
Quick revision Notes

Quick revision Notes
Computer science paper 2

The program development life cycle(PDLC):

➢​ Analysis:
○​ Analysing the problem to be solved by clearly defining it
○​ Involves “Abstraction” where unnecessary details to the problem is discarded
○​ Involves “Decomposition” to exactly determine the requirements of the

program by breaking the problem into smaller pieces
➢​ Design:

○​ Shows how the program can be developed,By formally documenting it using
structure diagrams,flowcharts,pseudocode

➢​ Coding(And iterative testing):
○​ The program or set of programs are developed,each module of the program

is then tested and edited to work as intended before moving onto the next
module.

➢​ Testing:
○​ The program is tested with different types of test data to make sure it is

working as intended and solves the initial problem

Test data:
➢​ Normal test data:

○​ Data that the program should accept,used to check if program accepts and
process expected data

➢​ Abnormal test data:
○​ Data that the program should reject,Used to check if the program rejects data

that should not be accepted
➢​ Extreme test data:

○​ Data that the program should accept,Used to check if the program accepts
the lowest and highest values that should be accepted

➢​ Boundary test data:
○​ Data that the program should accept and reject,Used to check if the program

accepts the lowest and highest values that should be accepted and rejects
their counterparts above and below the accepted range.

Validation checks:
➢​ Length checks: Checks for the length of a string/array
➢​ Range check: Checks if number is within a specific range
➢​ Type check: Checks the variable type of a variable
➢​ Presence check: Checks if there is a value present in input
➢​ Format check: Checks if the input follows a specific format
➢​ Check digits: Checks if the value was entered incorrectly

Verification checks:
➢​ Double entry: Input is given 2 times to see if they match
➢​ Screen/Visual check: A check by the user ensure the input is valid

Decomposing a problem:
The component parts of any computer system are:
➢​ Inputs
➢​ Processes
➢​ Outputs
➢​ Storage

Flowcharts:

Symbol Name Function

Terminator

Begin/End

Start/Stop (Oval)

Terminator symbols mark a flowchart's start and end.

Flow lines/

(Arrows)

Flowchart arrows show direction, usually top-down or left-right.

Process

(Rectangle)

This symbol shows process details.

Functions:

Assignment – Storing values in variables.

Calculations – Performing arithmetic operations.

Updating variables – Modifying values during execution.

Data processing – Sorting, searching, or transforming data.

Function calls – Executing predefined procedures.

Process Defined

Elsewhere/

Subprogram/

Subroutine

This symbol indicates a process defined elsewhere, labeled with its

name.

Input/Output

(Parallelogram)

The same symbol represents both data input and information

output.

Decision

(Diamond)

A decision is used to determine the next action in a process. It is

commonly used for selection and iteration (repetition). In

flowcharts, a decision symbol always has two output paths, which

should be clearly labeled.

You can have more than one condition by including AND or OR.

Functions:

Conditional checks (e.g., if age >= 18)

Branching (Yes/No, True/False)

Loop control (continue/exit)

Comparisons (if score > 50)

Logical decisions (AND/OR conditions)

Operator Comparison Example

> Greater than IF age > 18 THEN

 OUTPUT "You are eligible to vote."

ELSE

 OUTPUT "You are not eligible to vote."

ENDIF

< Less than IF temperature < 0 THEN

 OUTPUT "It is freezing!"

ENDIF

= Equal IF password = "admin123" THEN

 OUTPUT "Access Granted."

ELSE

 OUTPUT "Access Denied."

ENDIF

>= Greater than or equal IF marks >= 50 THEN

 OUTPUT "You have passed the exam."

ELSE

 OUTPUT "You have failed the exam."

ENDIF

<= Less than or equal IF speed <= 80 THEN

 OUTPUT "You are within the speed limit."

ELSE

 OUTPUT "You are exceeding the speed limit!"

ENDIF

<> Not equal IF username <> "admin" THEN

 OUTPUT "You are not an admin user."

ENDIF

Explanation: If username is not "admin", it

displays a message

AND Both IF age >= 18 AND country = "UK" THEN

 OUTPUT "You can apply for a driving license in

the UK."

ENDIF

Explanation: The user must be 18 or older AND

from the UK to apply for a license.

OR Neither IF weather = "rainy" OR weather = "snowy"

THEN

 OUTPUT "Take an umbrella."

ENDIF

Explanation: If the weather is either rainy or

snowy, the program suggests taking an umbrella.

