Key engagement mechanisms include:

●​ LLVM Developers' Meetings: These biannual conferences are major events for
the entire LLVM community, including MLIR. They feature technical talks, tutorials,
workshops (often with dedicated MLIR tracks), panels, and networking
opportunities.17 Presentations cover topics ranging from core MLIR features like
bufferization 18 and pattern rewriting 18 to specific applications and dialect
developments.

●​ Open Design Meetings: Historically, regular online Open Design Meetings
provided a forum for discussing MLIR's evolution and design proposals, fostering
collaboration between Google's initial team and external contributors.3

●​ LLVM Discourse: The primary platform for online discussion, questions,
proposals (RFCs), and announcements related to MLIR and LLVM.16 This forum
replaced older mailing lists, offering better organization and features.

●​ Tutorials and Documentation: While the official MLIR documentation provides
language references and some tutorials (e.g., Toy language, mlir-opt usage,
dialect creation) 8, the rapid pace of development means documentation and
introductory materials can sometimes lag.92 Community members and projects
like HEIR often contribute additional tutorials and talks.29

These avenues facilitate knowledge sharing, collaborative design, and the growth of
the MLIR user and developer base.

8. Comparative Analysis and Future Outlook
8.1 Comparing MLIR-based Approaches

The flexibility inherent in MLIR means that there isn't a single, monolithic "MLIR
approach." Instead, different projects and vendors leverage the infrastructure in
diverse ways, leading to varied architectural patterns:

●​ MLIR vs. Precursors/Alternatives (TVM, Glow): Projects like Apache TVM and
Facebook's Glow were early pioneers in ML compilation, addressing the need for
optimizing framework graphs for diverse hardware.55 TVM, in particular,
introduced influential concepts like the separation of algorithm and schedule 46
and employed techniques like autotuning extensively.56 However, TVM faced
challenges in keeping pace with rapidly evolving hardware (especially specialized
units like Tensor Cores), suffered from fragmentation as vendors created
incompatible forks, and its development slowed relative to framework evolution.56
MLIR, emerging slightly later, focused heavily on providing a robust, multi-level
infrastructure with dialects, aiming for greater modularity and extensibility from
the outset.7 While TVM and Glow were initially more focused on being end-to-end
solutions, MLIR positioned itself as a framework for building such solutions.94
There is potential for interoperability, perhaps by defining TVM dialects within
MLIR or translating between their respective IRs.94 Recent research also suggests
that MLIR-based autotuning approaches (potentially leveraging the Transform
dialect) might achieve comparable results with significantly fewer samples than
TVM's methods.95

●​ Hardware Backend Strategies: Hardware vendors exhibit different MLIR
adoption strategies. Tenstorrent represents a deep, MLIR-native approach,
building its entire TT-Forge compiler around custom MLIR dialects.58 NVIDIA
integrates MLIR more incrementally, using standard (gpu) and custom (nvgpu)
dialects as intermediate layers above its existing, mature NVVM IR and PTX
generation backend.26 Graphcore appears to use MLIR as a component for
specific high-level optimizations within its broader, C++-based Poplar graph
compiler framework, which relies on LLVM for core-level code generation.71 AMD
employs MLIR strategically across different product lines, developing specific
backends (Peano for NPUs 15) and full compilation flows (ARIES for AIEs 2).

●​ Data Pipeline Strategies: For data processing, the DAPHNE project exemplifies
an ambitious approach, using MLIR to build an integrated system covering ETL,
ML, and HPC.34 A more common, perhaps pragmatic, approach involves using
MLIR to optimize specific compute-intensive kernels within a larger, traditional
ETL workflow managed by tools like Spark or Airflow.

This diversity demonstrates MLIR's adaptability. It functions as a versatile toolkit rather
than a prescriptive solution. Different users select and combine MLIR's components
(dialects, passes, infrastructure) based on their specific needs, legacy systems, and
target domains, leading to varied integration depths and architectural choices.

8.2 Synthesizing Major Trends and Breakthroughs (Last 2-3 Years)

Analyzing the developments from 2022-2025 reveals several significant trends and
breakthroughs shaping the MLIR landscape:

●​ Trend 1: Standardization via Interfaces: A clear trend is the push towards
standardizing the interfaces between ML frameworks and MLIR-based compilers.
StableHLO is emerging as the de facto standard input dialect for compilers like
XLA and IREE, promoting framework portability.52 Simultaneously, PJRT is gaining
traction as the standard runtime interface, allowing frameworks to dynamically
load and interact with different hardware backends in a plug-and-play manner.59

●​ Trend 2: Proliferation of Hardware-Specific Dialects: As more hardware
vendors adopt MLIR, there is a corresponding increase in the creation of custom,
vendor-specific dialects (e.g., nvgpu, amdgpu, TTIR, TPU, ADF) designed to
expose unique hardware features and enable targeted optimizations within the
MLIR framework.2

●​ Trend 3: Rise of Explicit Compiler Control: The development and application of
the Transform dialect represent a significant shift towards giving performance
engineers direct, programmable control over the compilation process.46 Its
successful use in debugging, fine-grained optimization, and autotuning
integration indicates growing adoption.

