Уважаемый студент, выполнение указанных заданий строго обязательно!

Группа ПКД2/1 Дата:18.01.2023.

Дисциплина: ЕН Химия Преподаватель: Воронкова А.А.

Лабораторная работа

Получение устойчивых эмульсий и пен, выявление роли стабилизаторов.

Цель: Получить эмульсии, пены и выявить роль стабилизатора в получении устойчивых эмульсий и пен.

Теоретическое пояснение

Эмульсии представляют собой системы из двух взаимно нерастворимых жидкостей. Обычно одной из жидкостей является вода, а другой - масло, бензин, керосин, бензол и т.п.

Эмульсии - неустойчивые системы. В отсутствии стабилизатора капельки эмульгированного вещества сливаются в сплошной слой жидкости, и система полностью распадается на две жидкие фазы. Вещества, стабилизирующие эмульсию, называют стабилизаторами или эмульгаторами. Они обладают способностью адсорбироваться на поверхности капель эмульсии и препятствовать их смешиванию. Эмульгатор должен быть подобен той жидкости, которая образует дисперсионную среду.

Пены - грубодисперсные системы, в которых дисперсная фаза — газ, а дисперсионная среда — жидкость в виде тонких пленок. Чистые жидкости не дают пен. Чтобы получить устойчивые пены, необходимы эффективные стабилизаторы-пенообразователи. К типичным пенообразователям водных пен относятся спирты, мыла, белки.

Таблица 1

			таолица т
Дисперсная фаза	Дисперсионная среда	Условное обозначение системы	Название системы и примеры
Твердая	Твердая	T/T	Твердые гетерогенные системы: шоколад, кристаллический ирис
Жидкая	»	Ж/Т	Капиллярные системы (жидкость в пористых телах): мармелад, бисквитное тесто
Г азообразная	»	Г/Т	Пористые тела, твердые пены: пастила, зефир, пористый шоколад
Твердая	Жидкая	Т/Ж	Суспензии и лиозоли: взвеси, пасты, какао тертое, помадные массы
Жидкая	>>	ж/ж	Эмульсии: кремы, молоко, масло, сметана
Г азообразная	>>	$\kappa \backslash \gamma$	Газовые эмульсии и пены: шампанское, пиво
Твердая	Газообразная	т/г	Аэрозоли (пыли, дымы), порошки: мучная, сахарная пыль, какао-порошок, крахмал
Жидкая	ъ	ж/г	Аэрозоли: туманы, в том числе и промышленные, распыленные для высушивания соки, молоко
Газообразная	»	г/г	Коллоидная система не образуется

Ход работы

Опыт №1. Получение эмульсий.

Приготовьте 3 пробирки и налейте

- в 1-ю 5 мл воды,
- во 2-ю 5 мл раствора мыла,
- в 3-ю 5 мл раствора белка.

Добавьте в каждую пробирку по 5 капель растительного масла и взболтайте содержимое. Наблюдайте образование и относительную скорость разрушения эмульсий.

Задание. Определите дисперсионную среду и фазу для каждой системы. Какие системы наиболее устойчивые (частицы масла не коагулируют)? Дайте объяснение различной устойчивости полученных эмульсий (определять по полярности (неполярности) среды и стабилизатора).

Опыт №2 Получение пен.

Налейте в колбу 15 мл воды и через капиллярную трубку продувайте воздух. Повторите опыт, заменив воду раствором мыла.

В каком случае образуется пена?

К полученной пене добавке 1-2 капли спирта.

Как это повлияла на устойчивость пены?

Задание. Объясните, почему в чистой воде пена не образуется, а образуется в растворе мыла? Какова роль спирта?

Вывод.

Контрольные вопросы:

- 1. Какие системы называют эмульсиями, пенами?
- 2. Как классифицируют эмульсии?
- 3. Объясните причину неустойчивости эмульсий.
- 4. Какие пенообразователи вам известны?

Задание: оформить отчет по лабораторной работе и ответить на контрольные вопросы в тетради

Литература

1. Физическая и коллоидная химия (в общественном питании) :учеб. пособие /С.В. Горбунцова, Э.А. Муллоярова, Е.С. Оробейко, Е.В. Федоренко. - М. : Альфа-М: ИНФРА—М, 2016. — 270 с.

Для максимальной оценки задание нужно прислать до 15.00 ч. 18.01.2023г.

Выполненную работу необходимо сфотографировать и отправить на почтовый ящик *voronkova20.88@gmail.com*, <u>Александра Александровна (vk.com)</u>, добавляемся в <u>Блог</u> преподавателя Воронковой А.А. (vk.com) -здесь будут размещены видео материалы

-ОБЯЗАТЕЛЬНО ПОДПИСЫВАЕМ РАБОТУ НА ПОЛЯХ + в сообщении указываем дату/группу/ФИО