NOT Not IF NOT (isMember = TRUE) THEN

 OUTPUT "You need to register first."

ENDIF

Explanation: If isMember is not true, it prompts

the user to register.

== Comparison X==3

Is X equal to 3?

Structure diagram:

Pseudocode and Python code:

Code statement Pseudocode Python Code

Count control loop FOR Count ← 1 TO 50

 <Code>

NEXT Count

for i in range(50):

 <Code>

Precondition loop WHILE <Condition> DO

 <Code>

ENDWHILE

while <Condition>:

 <Code>

Post-condition loop REPEAT

 <Code>

UNTIL <Condition>

while (True):​
 <Code>

 if <Condition> :

 break

Conditional statement IF <Condition>:

 THEN

 <Code>

 ELIF <Condition>

 <Code>

 ELSE

 <Code>

ENDIF

if <Condition>:

 <Code>

elif <Condition>:

 <Code>

else:

 <Code>

Input statement INPUT Number Number=input(<Prompt>)

Output statement OUTPUT “you said”,Number print(“you said”,Number)

Declaration / initialisation DECLARE Num:INTEGER

DECLARE List AS ARRAY[1:20] OF STRING

Num=0

List =[“” for i in range(20)]

Counting Count←Count+1 Count += 1

Totaling Total←Total+Number Total += Number

Declaration of procedure PROCEDURE <Name>(<Parametre n>:<Parameter n type>)

 <Code>

ENDPROCEDURE

def <Name>(<Parameter n>):

 <Code>

Declaration of function FUNCION <Name>(<Parametre n>:<Parameter n type>) RETURNS <return Type>

 <Code>

 RETURN <Data>

ENDFUNCTION

def <Name>(<Parameter n>):

 <Code>

 return<data>

Calling procedure/function Num ← CALL <Name>(<Parameters>) Num = <Name>(<Parameters>)

Case of a value CASE OF Num

 <Value 1> : <Code>

 <Value 2> : <Code>

 <Value n> : <Code>

 OTHERWISE <Code>

ENDCASE

if <Condition>:

 <Code>

elif <Condition>:

 <Code>

else:

 <Code>

Open/close file OPENFILE <File path> FOR <Access type>

 <Code>

CLOSEFILE(<File path>)

Var= open(<File path>,<access type>):

close(Var)

Read file OPENFILE <File path> FOR READ

 READFILE <Variable to store>

CLOSEFILE(<File path>)

Var= open(<File path>,”r”):

File_contenets = Var.read()

close(Var)

Write file OPENFILE <File path> FOR WRITE

 WRITEFILE <Variable with writing data>

CLOSEFILE(<File path>)

Var= open(<File path>,”w”):

Var.write(<Data>)

close(Var)

Name Sign/function purpose

add ‘+’ Add/concatenate 2 values

subtract ‘-’ Subtract 2 values

Divide ‘/’ Divide 2 numbers

integer Divide DIV (or) ‘//’ Divide 2 numbers and return

integer quotient

Modulus MOD (or) ‘%’ Divide 2 numbers and return

integer remainder

Length Python: len(<var>)

(or)

Pseudocode: LENGTH(<var>)

Finds and returns the length of a

string,array or dictionary

Uppercase Python: <str>.upper()

(or)

Pseudocode: UCASE(<str>)

Returns a version of the string

with all characters in upper case

Lowercase Python: <str>.lower()

(or)

Pseudocode: LCASE(<str>)

Returns a version of the string

with all characters in lower case

Substring Python: <Str>[<Start char pos> : <End char pos>]

(or)

SUBSTRING(<str>,<start char pos>,<length>)

Returns a part of the string that

is specified

Common definitions:
●​ Constant: Used to store values that do not change throughout the program;Ex: pi.

●​ Variables: Used to store values that do change throughout the program or in runtime;Ex:

Looping variables.

●​ Functions: A group of programming statements under a defined name that can be called
repeatedly through the program with the defined name,the function returns a value back to
the program it was called in;Ex: a function to do integer division.

●​ Procedures: A group of programming statements under a defined name that can be called
repeatedly through the program with the defined name,the procedure does not return a value
back to the program it was called in.

●​ Local variables: A local variable is a variable that can only be used in the module of code it
was defined in,it does not have a special syntax to initialize it.

●​ Global variables: A global variable is a variable that can be used anywhere in the code it

was defined in,it does have a special syntax to initialise it.