●​ Trend 4: Broadening Scope: MLIR's application space is expanding considerably
beyond its initial focus on core ML model compilation. Active research and
development are applying MLIR to data analysis pipelines (DAPHNE 34),
hardware design and synthesis (CIRCT 22), quantum computing (CUDA
Quantum 27), and homomorphic encryption (HEIR 29).

●​ Breakthrough 1: Achieving Critical Mass: MLIR has firmly established itself as
the foundational compiler infrastructure underpinning major industry efforts in AI
compilation, including OpenXLA, Torch-MLIR, and numerous vendor-specific
toolchains. Its adoption by key players across the hardware and software
spectrum signifies it has reached critical mass.

●​ Breakthrough 2: Demonstrating Performance: MLIR-based compilation
techniques have proven capable of generating highly optimized code, achieving
performance close to theoretical hardware peaks for critical computational
kernels like GEMM, demonstrating its viability for high-performance computing
tasks.60

8.3 Future Directions and Challenges

Despite its successes, MLIR faces ongoing challenges and has clear areas for future
development:

●​ Addressing Fragmentation and Identity: The "dialect explosion" and the

ambiguity between MLIR as core infrastructure versus an AI solution require
careful management.3 Continued efforts in community governance, potentially
through mechanisms like the LLVM Area Teams, are needed to ensure coherence,
manage dialect contributions effectively, and perhaps clarify the boundaries
between the domain-agnostic core and domain-specific extensions.3 Robust
mechanisms for dialect versioning and ensuring compatibility between different
MLIR components (framework frontends, dialects, backends) are crucial to avoid
issues like the TOSA v1.0 breakage.61

●​ Improving Usability and Accessibility: While powerful, MLIR currently requires
significant compiler expertise.47 Making the infrastructure more accessible to
domain experts (e.g., ML researchers, data scientists) who are not compiler
specialists is important for broader adoption. This could involve developing
higher-level abstractions, improving tooling, enhancing documentation and
tutorials, or further developing programmable interfaces like the Transform
dialect.47

●​ Maturing Data Pipeline Integration: While projects like DAPHNE and
Substrait-MLIR show promise, MLIR's capabilities for handling the full spectrum of
ETL tasks (especially data extraction, complex cleaning, orchestration) need
further development to compete with dedicated data engineering frameworks.13
Defining more comprehensive dialects or libraries for common data processing
tasks could be beneficial.

●​ Enhancing End-to-End Optimization: Realizing the full potential of MLIR
requires enabling more holistic optimizations that span across different dialects,
abstraction levels, and pipeline stages (e.g., co-optimizing data layout based on
compute patterns, fusing data transformations with model layers). This requires
sophisticated analyses and transformation capabilities that can operate across
dialect boundaries.

●​ Debugging and Verification: As compilation flows become more complex,
involving multiple dialects and intricate lowering paths, robust tools and
techniques for debugging transformations and verifying the correctness of the
generated code are essential.5 Continued research in areas like MLIR fuzzing and
formal verification is needed.

MLIR has successfully established a powerful and flexible foundation. The next phase
of its evolution will likely focus on refining the ecosystem built upon this foundation,
improving the developer experience, enhancing its capabilities in adjacent domains
like data processing, and tackling the complexities arising from its own success to
fully realize its potential as a unifying force in compilation technology.

9. Conclusion
Over the past three years, Multi-Level Intermediate Representation (MLIR) has rapidly
transitioned from a promising research project to a cornerstone technology
underpinning the modern AI compilation landscape. Its emergence was driven by the
fundamental need for a more flexible, extensible, and modular compiler infrastructure
capable of handling the growing complexity of AI models and the increasing diversity
of hardware accelerators in the post-Moore's Law era.

MLIR's core contribution lies in its dialect-based architecture, which enables the
representation of computation at multiple levels of abstraction within a single, unified
framework. This has proven instrumental in bridging the gap between high-level AI
frameworks (TensorFlow, PyTorch, JAX) and the specifics of hardware targets ranging
from NVIDIA and AMD GPUs to specialized accelerators like Tenstorrent IPUs, AMD
NPUs and AIEs, and Sophgo TPUs. Vendors are increasingly leveraging MLIR to build
specialized compilers, often defining custom dialects to expose unique hardware
capabilities, thereby accelerating the enablement of standard ML frameworks on their
platforms.

Key trends during this period include a concerted effort towards standardization
through common interfaces like StableHLO and PJRT, aiming to decouple frameworks
from backends and enhance portability. Concurrently, the proliferation of
hardware-specific dialects highlights MLIR's role in enabling hardware innovation. The
development and application of the Transform dialect mark a significant
advancement, offering performance engineers unprecedented fine-grained,
programmable control over the compilation process itself. Furthermore, MLIR's scope
has demonstrably broadened beyond core ML compilation, with active research and
development extending its application to data analysis pipelines, hardware design,
quantum computing, and cryptography.

