
Origin isolation: hints, or no?
domenic@chromium.org
Public

Background

General comments about hint utility
Will pages lie?
Speccing hints before implementing them

Potential ways of using the hints
Force process-isolation if hints are present
Prioritization in resource-constrained situations
Choice of implementation technologies

Engineering costs

Conclusion

Background
Origin isolation is a proposal wherein web pages volunteer themselves to lose some
cross-origin capabilities, and in exchange browsers may change their implementation strategies.

The proposal currently includes a number of hints which an origin can use to declare why they
are requesting isolation. The vision is that an implementation might use these hints to govern its
choices.

In Chrome, our current implementation plan is to always treat any origins opting in to isolation in
the same way: by giving them their own process. We would ignore these hints.

This document is to explore which path we should take:

1.​ Remove the hints from the proposal, at least for now.
2.​ Keep the hints in the proposal, but do not use them in our implementation yet.
3.​ Keep the hints in the proposal, and explore ways of using them (in the near term, e.g.

0-2 releases after the initial implementation).

mailto:domenic@chromium.org
https://github.com/WICG/origin-isolation
https://github.com/WICG/origin-isolation/tree/9d9156e1e5d355cd6156959247ea09eaabd64426#proposed-hints

General comments about hint utility

Will pages lie?
If pages are not honest about how they use the hints, then the hints become less useful. In
particular, if every page asserts the same set of hints (e.g. the maximal set), then the hints are
useless, and the proposal might as well be a simple boolean. It is plausible that this might be
the end state, e.g. via cargo-culting from example code, or via an arms race where every frame
on the page believes they are more deserving of isolation than others.

domenic@ thinks this is OK. It doesn't mean hints are less useful than a boolean. It just means
that there is a potential future in which they were wasted work.

Speccing hints before implementing them
The argument for path (2), of speccing hints but not using them in our implementation yet, is
that we can try to nudge the ecosystem toward using the hints, and then later our
implementation will "light up" with the right behavior on a preexisting corpus of sites.

For example, one partner is mostly interested in origin isolation for parallelism and memory
measurement. If they sent the Origin-Isolation header with those hints on day 1, they would get
process isolation. But later, when multiple Blink threads ships, we could implement the strategy
in Choice of implementation technologies. Then, the same site would get a separate
thread/isolate within the same process, with no change on their part. This would translate to
decreased memory usage for their users. Nice!

The dangers here are that:

●​ Designing the hints without a concrete implementation backing may lead to different
choices than if we designed them after the implementation was ready. E.g., maybe one
of the hints we specify ends up being useless. Or maybe a hint that would have been
very helpful was never specified and deployed.

●​ Transparently changing the implementation strategy used for a site might have
unintended negative consequences. Although the changes are not
JavaScript-observable, perhaps the site gets less smooth. Thus, a preexisting corpus
using the hints might actually prevent us from implementing the hints.

Potential ways of using the hints

Force process-isolation if hints are present
Cross-origin isolation (COOP+COEP) also induces origin isolation, in terms of web observable
effects on document.domain and WebAssembly.Module. However, the plan is to still share
processes if we are over the process limit.

We could by default follow the cross-origin isolation process model and respect the process
limit. But, if there are hints present, then we could allocate the extra process even beyond the
process limit. We could do this only for some hints, or even combine it with other signals (e.g.
only for installed PWAs which send certain hints.)

This helps the two features make sense together conceptually. Both COOP+COEP and the
Origin-Isolation headers achieve the same web-observable result and base implementation
strategy. But the Origin-Isolation header's additional hints can be used to further change the
implementation strategy.

Prioritization in resource-constrained situations
With our current plan of always giving a new process to origins that opt in, we may run into
resource constraints, especially on mobile platforms.

We could use the hints to prioritize process allocation decisions. For example:
 side-channel-protection​
 > parallelism = large-allocation​
 > memory-measurement

Choice of implementation technologies
The multiple Blink isolates and multiple Blink threads project provides new technologies,
besides dedicated processes, which can fulfill the desires of some of the hints, while being less
resource intensive. For example:

●​ side-channel-protection ⇒ separate process
●​ parallelism ⇒ separate thread/isolate
●​ memory-measurement, large-allocation ⇒ separate isolate (same thread)

Note that MBI/MBT are longer-term projects, so if this were the only way we planned to use the
hints, then it argues for (1) or (2), and not (3).

https://docs.google.com/document/d/12wEWJsZmxVnNwVGuxuEJF4922OWUr4fCs1xKHi9mTiI/edit#heading=h.g6fq85as9ptv

Engineering costs
(1) minimizes engineering costs. It also removes the need for any further design discussions on
the hints.

(2) puts the engineering cost mostly on the header parser, including the specification and tests.
This is relatively minimal (~2-4 days of domenic@'s time). There may be some additional cost
on the design side, e.g. resolving the naming of the hints and the header design (mostly
captured in issue #18).

(3) needs more detail, e.g. choosing among Potential ways of using the hints, and then getting
more information from the site isolation team.

Conclusion
After some time soliciting opinions on this document, no Chromium engineers seemed enthused
about hints. domenic@ is taking this as a sign that we should go with (1). This is being
committed to the explainer in pull request #26.

If concrete opportunities present themselves in the future, we can add hints back to the
specification in parallel with implementing them, and testing the results with partners.

https://github.com/WICG/origin-isolation/issues/18
https://github.com/WICG/origin-isolation/pull/26

	Origin isolation: hints, or no?
	Background
	General comments about hint utility
	Will pages lie?
	Speccing hints before implementing them

	Potential ways of using the hints
	Force process-isolation if hints are present
	Prioritization in resource-constrained situations
	Choice of implementation technologies

	Engineering costs
	Conclusion

