
Foundations of Software Engineering
Summer I 2024

Staff
...

Jan
(Instructor)

Pierre
(Instructor)

Revanth
Java

Anikesh
TS

Ji-min
TS

Shubh
TS, Java

Sanjana
TS, Java

Karan
TS, Java

Mehul
TS

Vihar​
TS, Java

Mansi
C++, Java

 Ngoc​
TS, Java

Sindhu
TS, Java

Nishy
TS, Java

Contact
...
All course communication is to be done through private notes on Piazza.

In case of emergency, the following email is shared with all course staff: Email.

Times
..
Lectures: MTWR, 9:50 am - 11:30 am Location: Zoom

Office hours: MTWR, 11:30 am - 12:30 am Location: Zoom

Schedule and deliverables ...

M 05/06 Course Orientation
Software Development Processes

T 05/07 Course Project Overview
Requirements Engineering

W 05/08 Test-Driven Development
Agile Planning and Estimation

R 05/09 Teams and Code Walks
Code-level Design Principles

Sprint0

M 05/13 Object-Oriented Design
What makes a good test suite?

T 05/14 Interaction-level Design Patterns

W 05/15 No class

R 05/16 Testing effectful code
Beyond unit testing

Sprint1

M 05/20 Refactoring and Technical Debt

T 05/21 Code walks

W 05/22 Midterm (9am - 3pm)

R 05/23 Midterm (9am - 3pm) Sprint2

https://piazza.com/northeastern/summer2024/cs4530and5500
mailto:palette.layout-0x@icloud.com
https://northeastern.zoom.us/meeting/register/tJIucuitrzwvGN18t-S6Y2Ya3JmQRqvfp2Hc
https://northeastern.zoom.us/meeting/register/tJIucuitrzwvGN18t-S6Y2Ya3JmQRqvfp2Hc

M 05/27 No class

T 05/28 Distributed Systems
REST APIs

W 05/29 Collaborative design and implementation

R 05/30 Continuous Development Processes Sprint3

M 06/03 Collaborative design and implementation

T 06/04 Collaborative design and implementation

W 06/05 Collaborative design and implementation

R 06/06 Security & Software Engineering Sprint4

M 06/10 Engineering Software for Equity

T 06/11 Open source

W 0612 Collaborative design and implementation

R 06/13 Collaborative design and implementation Projects due

M 06/17 Project presentations (9am - 3pm)

T 06//18 Project presentations (9am - 3pm)

Teams
...
The supported languages for the project are Java, TypeScript, C++, Dart. Note that we have
limited capacity for C++ and Dart. Other strongly typed languages such as Rust or Haskell may
be supported, ask the instructors. Untyped languages such as JavaScript, Python, Lua or R are
not supported.

Midterm
...
The midterm evaluates your understanding of course material in a "job interview" format. These
notes will help you prepare for the midterm and improve your next job interview. Interviews are
technical conversations in which the interviewer evaluates your technical depth and fit for the
given team/company. Interviews have relatively predictable formats. You can prepare and
practice to improve your performance. My four Bees:

1.​ Be Relaxed. Fear is a bad co-pilot. Speak clearly and slowly. Pause every minute or so.
Look at the interviewer for signs you are off-track.

2.​ Be brief. Short answers are better than long ones. Always.
3.​ Be precise. Do not give vague answers. Ban fluff words. Use the right technical terms.
4.​ Be humble. If you don't know, say it and stop talking.

Last year, I interviewed candidates interested in working at a startup. Folks with 5+ years of SE
experience who performed poorly. One thing to understand is that your interviewer is an
engineer with another job, interviews are interruptions in their schedule that is why they are
strictly time-boxed. When time runs out, the interviewer is eager to return to their work. My usual
routine was to start with boilerplate to get the candidate comfortable then go through a series of
increasingly open-ended technical questions. Here are some failure modes:

●​ Sea-of-words. Questions have simple short answers. A flood of words is often correlated
with a lack of understanding. ​
Mitigation: Think before starting your answer. Pause to make sure the interviewer is
with you. Have a glass of water, drinking helps slow down. Stop when you start to be
unsure of what you are saying.

●​ Langweiligkeitsverursachend: Speak for too long on one question, well past exhaustion
of the topic. Some candidates belabor the obvious, speaking for minutes on things that
need seconds. This eats time they could have spent on the following questions.​
Mitigation: try to be concise, if the interviewer needs more detail, they will ask.

●​ Babble-stan: When speaking of technical topics, use the correct terms. Misuse of
vocabulary is a subtle indication you do not know what you are speaking of. ​
Mitigation: learn the vocabulary. If you must speak of what you don't know,
acknowledge it (without apologizing).