Database data types:
Data type Example Description

Text “Hello world”​
 (OR)

‘Hello 1234’

A group or ‘string’ of characters

Character “M” (OR) ‘4’ A single character

Boolean TRUE (OR) FALSE A value that can either be
{true,1,yes} or {false,0,no}

Integer 9 A whole number

Real 20.35 A decimal value
Date/Time “22/11/2024” (or) “22:43:10.33” A date or time value

Records and fields:
Records are the rows

Fields are the columns

 Field 1 Field 2 Field 3 Field 4 Field 5
Record 1
Record 2
Record 3
Record 4

Create a table:

Format: EXAMPLE:
CREATE TABLE <table name>(
<Field Name> <Field Type> PRIMARY KEY,
<Field Name> <Field Type> ,
<Field Name> <Field Type>);

CREATE TABLE Students (
StudentID TEXT NOT NULL PRIMARY KEY,
StudentName TEXT NOT NULL,
StudentGrade INTEGER NOT NULL,
StudentDOB DATE NOT NULL,
StudentAvgMarks REAL NOT NULL,
StudentGender CHARACTER NOT NULL,
IsStudentTopper BOOLEAN NOT NULL);

Insert values into table:
INSERT INTO <table name> VALUES (<value1>,<value 2>,…<value n>);

Inserts a record of all values given for each field into the specified table name

Output from database:
SELECT <fields> FROM <table name> WHERE <condition> ORDER BY <field> DESC ;

[Text in blue]: Select the values of a field from a specified table, this part of the statement is necessary.

Ex: SELECT code, price FROM Items {returns fields codes and price from table items}

[Text in orange]: Selects the values from the field only if the condition is true, not necessary for the statement to
work.

Ex: SELECT * FROM Items WHERE Price > 250 {returns the whole record of any item with a price over
250}

[Text in purple]: Returns the values in alphabetical order, if DESC is specified then the order is reversed, not
necessary for the statement to work.

Ex: SELECT Item_code FROM Items ORDER BY Item_name {returns items codes by the alphabetical order
of its name}

Extras:
SELECT SUM (<Field>) {Returns the sum of the values in the field, field should be INT or REAL}

SELECT COUNT (<Field>) {Returns the number of records for that field}

Update value in database:
UPDATE <table name> SET <field> = <new value> WHERE <condition>;

Updates the values in the field of a specified table to the new value where the condition is true.
The condition is not necessary.

Logic gates:

Python/Pseudocode methods to know:

Method: Code:

1D/2D array handling #1D array:

Var = Array[<pos>]

Array.append(<Value>)

#2D array:

Var = Array[<Row number>,<Column number>]

Array[<Row number>].append(<Value>)

Bubble sort for x in range(len(array)):

 for i in range(len(array)-1):

 if array[i] > array[i+1]:

 array[i] , array[i+1] = array[i+1] , array[i]

Linear search Var = <Value to find>

for i in range(len(<Array>)):

 if array[i]==Var:

 <Position of Var> = i

Tips and tricks:
●​ 15 mark Q:

○​ In the 15 mark Q add a comment addressing the bullet point before the code
for that point is written(example: “#getting wood type from user using integer
input”)

○​ In the15 mark Q Always add comments before a programming method(e.g.
Bubble sort or linear search) stating the method used and the purpose.

○​ Allocate half a page for declaration of variables and initialization before
moving onto the code in the 15 mark question

○​ Add checkboxes next to the bullet points in the 15 mark question.Tick them
off when your done with each bullet point

○​ Underline the conditions specified in the 15 mark question and refer to them
as you write the program

●​ Error identification and correction Q:
○​ In the error identification question always check for syntax errors throughout

the code before moving onto the logical errors(At Least 1 error is guaranteed)
○​ It is very common to have at least one error due to switched up operators(e.g.

“<” instead of “>” ,”←” instead of “=”)

●​ Pseudocode writing Q:
○​ Always recheck the “AND” and “OR” operators in a conditional statement as

they are easy to confuse

	Quick revision Notes
	Quick revision Notes
	Computer science paper 2
	Test data:
	Validation checks:
	Verification checks:
	Decomposing a problem:
	Flowcharts:
	
	Structure diagram:
	Pseudocode and Python code:
	
	Common definitions:
	Database data types:
	
	Records and fields:
	Create a table:
	Insert values into table:
	Output from database:
	
	Extras:
	Update value in database:
	Logic gates:
	Python/Pseudocode methods to know:

