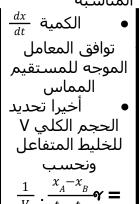
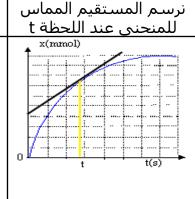
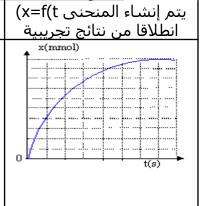
التتبع الزمني لتحول كيميائي ــ سرعة التفاعل Suivi temporel d'une transformation chimique - Vitesse de réaction

1- طرق تتبع التطور الزمنى لتحول كيميائى

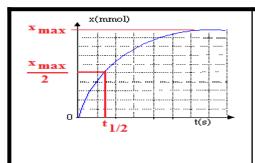

لتتبع التطور الزمني لمجموعة كيميائية ، يعني معرفة تركيب هذه المجموعة في كل لحظة ، توجد عدة طرق لمذا الغرض منما:

حهدا اعترض تندنها:	
تستعمل التقنية	تقنية التتبع
عندما يكون الوسط التفاعلي يحتوي على الايونات كمتفاعلات أو نواتج أو هما معا	قياس المواصلـــــــة
عندما يكون التحول الكيميائي ينتج غازا	قياس الحجم أو الضغط
عندما يكون احد المتفاعلات أو احد النواتج له لون	قياس الطيف الضــوئي
عندما يكون الوسط التفاعلي يحتوي على الايونH₃O كمتفاعل او ناتج	قياس الــــــــــ PH
صالحة مع شرط آن يكون المعاير انتقائيا ا(المعاير و المعاير يتفاعلا فقط) وتفاعل المعايرة سريع و كليا و هي تقنية مدمرة	المعايــــــرة

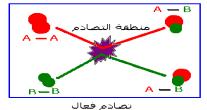

2- السرعة الحجمية للتفاعل


تعريف : السرعة الحجمية ۴ لتفاعل كيميائي يحدث داخل حجم ثابت ٧ في لحظة t هي خارج مشتقة تقدم التفاعل بالنسبة للزمن في نفس اللحظة t على الحجم الكلي V للخليط المتفاعل : نكتب tفي النظام العالمي وحدة السرعة الحجمية $-mol.m^{-3}.s^{-1}$ عمليا نستعمل و حدات مثل $-mol.L^{-1}.s^{-1}$ او ... mol.L⁻¹.min⁻¹

خطوات حساب السرعة الحجمية في لحظة t، بعد استعمال تقنية التتبع المناسبة



3- زمن نصف التفاعل



نسمي زمن نصف التفاعل t_{1/2} المدة الزمنية اللازمة لياخد تقدم التفاعل $\frac{x_{max}}{2} x(t_{1/2}) = \frac{x_{max}}{2}$ نصف التقدم الأقصى. و نكتب

<u>ملحوظة</u>:(أهمية t_{1/2}) يُمَكِّنُ زمن نصف التفاعل من تقييم المدة الزمنية لانتهاء التحول الكيميائي المدروس (حوالي 10 $_{
m 1/2}$) و مدى ملائمة التقنية المستعملة في التتبع فكلما كان زمن النصف صغيرا تطلب ذالك استعمال تقنيات مدة استجابتها اقل

4- التفسير الميكروسكوبي

ينطقة التصادة تصادم غير فعال

تكون مكونات الخليط التفاعلي في حالة حركة دائمة و عشوائية و يحصل التحول الكيميائي إذا كان التصادم "فعالا". (اي له طاقة كافية لكسر الروابط A-A و B-B تكتسبها خلال حركتها)

كلما زادت درجة حرارة المجموعة زادت سرعة الدقائق ، و هذا

کلما کان ترکیز المتفاعلات كبيرا كلما زادا عدد الدقائق المكونة

T1 > T2

للخليط هذا يزيد في عدد التصادمات بينها الشيء الذي يؤدي الى زيادة سرعة التفاعل يزيد في عدد التصادمات بينها الشيء الذي يؤدي إلى زيادة سـرعة التفاعل

Www.AdrarPhysic.Com