Quick revision Notes

Quick revision Notes

Computer science paper 2
The program development life cycle(PDLC):

> Analysis:

o Analysing the problem to be solved by clearly defining it

o Involves “Abstraction” where unnecessary details to the problem is discarded

o Involves “Decomposition” to exactly determine the requirements of the
program by breaking the problem into smaller pieces

> Design:

o Shows how the program can be developed,By formally documenting it using
structure diagrams,flowcharts,pseudocode

> Coding(And iterative testing):

o The program or set of programs are developed,each module of the program
is then tested and edited to work as intended before moving onto the next
module.

> Testing:

o The program is tested with different types of test data to make sure it is

working as intended and solves the initial problem

Test data:

> Normal test data:
o Data that the program should accept,used to check if program accepts and
process expected data
> Abnormal test data:
o Data that the program should reject,Used to check if the program rejects data
that should not be accepted
> Extreme test data:
o Data that the program should accept,Used to check if the program accepts
the lowest and highest values that should be accepted
> Boundary test data:
o Data that the program should accept and reject,Used to check if the program
accepts the lowest and highest values that should be accepted and rejects
their counterparts above and below the accepted range.

Validation checks:

Length checks: Checks for the length of a string/array

Range check: Checks if number is within a specific range
Type check: Checks the variable type of a variable
Presence check: Checks if there is a value present in input
Format check: Checks if the input follows a specific format
Check digits: Checks if the value was entered incorrectly

YVVYVYYY

Verification checks:

> Double entry: Input is given 2 times to see if they match
> Screen/Visual check: A check by the user ensure the input is valid

Decomposing a problem:

The component parts of any computer system are:

> |Inputs

> Processes
> Outputs
> Storage

Flowcharts:

Symbol Name Function
Terminator Terminator symbols mark a flowchart's start and end.
Begin/End

START] [STOP]

Start/Stop (Oval)

r_ Flow lines/ Flowchart arrows show direction, usually top-down or left-right.
(Arrows)
Process This symbol shows process details.
A (Rectangle) Functions:
B0 Assignment - Storing values in variables.

Calculations - Performing arithmetic operations.

Updating variables - Modifying values during execution.
Data processing - Sorting, searching, or transforming data.
Function calls - Executing predefined procedures.

Process Defined

This symbol indicates a process defined elsewhere, labeled with its

Process which Elsewhere/ name.
is definad Subprogram/
elsewhere Subroutine
OUTPUT Input/Output The same symbol represents both data input and information
Parallelogram output.
INPUT X oy ¢ gram) P
Decision A decision is used to determine the next action in a process. It is
(Diamond) commonly used for selection and iteration (repetition). In
yes/true flowcharts, a decision symbol always has two output paths, which
should be clearly labeled.
You can have more than one condition by including AND or OR.
Functions:
Conditional checks (e.g., if age >= 18)
Branching (Yes/No, True/False)
noffalse Loop control (continue/exit)

Comparisons (if score > 50)
Logical decisions (AND/OR conditions)

Operator

Comparison

Example

Greater than

IF age > 18 THEN

OUTPUT "You are eligible o vote."
ELSE

OUTPUT "You are not eligible to vote."
ENDIF

Less than

IF temperature < 0 THEN
OUTPUT "It is freezing!"
ENDIF

Equal

IF password = "admin123" THEN
OUTPUT "Access Granted."
ELSE
OUTPUT "Access Denied."
ENDIF

Greater than or equal

IF marks >= 50 THEN

OUTPUT "You have passed the exam."
ELSE

OUTPUT "You have failed the exam."
ENDIF

Less than or equal

IF speed <= 80 THEN

OUTPUT "You are within the speed limit."
ELSE

OUTPUT "You are exceeding the speed limit!"
ENDIF

<>

Not equal

IF username <> "admin" THEN

OUTPUT "You are not an admin user."
ENDIF
Explanation: If username is not "admin", it
displays a message

AND

Both

IF age >= 18 AND country = "UK" THEN
OUTPUT "You can apply for a driving license in

the UK."

ENDIF

Explanation: The user must be 18 or older AND

from the UK to apply for a license.

OR

Neither

IF weather = "rainy" OR weather = "snowy"
THEN

OUTPUT "Take an umbrella."
ENDIF
Explanation: If the weather is either rainy or
showy, the program suggests taking an umbrella.

NOT

Not

IF NOT (isMember = TRUE) THEN
OUTPUT "You need to register first."
ENDIF
Explanation: If isMember is not true, it prompts
the user to register.

Comparison

X==3
Is X equal to 3?