●​ Drowning in the weeds: Trying to write an entire algorithm and get tangled up in the
details. ​
Mitigation: There is little time for coding. Rather than wasting time on low-level
algorithmics, define abstract functions and only detail the ones the interviewer asks you
to.

●​ Silent running: Sometimes one gets stuck and can't make progress. This happens, but
don't do it silently. ​
Mitigation: Speak through your problem solving process. Verbalize what you are
thinking. If the interviewer hears that you are going down the wrong path, they may
choose to help you out.

For the boilerplate questions, prepare and rehearse answers. You should be able to introduce
yourself and say why you are interested in the position in 30 seconds. You should have some
anecdotes about your past work rehearsed and ready to go. They should be short and have a
point. Self-deprecation is fine but in small doses. Ambition is also good, but tempered with
realism. Always look at the interview and take cues from them. They mean well and will try to
help when you leave them the chance.

For the midterm, we can ask you to introduce yourself and why you want to work on the
Husksheets project. We can ask you questions that test your understanding of process,
requirements, and planning in the abstract, as for design, refactoring, testing we will ask

questions that are grounded in code fragments. You will not have to write code, but rather talk
about code. Remember, you have a fixed time budget for a number of questions, speaking too
long on one question may cause you to not be able to answer the last (few) questions.

If any of the concepts discussed in the slides is unclear, well we are in the ChatGPT age, ask
your friend. Or even better read some of the linked resources. We are always happy to answer
questions. Topics include Process (waterfall vs agile, risk management, XP, scrum),
Requirements (user stories, functional vs. non-functional), Planning (backlogs, sprints, tasks),
Test driven development (deriving tests from user stories), Teams (approach, reviews), Testing
(picking test inputs, black- v white-box, coverage, oracles, effects, doubles, beyond), Design
patterns (motivation, factory, singleton, adaptor, visitor), Refactoring.

Project Presentation
...
Project presentations are held June 17 and 18. A signup sheet will be published here.

The presentation is done in groups.

Husksheets
...

Overview
The course project is a distributed collaborative spreadsheet application called Husksheets. It
consists of (1) a server with a persistent store, (2) a client able to create and open
spreadsheets, and (3) a user interface that displays sheets and allows editing them.

You are to design and implement Husksheets following best software engineering practices.

It is up to each team to decide what practices from the lecture are helpful.

What we ask you is to document your practices, and argue why and how your team used them.

Deliverables
The following are required

●​ Team code repository [Deadline Sprint0]
●​ Team notebook repository [Deadline: Sprint0]
●​ Notebook entries for each sprint (group) and each work session (individual)

●​ Statement of Work [Deadline: Sprint0]
●​ Final Product [Deadline: June 15]
●​ Demo [Deadline: June 17]

Code Repository

The repository is to be hosted by https://github.com. Set it to Private and add course staff as
collaborators.

The repository should include the following:

●​ A design directory with all design documents
●​ A Readme.rmd with information describing the status of the project
●​ A Makefile with targets​

 - test to run the tests​
 - build to compile​
 - docker to build a version of the project in Docker and run the tests​
Note that we insist on a Makefile (even if you project uses other build technology, you
can simply call the other build tool from the Makefile)

●​ A src directory with the code of your project

Notebook Repository

The repository is to be hosted by https://github.com. Set it to Private and add course staff as
collaborators.

The repository should contain one .Rmd file per team member and one .Rmd file for group
meetings.

Notebooks should have this format (these are examples):
Entry

12

Start time

04/14/24 13:45

Purpose

I need to fix the code that implements the file selection user interface. For this I need to learn

more about JavaFX

Commit(s)

https://github.com/janvitek/JuliaGenerable/commit/846489905f0543b2307e586bda421f4629090f58?diff=sp

lit&w=1

Ownership

+134 -23 =665

Outcomes

Successfully added tests and implementation. Fixed a but that caused the UI to not display the

last element in a list, added a test for that case. Committed to the repo and removed the feature

flags.

End time

04/14/24 15:00

Entry

11

https://github.com/
https://github.com/
https://github.com/janvitek/JuliaGenerable/commit/846489905f0543b2307e586bda421f4629090f58?diff=split&w=1
https://github.com/janvitek/JuliaGenerable/commit/846489905f0543b2307e586bda421f4629090f58?diff=split&w=1

Start time

04/14/23 11:50

Purpose

Learn JavaFX -- the library that will be used in the graphical user interface of the project.

Commit(s)

none

Ownership

=465

Outcomes

Read the JavaFX documentation and experimented with some code examples provided by ChatGPT. A lot

of small details but overall relatively straightforward. The visual style of the GUI is not

particularly pretty, but it will do for a MVP.

End time

04/14/23 13:00

Entry

10

Start time

04/14/23 10:00

Purpose

Group meeting with Pierre and Jane. Frank was absent. Planning for the week's sprint.

Commit(s)

none

Ownership

=465

Outcomes

We agreed to split the work with me and Pierre pair programming the GUI, Jane will focus on

refactoring and Frank will continue working on the server. Next meeting Monday after class. We

will do a code review then.

End time

04/14/23 13:00

Each entry has start and end times, a Purpose section where you describe what you plan to do,
or, if this is a group meeting, summarizes attendance and goals of the meeting, a Commit(s)
section with links to any commits that you made, an Ownership which lists the lines of code
added and removed by the commits as well as the running total of code that contributed, and an
Outcome section that summarizes what was achieved.

The level of details may vary. But do not forget to record your work. And always push the
notebook to the repository as soon as you are done with an entry!

Statement of Work

Before starting to code, each team should write a SOW that describes what they expect to
implement in terms of MVP (minimal viable product), desirable features and additional features.
You will be graded based on meeting that SOW. Use best-practices to document the SOW.

Final Product

The tag of the code repository when you are done with development.

Please take into account that we emphasize code quality in this class. This means: clean code,
frequently refactored, documented and tested. This is just as important as functionality -- better

have good code that does a little, than bad code that does a lot. Undocumented code will not be
reviewed. Untested code will not be reviewed.

As a rough guideline for size, aim to contribute 1000 lines of quality code as measured by
additions minus deletions on GitHub. This is a soft goal as it is more important that the code be
of good quality (i.e. one could add one thousand empty lines or lines of comments it would meet
the letter of the law but not its spirit -- we grade on the spirit). Furthermore, each code unit (file,
class, method) should have a comment indicating its owner. We expect that the owner is the
one committing changes to their code. Others may ask for changes or make pull requests with
proposed changes, the final approval is with the owner.

Demo

A demonstration of the project and a code walk explaining your contributions.

Server Specification V1
The Husksheet Server accepts REST API requests from clients. The following endpoints are
supported by the current version of the specification:

●​ Result register()

●​ Result getPublishers()

●​ Result createSheet(Argument)

●​ Result getSheets(Argument)

●​ Result deleteSheet(Argument)

●​ Result getUpdatesForSubscription(Argument)

●​ Result getUpdatesForPublished(Argument)

●​ Result updatePublished(Argument)

●​ Result updateSubscription(Argument)

Where Result is a JSON object returned by the REST call, and Argument is an object provided
in the body of the request.

The format of both objects are:
 Result {

 boolean success

 String message

 List<Argument> value

 }

 Argument {

 String publisher, sheet, id, payload

 }

The meaning of the various fields are: if success is true, the result object has a value, else the
message holds the reason for the failure. The publisher is the name of a registered client, a

sheet is the name of a sheet belonging to a publisher, an id identifies an update to a sheet,
and a payload contains the data for an update.

The server uses Basic authentication: you should send a header with key Authorization and the
value Basic auth, where auth is username:password encoded with base 64. The set of client
names and passwords is pre-assigned. Status code 401 is returned when the request is not
authorized. HTTPS is used.

All endpoints may report an authentication failure, otherwise they should yield a result object.
The first two are GETs, the others are POSTs.

All endpoints start with /api/v1/, so, to connect to endpoint getPublishers on host
localhost on port 9443 in https, one would use
https://localhost:9443/api/v1/getPublishers.

Endpoints

register causes the server to create a publisher with the client name. No value is returned.

getPublishers returns a list of argument objects with the publisher field set to all registered
publishers.

getSheets takes an argument object with field publisher set to the name of a publisher and
returns a list of argument objects with the publisher and sheet fields set to all sheet names for
the given publisher.

createSheet takes an argument object with fields publisher and sheet set to the name of the
client and the name of a sheet to create. No value is returned.

deleteSheet takes an argument object with fields publisher and sheet set to the name of the
client and the name of a sheet to delete. No value is returned.

getUpdatesForSubscription takes an argument object with fields publisher, sheet and id
set to the name of a publisher, a sheet, and an id. It returns an argument object with the
payload set to all updates that occurred after id, and the id field set to the last id for those
updates. The sheet is owned by a publisher different from the client. An empty payload is
returned if no updates occurred after the given id. The initial id is "0".