While MLIR's foundational role appears secure, challenges remain. Managing the
complexity and potential fragmentation arising from its own extensibility, improving
usability for a wider range of developers, deepening its integration with data
processing workflows, and enhancing end-to-end optimization capabilities are critical
areas for future work. Nonetheless, MLIR has fundamentally reshaped the compiler
landscape for AI and heterogeneous computing. Its trajectory indicates it will continue
to be a driving force behind innovation, enabling the efficient deployment of
increasingly sophisticated AI models on current and future generations of computing
hardware.

Works cited

1.​ MLIR: A Compiler Infrastructure for the End of Moore's Law - AI Resources -
Modular, accessed April 15, 2025,
https://www.modular.com/ai-resources/mlir-a-compiler-infrastructure-for-the-en
d-of-moore-s-law

2.​ www.csl.cornell.edu, accessed April 15, 2025,
https://www.csl.cornell.edu/~zhiruz/pdfs/aries-fpga2025.pdf

3.​ Democratizing AI Compute, Part 8: What about the MLIR compiler infrastructure?
- Modular, accessed April 15, 2025,
https://www.modular.com/blog/democratizing-ai-compute-part-8-what-about-t
he-mlir-compiler-infrastructure

4.​ MLIR Part 1 - Introduction to MLIR and Modern Compilers - Stephen Diehl,
accessed April 15, 2025, https://www.stephendiehl.com/posts/mlir_introduction/

5.​ MLIR generic representation for polynomial multiplication using affine... -
ResearchGate, accessed April 15, 2025,
https://www.researchgate.net/figure/MLIR-generic-representation-for-polynomia
l-multiplication-using-affine-and-std-dialects_fig2_349993972

6.​ A Method for Efficient Heterogeneous Parallel Compilation: A Cryptography Case
Study, accessed April 15, 2025, https://arxiv.org/html/2407.09333v2

7.​ MLIR: Scaling Compiler Infrastructure for Domain Specific Computation - Reliable
Computer Systems - University of Waterloo, accessed April 15, 2025,
https://rcs.uwaterloo.ca/~ali/cs842-s23/papers/mlir.pdf

8.​ MLIR Language Reference, accessed April 15, 2025,
https://mlir.llvm.org/docs/LangRef/

9.​ MLIR - TensorFlow, accessed April 15, 2025, https://www.tensorflow.org/mlir
10.​DESIL: Detecting Silent Bugs in MLIR Compiler Infrastructure - arXiv, accessed

April 15, 2025, https://arxiv.org/html/2504.01379v1
11.​[2210.15016] TPU-MLIR: A Compiler For TPU Using MLIR - ar5iv - arXiv, accessed

April 15, 2025, https://ar5iv.labs.arxiv.org/html/2210.15016
12.​MLIR CodeGen Dialects for Machine Learning Compilers - Lei.Chat(), accessed

April 15, 2025,
https://www.lei.chat/posts/mlir-codegen-dialects-for-machine-learning-compiler
s/

13.​substrait-io/substrait-mlir-contrib - GitHub, accessed April 15, 2025,
https://github.com/substrait-io/substrait-mlir-contrib

14.​Defining Dialects - MLIR, accessed April 15, 2025,
https://mlir.llvm.org/docs/DefiningDialects/

15.​LLVM Had Another Exciting Year With More Than 37k Commits, 35.5 Million Lines,
accessed April 15, 2025,
https://www.phoronix.com/news/LLVM-Code-Activity-2024

16.​Discourse Migration Guide — LLVM 19.0.0git documentation, accessed April 15,
2025,
https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.4.0/LLVM/llvm/html/
DiscourseMigrationGuide.html

https://www.modular.com/ai-resources/mlir-a-compiler-infrastructure-for-the-end-of-moore-s-law
https://www.modular.com/ai-resources/mlir-a-compiler-infrastructure-for-the-end-of-moore-s-law
https://www.csl.cornell.edu/~zhiruz/pdfs/aries-fpga2025.pdf
https://www.modular.com/blog/democratizing-ai-compute-part-8-what-about-the-mlir-compiler-infrastructure
https://www.modular.com/blog/democratizing-ai-compute-part-8-what-about-the-mlir-compiler-infrastructure
https://www.stephendiehl.com/posts/mlir_introduction/
https://www.researchgate.net/figure/MLIR-generic-representation-for-polynomial-multiplication-using-affine-and-std-dialects_fig2_349993972
https://www.researchgate.net/figure/MLIR-generic-representation-for-polynomial-multiplication-using-affine-and-std-dialects_fig2_349993972
https://arxiv.org/html/2407.09333v2
https://rcs.uwaterloo.ca/~ali/cs842-s23/papers/mlir.pdf
https://mlir.llvm.org/docs/LangRef/
https://www.tensorflow.org/mlir
https://arxiv.org/html/2504.01379v1
https://ar5iv.labs.arxiv.org/html/2210.15016
https://www.lei.chat/posts/mlir-codegen-dialects-for-machine-learning-compilers/
https://www.lei.chat/posts/mlir-codegen-dialects-for-machine-learning-compilers/
https://github.com/substrait-io/substrait-mlir-contrib
https://mlir.llvm.org/docs/DefiningDialects/
https://www.phoronix.com/news/LLVM-Code-Activity-2024
https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.4.0/LLVM/llvm/html/DiscourseMigrationGuide.html
https://rocm.docs.amd.com/projects/llvm-project/en/docs-6.4.0/LLVM/llvm/html/DiscourseMigrationGuide.html

17.​2025 European LLVM Developers' Meeting - Swoogo, accessed April 15, 2025,
https://llvm.swoogo.com/2025eurollvm/

18.​Matthias Springer's Homepage, accessed April 15, 2025, https://m-sp.org/
19.​Building a JSONiq Query Optimizer using MLIR - Research Collection, accessed

April 15, 2025,
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/460014/
thesis-mfiebig.pdf

20.​Dialects - MLIR, accessed April 15, 2025, https://mlir.llvm.org/docs/Dialects/
21.​Should Julia use MLIR in the future? - Internals & Design, accessed April 15, 2025,

https://discourse.julialang.org/t/should-julia-use-mlir-in-the-future/110459
22.​Hardware.jl — An MLIR-based Julia HLS Flow (Work in Progress) - arXiv, accessed

April 15, 2025, https://arxiv.org/html/2503.09463v1
23.​Hardware.jl — An MLIR-based Julia HLS Flow (Work in Progress) - Capra,

accessed April 15, 2025, https://capra.cs.cornell.edu/latte25/paper/5.pdf
24.​Quickstart tutorial to adding MLIR graph rewrite, accessed April 15, 2025,

https://mlir.llvm.org/docs/Tutorials/QuickstartRewrites/
25.​Creating a Dialect - MLIR, accessed April 15, 2025,

https://mlir.llvm.org/docs/Tutorials/CreatingADialect/
26.​'gpu' Dialect - MLIR, accessed April 15, 2025,

https://mlir.llvm.org/docs/Dialects/GPU/
27.​Create your Own MLIR Pass — NVIDIA CUDA Quantum documentation - GitHub

Pages, accessed April 15, 2025,
https://nvidia.github.io/cuda-quantum/0.4.0/using/advanced/mlir_pass.html

28.​cuda-quantum/Overview.md at main - GitHub, accessed April 15, 2025,
https://github.com/NVIDIA/cuda-quantum/blob/main/Overview.md

29.​Tutorials and Talks - HEIR, accessed April 15, 2025, https://heir.dev/docs/tutorials/
30.​Optimizing ETL Pipelines: Best Practices, Tools & Architecture for Efficient Data

Workflow, accessed April 15, 2025,
https://www.acceldata.io/blog/etl-pipelines-key-concepts-components-and-best
-practices

31.​How to Build ETL Data Pipeline in ML - Neptune.ai, accessed April 15, 2025,
https://neptune.ai/blog/build-etl-data-pipeline-in-ml

32.​tf.data: A Machine Learning Data Processing Framework - VLDB Endowment,
accessed April 15, 2025, https://vldb.org/pvldb/vol14/p2945-klimovic.pdf

33.​How to Optimize Your ETL Pipeline for Maximum Efficiency - DEV Community,
accessed April 15, 2025,
https://dev.to/chainguns/how-to-optimize-your-etl-pipeline-for-maximum-efficie
ncy-3b56

34.​www.cidrdb.org, accessed April 15, 2025,
https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf

35.​[2101.12127] tf.data: A Machine Learning Data Processing Framework, accessed
April 15, 2025, https://ar5iv.labs.arxiv.org/html/2101.12127

36.​Data Preprocessing and Data Cleaning. | by Prabesh Sharma | Medium, accessed
April 15, 2025,
https://medium.com/@sharmaprabesh027/data-preprocessing-and-data-cleanin

https://llvm.swoogo.com/2025eurollvm/
https://m-sp.org/
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/460014/thesis-mfiebig.pdf
https://www.research-collection.ethz.ch/bitstream/handle/20.500.11850/460014/thesis-mfiebig.pdf
https://mlir.llvm.org/docs/Dialects/
https://discourse.julialang.org/t/should-julia-use-mlir-in-the-future/110459
https://arxiv.org/html/2503.09463v1
https://capra.cs.cornell.edu/latte25/paper/5.pdf
https://mlir.llvm.org/docs/Tutorials/QuickstartRewrites/
https://mlir.llvm.org/docs/Tutorials/CreatingADialect/
https://mlir.llvm.org/docs/Dialects/GPU/
https://nvidia.github.io/cuda-quantum/0.4.0/using/advanced/mlir_pass.html
https://github.com/NVIDIA/cuda-quantum/blob/main/Overview.md
https://heir.dev/docs/tutorials/
https://www.acceldata.io/blog/etl-pipelines-key-concepts-components-and-best-practices
https://www.acceldata.io/blog/etl-pipelines-key-concepts-components-and-best-practices
https://neptune.ai/blog/build-etl-data-pipeline-in-ml
https://vldb.org/pvldb/vol14/p2945-klimovic.pdf
https://dev.to/chainguns/how-to-optimize-your-etl-pipeline-for-maximum-efficiency-3b56
https://dev.to/chainguns/how-to-optimize-your-etl-pipeline-for-maximum-efficiency-3b56
https://www.cidrdb.org/cidr2022/papers/p4-damme.pdf
https://ar5iv.labs.arxiv.org/html/2101.12127
https://medium.com/@sharmaprabesh027/data-preprocessing-and-data-cleaning-de318cb7b1b5

g-de318cb7b1b5
37.​Multilingual Information Retrieval | PDF - Scribd, accessed April 15, 2025,

https://www.scribd.com/document/689704273/Multilingual-Information-Retrieval
38.​Data Cleaning and Preprocessing in Machine Learning - CodeSignal, accessed

April 15, 2025,
https://codesignal.com/learn/courses/data-cleaning-and-preprocessing-in-machi
ne-learning

39.​9 Preprocessing – Applied Machine Learning Using mlr3 in R, accessed April 15,
2025, https://mlr3book.mlr-org.com/chapters/chapter9/preprocessing.html

40.​Chapter 3: High-level Language-Specific Analysis and Transformation - MLIR,
accessed April 15, 2025, https://mlir.llvm.org/docs/Tutorials/Toy/Ch-3/

41.​Memory Optimization and Profiling for MLIR-Based HeteroCL - CS@Cornell,
accessed April 15, 2025,
https://www.cs.cornell.edu/courses/cs6120/2022sp/blog/hcl-mlir/

42.​MLIR-based Data Tiling and Packing for Ryzen AI NPU - FOSDEM 2025, accessed
April 15, 2025,
https://fosdem.org/2025/schedule/event/fosdem-2025-6641-mlir-based-data-tili
ng-and-packing-for-ryzen-ai-npu/

43.​LTO and Data Layout Optimizations in MLIR - LLVM.org, accessed April 15, 2025,
https://llvm.org/devmtg/2021-02-28/slides/Prashantha-MLIR-LTO.pdf

44.​Using `mlir-opt`, accessed April 15, 2025,
https://mlir.llvm.org/docs/Tutorials/MlirOpt/

45.​MLIR — A Global Optimization and Dataflow Analysis - Math ∩ Programming,
accessed April 15, 2025,
https://www.jeremykun.com/2023/11/15/mlir-a-global-optimization-and-dataflow
-analysis/

46.​The MLIR Transform Dialect - arXiv, accessed April 15, 2025,
https://arxiv.org/html/2409.03864v2

47.​The MLIR Transform Dialect: Your Compiler Is More Powerful Than You Think -
Michel Steuwer, accessed April 15, 2025,
https://michel.steuwer.info/files/publications/2025/CGO-2025-2.pdf

48.​The MLIR Transform Dialect - Your compiler is more powerful than you think -
CGO 2025, accessed April 15, 2025,
https://2025.cgo.org/details/cgo-2025-papers/7/The-MLIR-Transform-Dialect-You
r-compiler-is-more-powerful-than-you-think

49.​www.arxiv.org, accessed April 15, 2025, https://www.arxiv.org/pdf/2409.03864v2
50.​[2409.03864] The MLIR Transform Dialect. Your compiler is more powerful than

you think, accessed April 15, 2025, https://arxiv.org/abs/2409.03864
51.​2023 EuroLLVM - Tutorial: Controllable Transformations in MLIR - YouTube,

accessed April 15, 2025, https://www.youtube.com/watch?v=P4gUj3QtH_Y
52.​XLA architecture - OpenXLA Project, accessed April 15, 2025,

https://openxla.org/xla/architecture
53.​XLA - OpenXLA Project, accessed April 15, 2025, https://openxla.org/xla
54.​OpenXLA is available now to accelerate and simplify machine learning | Google

Open Source Blog, accessed April 15, 2025,

https://medium.com/@sharmaprabesh027/data-preprocessing-and-data-cleaning-de318cb7b1b5
https://www.scribd.com/document/689704273/Multilingual-Information-Retrieval
https://codesignal.com/learn/courses/data-cleaning-and-preprocessing-in-machine-learning
https://codesignal.com/learn/courses/data-cleaning-and-preprocessing-in-machine-learning
https://mlr3book.mlr-org.com/chapters/chapter9/preprocessing.html
https://mlir.llvm.org/docs/Tutorials/Toy/Ch-3/
https://www.cs.cornell.edu/courses/cs6120/2022sp/blog/hcl-mlir/
https://fosdem.org/2025/schedule/event/fosdem-2025-6641-mlir-based-data-tiling-and-packing-for-ryzen-ai-npu/
https://fosdem.org/2025/schedule/event/fosdem-2025-6641-mlir-based-data-tiling-and-packing-for-ryzen-ai-npu/
https://llvm.org/devmtg/2021-02-28/slides/Prashantha-MLIR-LTO.pdf
https://mlir.llvm.org/docs/Tutorials/MlirOpt/
https://www.jeremykun.com/2023/11/15/mlir-a-global-optimization-and-dataflow-analysis/
https://www.jeremykun.com/2023/11/15/mlir-a-global-optimization-and-dataflow-analysis/
https://arxiv.org/html/2409.03864v2
https://michel.steuwer.info/files/publications/2025/CGO-2025-2.pdf
https://2025.cgo.org/details/cgo-2025-papers/7/The-MLIR-Transform-Dialect-Your-compiler-is-more-powerful-than-you-think
https://2025.cgo.org/details/cgo-2025-papers/7/The-MLIR-Transform-Dialect-Your-compiler-is-more-powerful-than-you-think
https://www.arxiv.org/pdf/2409.03864v2
https://arxiv.org/abs/2409.03864
https://www.youtube.com/watch?v=P4gUj3QtH_Y
https://openxla.org/xla/architecture
https://openxla.org/xla

https://opensource.googleblog.com/2023/03/openxla-is-ready-to-accelerate-and
-simplify-ml-development.html

55.​Accelerating ML through Compilation: Building an ML Compiler that Works |
HTEC, accessed April 15, 2025,
https://htec.com/insights/accelerating-ml-through-compilation-building-ml-com
piler-that-works/

56.​Democratizing AI Compute, Part 6: What about AI compilers (TVM and XLA)? -
Modular, accessed April 15, 2025,
https://www.modular.com/blog/democratizing-ai-compute-part-6-what-about-ai
-compilers

57.​openxla/xla: A machine learning compiler for GPUs, CPUs, and ML accelerators -
GitHub, accessed April 15, 2025, https://github.com/openxla/xla

58.​TT-Forge™ - Tenstorrent, accessed April 15, 2025,
https://tenstorrent.com/en/software/tt-forge

59.​PJRT: Simplifying ML Hardware and Framework Integration | Google Open Source
Blog, accessed April 15, 2025,
https://opensource.googleblog.com/2023/05/pjrt-simplifying-ml-hardware-and-f
ramework-integration.html

60.​MLIR-based Code Generation for High-Performance Machine Learning on
AArch64 - Lund University Publications, accessed April 15, 2025,
https://lup.lub.lu.se/student-papers/record/9146373/file/9146374.pdf

61.​Support for LiteRT (TensorFlow Lite, .tflite) with TOSA 1.0 · Issue ..., accessed April
15, 2025, https://github.com/iree-org/iree/issues/19777

62.​torch-mlir/docs/architecture.md at main · llvm/torch-mlir · GitHub, accessed April
15, 2025, https://github.com/llvm/torch-mlir/blob/main/docs/architecture.md

63.​JAX Integration Completeness Milestone - GitHub, accessed April 15, 2025,
https://github.com/openxla/iree/milestone/33

64.​An introduction to Torch-MLIR - FOSDEM 2025, accessed April 15, 2025,
https://fosdem.org/2025/schedule/event/fosdem-2025-6643-an-introduction-to-
torch-mlir/

65.​Quickstart - JAX documentation, accessed April 15, 2025,
https://docs.jax.dev/en/latest/quickstart.html

66.​JAX and OpenXLA Part 1: Run Process and Underlying Logic - Intel, accessed April
15, 2025,
https://www.intel.com/content/www/us/en/developer/articles/technical/jax-openxl
a-running-process-and-underlying-logic-1.html

67.​JAX and OpenXLA Part 1: Run Process and Underlying Logic - Intel, accessed April
15, 2025,
https://www.intel.com/content/www/us/en/developer/articles/technical/jax-and-op
enxla-run-process-and-underlying-logic-1.html

68.​MLIR Sparsifier - MPACT Research Group | Google for Developers, accessed April
15, 2025,
https://developers.google.com/mlir-sparsifier/colabs/Sparse_JAX_CPU_Benchmar
k_Colab

69.​AMD Talks Up IREE/MLIR Programming For Ryzen AI NPUs - Reddit, accessed April

https://opensource.googleblog.com/2023/03/openxla-is-ready-to-accelerate-and-simplify-ml-development.html
https://opensource.googleblog.com/2023/03/openxla-is-ready-to-accelerate-and-simplify-ml-development.html
https://htec.com/insights/accelerating-ml-through-compilation-building-ml-compiler-that-works/
https://htec.com/insights/accelerating-ml-through-compilation-building-ml-compiler-that-works/
https://www.modular.com/blog/democratizing-ai-compute-part-6-what-about-ai-compilers
https://www.modular.com/blog/democratizing-ai-compute-part-6-what-about-ai-compilers
https://github.com/openxla/xla
https://tenstorrent.com/en/software/tt-forge
https://opensource.googleblog.com/2023/05/pjrt-simplifying-ml-hardware-and-framework-integration.html
https://opensource.googleblog.com/2023/05/pjrt-simplifying-ml-hardware-and-framework-integration.html
https://lup.lub.lu.se/student-papers/record/9146373/file/9146374.pdf
https://github.com/iree-org/iree/issues/19777
https://github.com/llvm/torch-mlir/blob/main/docs/architecture.md
https://github.com/openxla/iree/milestone/33
https://fosdem.org/2025/schedule/event/fosdem-2025-6643-an-introduction-to-torch-mlir/
https://fosdem.org/2025/schedule/event/fosdem-2025-6643-an-introduction-to-torch-mlir/
https://docs.jax.dev/en/latest/quickstart.html
https://www.intel.com/content/www/us/en/developer/articles/technical/jax-openxla-running-process-and-underlying-logic-1.html
https://www.intel.com/content/www/us/en/developer/articles/technical/jax-openxla-running-process-and-underlying-logic-1.html
https://www.intel.com/content/www/us/en/developer/articles/technical/jax-and-openxla-run-process-and-underlying-logic-1.html
https://www.intel.com/content/www/us/en/developer/articles/technical/jax-and-openxla-run-process-and-underlying-logic-1.html
https://developers.google.com/mlir-sparsifier/colabs/Sparse_JAX_CPU_Benchmark_Colab
https://developers.google.com/mlir-sparsifier/colabs/Sparse_JAX_CPU_Benchmark_Colab