Structure diagram:

System

v v

v

Sub-system 1

Sub-system 2

Sub-system 3

v

Sub-system 2.1

Sub-system 2.2

Pseudocode and Python code:

Code statement

Pseudocode

Python Code

Count control loop

FOR Count — 1 TO 50
<Code >
NEXT Count

for i in range(50):
<Code>

Precondition loop

WHILE <Condition> DO

while <Condition>:

<Code> <Code>
ENDWHILE
Post-condition loop REPEAT while (True):
<Code> <Code>
UNTIL <Condition> if <Condition> :
break

Conditional statement

IF <Condition>:
THEN
<Code>
ELIF <Condition>
<Code >
ELSE
<Code>
ENDIF

if <Condition>:

<Code>
elif <Condition>:

<Code>
else:

<Code>

Input statement

INPUT Number

Number=input(<Prompt>)

Output statement

OUTPUT "you said”,Number

print(“you said”,Number)

Declaration / initialisation

DECLARE Num:INTEGER

DECLARE List AS ARRAY[1:20] OF STRING

Num=0
List =[*" for i in range(20)]

Counting

Count—Count+1

Count += 1

Totaling

Total—Total+Number

Total += Number

Declaration of procedure

PROCEDURE <Name>(<Parametre n>:<Parameter n type>)

<Code>
ENDPROCEDURE

def <Name>(<Parameter n>):
<Code>

Declaration of function

FUNCION <Name>(<Parametre n>:<Parameter n type>) RETURNS <return Type> def <Name>(<Parameter n>):

<Code>
RETURN <Data>
ENDFUNCTION

<Code>
return<data>

Calling procedure/function

Num — CALL <Name>(<Parameters>)

Num = <Name>(<Parameters>)

Case of a value

CASE OF Num
<Value 1> : <Code>
<Value 2> : <Code>
<Value n> : <Code>
OTHERWISE <Code>
ENDCASE

if <Condition>:
<Code>
elif <Condition>:
<Code>
else:
<Code>

Open/close file

OPENFILE <File path> FOR <Access type>
<Code>
CLOSEFILE(<File path>)

Var= open(<File path>,<access type>):
close(Var)

Read file OPENFILE <File path> FOR READ Var= open(<File path>,"r"):
READFILE <Variable to store> File_contenets = Var.read()
CLOSEFILE(<File path>) close(Var)
Write file OPENFILE <File path> FOR WRITE Var= open(<File path>,"w"):
WRITEFILE <Variable with writing data> Var.write(<Data>)
CLOSEFILE(<File path>) close(Var)
Name Sign/function purpose
add '+ Add/concatenate 2 values
subtract - Subtract 2 values
Divide '/ Divide 2 numbers
integer Divide DIV (or)'// Divide 2 numbers and return

integer quotient

Modulus MOD (or) '%' Divide 2 numbers and return
integer remainder
Length Python: len(<var>) Finds and returns the length of a
(or) string,array or dictionary
Pseudocode: LENGTH(<var>)
Uppercase Python: <str>.upper() Returns a version of the string
(or) with all characters in upper case
Pseudocode: UCASE(<str>)
Lowercase Python: <str>.lower() Returns a version of the string
(or) with all characters in lower case
Pseudocode: LCASE(<str>)
Substring Python: <Stro[<Start char pos> : <End char pos] | Returns a part of the string that

(or)
SUBSTRING(<str><start char pos><length>)

is specified

Common definitions:

Constant: Used to_store values that do not change throughout the program;Ex: pi.

Variables: Used to_store values that do change throughout the program or in runtime;Ex:
Looping variables.

Functions: A group of programming statements under a defined name that can be called
repeatedly through the program with the defined name,the function returns a value back to
the program it was called in;Ex: a function to do integer division.

Procedures: A_group of programming statements under a defined name that can be called

repeatedly through the program with the defined name,the procedure does not return a value
back to the program it was called in.

Local variables: A local variable is a variable that can only be used in the module of code it
was defined in,it does not have a special syntax to initialize it.

Global variables: A global variable is a variable that can be used anywhere in the code it
was defined in,it does have a special syntax to initialise it.