getUpdatesForPublished takes an argument object with fields publisher, sheet and id set
to the name of a publisher, a sheet, and an id. It returns an argument object with the payload set
to all the requests for updates that occurred after id, and the id field set to the last id for those
requests for updates. The sheet is owned by the client. An empty payload is returned if no
updates occurred after the given id. The initial id is "0".

updatePublished takes an argument object with fields publisher, sheet and payload set to
the name of a publisher, a sheet, and updates for that sheet. No value is returned. The sheet is
owned by the client.

https://localhost:9443/api/v1/publishers

updateSubscription takes an argument object with fields publisher, sheet and payload set
to the name of a publisher, a sheet, and requests for updates for that sheet. No value is
returned. The sheet is owned by a publisher different from the client.

Sheet Update

A sheet is a set of cells indexed by references. Cells can have numeric or character values, or
can hold formulas which determine how the value of the cell is computed. The largest number of
columns and rows that is expected is in the thousands.

A Ref (or reference) is a string like $A1 that consists of three parts, $. A . 1, the first part is
a mandatory dollar sign, it is followed by a column identifier and a row identifier. Column
identifiers are, case-insensitive, sequences of alphabetic letters that denote a column. Thus A
denotes column 1, and AB denotes column 28 (1×26^1+2×26^0). Row identifiers are non-zero
positive integers.

An Update is a newline separated sequence of (Ref,Term) pairs, where a Term can be either a
value or a formula. For example:

$A1 1​
$a2 "help"​
$B1 -1.01​
$C4 ""​
$c1 = SUM($A1:$B1)

A Term is either one of a number (signed, floating point), a double-quote-delimited string
(possibly with \" escapes), or a formula.

A Formula starts with an = and is followed by an expression.

The grammar for expressions is:

E ::= E Op E | '(' E ')' | Fun '(' [E [',' E]*] ')' |

['+'|'-']<int> | <string> | Ref​
Op ::= '+' | '-' | '*' | '/' | '<' | '>' | '=' | '<>' | '&' | '|' | ':'​
Fun ::= 'IF' | 'SUM' | 'MIN' | 'AVG' | 'MAX' | 'CONCAT' | 'DEBUG'

In the above square braces denote optional elements. Precedence is unspecified, parenthesis
should be used for disambiguation.

The meaning of a Ref is the value of the corresponding cell, if the cell contains a formula that
value is the result of evaluating the formula, if the cell has not been assigned a value then
nothing is returned.

The meaning of a range $A1:$B2 is the sequence of values of the cells in that range. Cells
without a value are ignored.

The meaning of operations is as follows:

x + y, returns the sum of x and y if they are numbers, error otherwise​
x - y, returns the subtraction of x and y if they are numbers, error otherwise​
x * y, returns the multiplication of x and y if they are numbers, error otherwise​
x / y, returns the division of x by y if they are numbers and y is not zero, error otherwise​
x < y, returns 1 if x is smaller than y and 0 if they are other numbers, error otherwise​
x > y, returns 1 if x is larger than y and if they are other numbers, error otherwise​
x = y, if x and y are numbers, returns 1 x is y, 0 otherwise; if they are both strings, return
1 if they are equal else 0; error otherwise​
x <> y, if x and y are numbers, returns 0 x is y, 1 otherwise; if they are both strings,
return 0 if they are equal else 1; error otherwise​
x & y, if x and y are numbers, returns 1 if x and y are not 0, and 0 otherwise; error if
either of them is a string​
x | y, if x and y are numbers, returns 1 if x or y is 1, and 0 otherwise; error if either of
them is a string​
x : y, if x and y are Ref and x <= y, return the range of cells denoted; otherwise error.

The meaning of functions is as follows:

IF(e1, e2, e3) if e1 is not zero return the value of e2, if it is zero return e3's value; error
if e1 is not a number ​
SUM(e1 ... en) if all values are numbers then return their sum; otherwise error​
MIN(e1 ... en) if all values are numbers then return the smallest value; otherwise error​
MAX(e1 ... en) if all values are numbers then return the largest value; otherwise error​
AVG(e1 ... en) if all values are numbers then return their average; otherwise error​
CONCAT(e1 ... en) coerce all values to strings and concatenate them​
DEBUG(e) return the value of e

	Foundations of Software Engineering
	Staff ...
	Contact ...
	Times ..
	Schedule and deliverables ...
	Teams ...
	Midterm ...
	Project Presentation ...
	Husksheets ...
	Overview
	Deliverables
	Code Repository
	Notebook Repository
	Statement of Work
	Final Product
	Demo

	Server Specification V1
	Endpoints
	Sheet Update