15, 2025,
https://www.reddit.com/r/Amd/comments/1ij56pd/amd_talks_up_ireemlir_progra
mming_for_ryzen_ai/

70.​Democratizing AI Compute, Part 4: CUDA is the incumbent, but is it any good? -
Modular, accessed April 15, 2025,
https://www.modular.com/blog/democratizing-ai-compute-part-4-cuda-is-the-in
cumbent-but-is-it-any-good

71.​C4ML 2021, accessed April 15, 2025, https://www.c4ml.org/c4ml-2021
72.​tenstorrent/tt-mlir - GitHub, accessed April 15, 2025,

https://github.com/tenstorrent/tt-mlir
73.​Roadmap - tt-mlir documentation, accessed April 15, 2025,

https://docs.tenstorrent.com/tt-mlir/tt-explorer-roadmap.html
74.​CUDA LLVM Compiler - NVIDIA Developer, accessed April 15, 2025,

https://developer.nvidia.com/cuda-llvm-compiler
75.​1. Introduction — NVVM IR Specification 12.8 documentation - NVIDIA Docs,

accessed April 15, 2025, https://docs.nvidia.com/cuda/nvvm-ir-spec/
76.​'nvgpu' Dialect - MLIR, accessed April 15, 2025,

https://mlir.llvm.org/docs/Dialects/NVGPU/
77.​Highlights - NVIDIA, accessed April 15, 2025,

https://images.nvidia.com/nvimages/gtc/pdf/GTC2025_Highlights.pdf
78.​Nvidia adds native Python support to CUDA - Hacker News, accessed April 15,

2025, https://news.ycombinator.com/item?id=43581584
79.​LLVM DISTRIBUTORS CONFERENCE 2021 - GitHub, accessed April 15, 2025,

https://raw.githubusercontent.com/ClangBuiltLinux/llvm-distributors-conf-2021/m
ain/slides/graphcore.pdf

80.​IPU Processors - Graphcore, accessed April 15, 2025,
https://www.graphcore.ai/products/ipu

81.​1. Introduction — Poplar SDK Overview - Graphcore Documents, accessed April
15, 2025, https://docs.graphcore.ai/projects/sdk-overview/en/latest/overview.html

82.​Poplar® Software - Graphcore, accessed April 15, 2025,
https://www.graphcore.ai/products/poplar

83.​POPLAR OVERVIEW - Graphcore, accessed April 15, 2025,
https://www.graphcore.ai/hubfs/assets/Poplar%C2%81%20technical%20overview
%20NEW%20BRAND.pdf

84.​graphcore/poplibs: Poplar libraries - GitHub, accessed April 15, 2025,
https://github.com/graphcore/poplibs

85.​5.1. Poplar Tutorial 1: Programs and Variables - Graphcore Documents, accessed
April 15, 2025,
https://docs.graphcore.ai/projects/tutorials/en/latest/poplar/tut1_variables/READM
E.html

86.​1. Introduction — Poplar and PopLibs User Guide - Graphcore Documents,
accessed April 15, 2025,
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/introduction.html

87.​Machine learning compiler based on MLIR for Sophgo TPU. - GitHub, accessed
April 15, 2025, https://github.com/sophgo/tpu-mlir

https://www.reddit.com/r/Amd/comments/1ij56pd/amd_talks_up_ireemlir_programming_for_ryzen_ai/
https://www.reddit.com/r/Amd/comments/1ij56pd/amd_talks_up_ireemlir_programming_for_ryzen_ai/
https://www.modular.com/blog/democratizing-ai-compute-part-4-cuda-is-the-incumbent-but-is-it-any-good
https://www.modular.com/blog/democratizing-ai-compute-part-4-cuda-is-the-incumbent-but-is-it-any-good
https://www.c4ml.org/c4ml-2021
https://github.com/tenstorrent/tt-mlir
https://docs.tenstorrent.com/tt-mlir/tt-explorer-roadmap.html
https://developer.nvidia.com/cuda-llvm-compiler
https://docs.nvidia.com/cuda/nvvm-ir-spec/
https://mlir.llvm.org/docs/Dialects/NVGPU/
https://images.nvidia.com/nvimages/gtc/pdf/GTC2025_Highlights.pdf
https://news.ycombinator.com/item?id=43581584
https://raw.githubusercontent.com/ClangBuiltLinux/llvm-distributors-conf-2021/main/slides/graphcore.pdf
https://raw.githubusercontent.com/ClangBuiltLinux/llvm-distributors-conf-2021/main/slides/graphcore.pdf
https://www.graphcore.ai/products/ipu
https://docs.graphcore.ai/projects/sdk-overview/en/latest/overview.html
https://www.graphcore.ai/products/poplar
https://www.graphcore.ai/hubfs/assets/Poplar%C2%81%20technical%20overview%20NEW%20BRAND.pdf
https://www.graphcore.ai/hubfs/assets/Poplar%C2%81%20technical%20overview%20NEW%20BRAND.pdf
https://github.com/graphcore/poplibs
https://docs.graphcore.ai/projects/tutorials/en/latest/poplar/tut1_variables/README.html
https://docs.graphcore.ai/projects/tutorials/en/latest/poplar/tut1_variables/README.html
https://docs.graphcore.ai/projects/poplar-user-guide/en/latest/introduction.html
https://github.com/sophgo/tpu-mlir

88.​onnx/onnx-mlir: Representation and Reference Lowering of ... - GitHub, accessed
April 15, 2025, https://github.com/onnx/onnx-mlir

89.​intel/graph-compiler: MLIR-based toolkit targeting intel heterogeneous hardware
- GitHub, accessed April 15, 2025, https://github.com/intel/graph-compiler

90.​HETOCompiler: An MLIR-based crypTOgraphic Compilation Framework for
HEterogeneous Devices - arXiv, accessed April 15, 2025,
https://arxiv.org/html/2407.09333v1

91.​High Performance Code Generation in MLIR: An early case study with GEMM -
YouTube, accessed April 15, 2025,
https://www.youtube.com/watch?v=boXl7rmaasU

92.​MLIR — Getting Started - Math ∩ Programming, accessed April 15, 2025,
https://www.jeremykun.com/2023/08/10/mlir-getting-started/

93.​Compilers: Talking to The Hardware - Unify AI, accessed April 15, 2025,
https://unify.ai/blog/deep-learning-compilers

94.​Google lasted work: MLIR Primer - Development - Apache TVM Discuss,
accessed April 15, 2025,
https://discuss.tvm.apache.org/t/google-lasted-work-mlir-primer/1721

95.​ML2Tuner: Efficient Code Tuning via Multi-Level Machine Learning Models - arXiv,
accessed April 15, 2025, https://arxiv.org/html/2411.10764v1

https://github.com/onnx/onnx-mlir
https://github.com/intel/graph-compiler
https://arxiv.org/html/2407.09333v1
https://www.youtube.com/watch?v=boXl7rmaasU
https://www.jeremykun.com/2023/08/10/mlir-getting-started/
https://unify.ai/blog/deep-learning-compilers
https://discuss.tvm.apache.org/t/google-lasted-work-mlir-primer/1721
https://arxiv.org/html/2411.10764v1

	The Transformative Impact of MLIR: Key Developments in AI Compilation and Hardware Co-Design (2022-2025)
	1. Introduction: MLIR in the Era Beyond Moore's Law
	The Compiler Challenge
	Enter MLIR
	Report Scope and Purpose

	2. The Evolving MLIR Ecosystem: Growth, Principles, and Identity
	2.1 Core Infrastructure Growth and Community Expansion
	2.2 Foundational Concepts: Dialects, Operations, Extensibility
	2.3 MLIR's Identity Crisis: General Infrastructure vs. AI Solution

	3. MLIR for AI Data Pipelines: Pre-compilation, Structuring, and Wrangling
	3.1 The Critical Role of Data Pipelines in AI
	3.2 MLIR Approaches to Data Optimization
	3.3 Case Studies and Projects
	3.4 Comparison and Challenges

	4. The Transform Dialect: Unleashing Fine-Grained Compiler Control
	4.1 Motivation: Beyond Monolithic Passes
	4.2 Core Concepts and Implementation
	4.3 Key Capabilities
	4.4 Applications and Impact (Case Studies from CGO 2025 Paper)

	5. MLIR Integration in Mainstream AI Frameworks: Bridging the Gap
	5.1 The Need for Framework Integration
	5.2 TensorFlow & OpenXLA
	5.3 PyTorch
	5.4 JAX
	5.5 Framework Integration Summary

	6. MLIR Reshaping Hardware: AI Accelerators and Co-Design
	6.1 The Imperative for Hardware-Specific Compilation
	6.2 Tenstorrent
	6.3 NVIDIA
	6.4 AMD
	6.5 IPUs (Graphcore)
	6.6 Other Accelerator Projects & Trends
	6.7 Hardware Acceleration Summary

	7. Key Research Trends and Open Source Impact
	7.1 Influential Research Papers & Themes (Last 2-3 Years)
	7.2 Notable Open Source Projects & Libraries
	7.3 Community Engagement

	8. Comparative Analysis and Future Outlook
	8.1 Comparing MLIR-based Approaches
	8.2 Synthesizing Major Trends and Breakthroughs (Last 2-3 Years)
	8.3 Future Directions and Challenges

	9. Conclusion
	Works cited