Database data types:

Data type Example Description
Text “Hello world” A group or ‘string’ of characters
(OR)
‘Hello 1234’
Character “M” (OR) ‘4’ A single character
Boolean TRUE (OR) FALSE A value that can either be
{true,1,yes} or {false,0,no}
Integer 9 A whole number
Real 20.35 A decimal value
Date/Time “22/11/2024” (or) “22:43:10.33” A date or time value

Records and fields:

Records are the rows

Fields are the columns

Record 1
Record 2
Record 3
Record 4

Field 1 Field 2 Field 3 Field 4 Field 5

Create a table:

Format: EXAMPLE:
CREATE TABLE <table name>(CREATE TABLE Students (
<Field Name> <Field Type> PRIMARY KEY, StudentID TEXT NOT NULL PRIMARY KEY,
<Field Name> <Field Type>, StudentName TEXT NOT NULL,
<Field Name> <Field Type>); StudentGrade INTEGER NOT NULL,

StudentDOB DATE NOT NULL,
StudentAvgMarks REAL NOT NULL,
StudentGender CHARACTER NOT NULL,
IsStudentTopper BOOLEAN NOT NULL);

Insert values into table:

INSERT INTO <table name> VALUES (<value1>,<value 2>,...<value n>);

Inserts a record of all values given for each field into the specified table name

Output from database:

SELECT <fields> FROM <table name> WHERE <condition> ORDER BY <field> DESC ;

[Text in blue]: Select the values of a field from a specified table, this part of the statement is necessary.
Ex: SELECT code, price FROM Items {returns fields codes and price from table items}

[Text in orange]: Selects the values from the field only if the condition is true, not necessary for the statement to
work.

Ex: SELECT * FROM Items WHERE Price > 250 {returns the whole record of any item with a price over
250}

[Text in purple]: Returns the values in alphabetical order, if DESC is specified then the order is reversed, not
necessary for the statement to work.

Ex: SELECT Iltem_code FROM Items ORDER BY Item_name {returns items codes by the alphabetical order
of its name}

Extras:
SELECT SUM (<Field>) {Returns the sum of the values in the field, field should be INT or REAL}

SELECT COUNT (<Field>) {Returns the number of records for that field}

Update value in database:

UPDATE <table name> SET <field> = <new value> WHERE <condition>;

Updates the values in the field of a specified table to the new value where the condition is true.
The condition is not necessary.

Logic gates:

Gate Symbol Description
NOT The NOT gate takes a single binary input and outputs the opposite of
> the input
AND The AND gate takes two inputs and produces one output
} Only two positive inputs (1 and 1) will result in a positive output of 1
If either of the inputs is a 0 the output will be a 0

[EDS

The OR gate takes two inputs and produces one output

If either of the inputs is positive (1) the output will be 1

NAND 7};

A NAND gate is a combination of an AND gate followed by a NOT
gate. If both inputs are a 1 it will output a 0. Any other combination
of inputs will result in an output of 1

NOR

A MOR gate is a combination of an OR gate followed by a NOT gate. If
both inputs are 0 it will output a 1. Any other combination of inputs
will result in an output of 0

XOR D
>

An XOR gate (exclusive OR) will output a 1 if the inputs are different
to one another (a 1 and a 0}

Python/Pseudocode methods to know:

Method:

Code:

1D/2D array handling

#1D array:
Var = Array[<pos>]
Array.append(<Value>)

#2D array:
Var = Array[<Row number> <Column number>]
Array[<Row number>].append(<Value>)

Bubble sort for x in range(len(array)):
for i in range(len(array)-1):
if array[i]> array[i+1]:
array[i], array[i+1] = array[i+1] , array[i]

Linear search Var = <Value to find>
for i in range(len(<Array>)):
if array[i]==Var:
<Position of Var> =i

Tips and tricks:
e 15 mark Q:

o Inthe 15 mark Q add a comment addressing the bullet point before the code
for that point is written(example: “#getting wood type from user using integer
input”)

o Inthe15 mark Q Always add comments before a programming method(e.g.
Bubble sort or linear search) stating the method used and the purpose.

o Allocate half a page for declaration of variables and initialization before
moving onto the code in the 15 mark question

o Add checkboxes next to the bullet points in the 15 mark question.Tick them
off when your done with each bullet point

o Underline the conditions specified in the 15 mark question and refer to them
as you write the program

e Error identification and correction Q:
o In the error identification question always check for syntax errors throughout
the code before moving onto the logical errors(At Least 1 error is guaranteed)
o Itis very common to have at least one error due to switched up operators(e.g.

“<” instead of “>” "< instead of “=")

e Pseudocode writing Q:
o Always recheck the “AND” and “OR” operators in a conditional statement as
they are easy to confuse

	Quick revision Notes
	Quick revision Notes
	Computer science paper 2
	Test data:
	Validation checks:
	Verification checks:
	Decomposing a problem:
	Flowcharts:
	
	Structure diagram:
	Pseudocode and Python code:
	
	Common definitions:
	Database data types:
	
	Records and fields:
	Create a table:
	Insert values into table:
	Output from database:
	
	Extras:
	Update value in database:
	Logic gates:
	Python/Pseudocode methods to know:

