
Laboratory 1 | Simple Application
CSE 344 - Introduction to Data Management

You will find the starter files linked on the website as “cse344-lab1.zip”.

Note on collaboration: For the labs, you are expected to work alone. However, you are allowed
to exchange test case files.

While we provide a testing framework for most of your methods, the testing we provide is partial
(although significant). It is up to you to implement your solutions so that they completely follow
the provided specification.

Because your solution is of your own design, please provide a short writeup and name it
“lab1.pdf”. Any figures included should be neatly drawn and have legible text.

Submit your solution files to Canvas. Things to turn in:

●​ lab_code.zip
●​ lab1.pdf

0. Setup and General Specifications

10,000-foot view of the application
Congratulations! You are opening your own flight booking service!

In this lab, you have two main tasks:

1.​ Design a database of your customers and the flights they book.
2.​ Complete a working prototype of your flight booking application that connects to the

database then allows customers to use a CLI to search, book, cancel, etc. flights.

You will also be writing a few test cases and explaining your implementation in a short writeup.
We have already provided code for a UI and partial backend; you will implement the rest of the
backend. In real life, you would develop a web-based interface instead of a CLI, but we use a
CLI to simplify this homework.

For this lab, you can use any of the classes from the Java 8 standard JDK.

https://docs.oracle.com/javase/8/docs/api/

Connect your application to your database
You will need to access your Flights database on SQL Azure from HW1. Alternatively, you may
create a new database and use the HW1 specification for importing Flights data. Modify
dbconn.properties for this lab with your server URL, database name, username, and password
just as you did for HW1. Use a fake username and password for dbconn.properties or delete
dbconn.properties before turning in your implementation.

Make sure your application can run by entering the following commands. This first command will
package the application files and any dependencies into a single .jar file:

mvn clean compile assembly:single

This second command will run the main method from FlightService.java, the interface logic for
what you will implement in Query.java:

java -jar target/lab1-1.0-jar-with-dependencies.jar

If you get our super duper sexy UI below, you are good to go for the rest of the lab!

*** Please enter one of the following commands ***
> create <username> <password> <initial amount>
> login <username> <password>
> search <origin city> <destination city> <direct> <day> <num itineraries>
> book <itinerary id>
> pay <reservation id>
> reservations
> cancel <reservation id>
> quit

Data Model

Data Model
The flight service system consists of the following logical entities. These entities are not
necessarily database tables. It is up to you to decide what entities to persist and create a
physical schema design that has the ability to run the operations below, which make use of
these entities.

●​ Flights / Carriers / Months / Weekdays: Modeled the same way as HW1. For this
application, we have very limited functionality so you shouldn’t need to modify the
schema from HW1 nor add any new tables to reason about the data.

●​ Users: A user has a username (varchar), password hash (varbinary), password salt
(varbinary), and balance (int) for their account. All usernames should be unique in the
system. Each user can have any number of reservations. There is no restriction on
passwords when creating a new user. Usernames are case insensitive (this is the default
for SQL Server). Since we are salting and hashing our passwords through the Java
application, passwords are case sensitive.

●​ Itineraries: An itinerary is either a direct flight (consisting of one flight: origin -->
destination) or a one-hop flight (consisting of two flights: origin --> stopover city, stopover
city --> destination). Itineraries are returned by the search command.

●​ Reservations: A booking for an itinerary, which may consist of one (direct) or two
(one-hop) flights. Each reservation can either be paid or unpaid and has a unique ID.

Application Requirements

Requirements
The following are the functional specifications for the flight service system, to be implemented in
Query.java (see code for full specification as to what error message to return, etc):

●​ create takes in a new username (string), password (string), and initial account balance
(int) as input. It creates a new user account with the initial balance. It should return an
error if negative, or if the username already exists. Usernames are checked
case-insensitively. For simplicity, you can assume that all usernames and passwords
have at most 20 characters. We will store the salted password hash and the salt itself to
avoid storing passwords in plain text. Use the following code snippet to as a template for
computing the hash given a password string:

// Generate a random cryptographic salt
SecureRandom random = new SecureRandom();
byte[] salt = new byte[16];
random.nextBytes(salt);

// Specify the hash parameters
KeySpec spec = new PBEKeySpec(password.toCharArray(), salt, HASH_STRENGTH,
KEY_LENGTH);

// Generate the hash
SecretKeyFactory factory = null;
byte[] hash = null;
try {
 factory = SecretKeyFactory.getInstance("PBKDF2WithHmacSHA1");
 hash = factory.generateSecret(spec).getEncoded();
} catch (NoSuchAlgorithmException | InvalidKeySpecException ex) {
 throw new IllegalStateException();
}

●​ login takes in a username (string) and password (string) and checks that the user exists
in the database and that the password matches. To compute the hash, adapt the above
code. ​
​
Within a single session (that is, a single instance of your program), only one user should
be logged in. You can track this via a local variable in your program. If a second login
attempt is made, please return “User already logged in”. Across multiple sessions (that
is, if you run your program multiple times), the same user is allowed to be logged in.
This means that you do not need to track a user’s "logged in status" inside the database.

●​ search takes as input an origin city (string), a destination city (string), a flag for only
direct flights or not (0 or 1), the date (int), and the maximum number of itineraries to be
returned (int). For the date, we only need the day of the month, since our dataset comes
from July 2015.

Return only flights that are not canceled, ignoring the capacity and number of seats
available. If the user requests n itineraries to be returned, there are a number of
possibilities:

○​ direct=1: return up to n direct itineraries
○​ direct=0: return up to n direct itineraries. If there are k direct itineraries (where k <

n), then return the k direct itineraries and then return up to (n-k) of the shortest
indirect itineraries with the flight times.

For one-hop flights, different carriers can be used for the flights. For the purpose of this
assignment, an indirect itinerary means the first and second flight only must be on the
same date (i.e., if flight 1 runs on the 3rd day of July, flight 2 runs on the 4th day of July,
then you can't put these two flights in the same itinerary as they are not on the same
day).​
​
Sort your results. In all cases, the returned results should be primarily sorted on total
actual_time (ascending). If a tie occurs, break that tie by the fid value. Use the first then
the second fid for tie-breaking.​
​
Below is an example of a single direct flight from Seattle to Boston. Actual itinerary
numbers might differ, notice that only the day is printed out since we assume all flights
happen in July 2015:​
​
Itinerary 0: 1 flight(s), 297 minutes
ID: 60454 Day: 1 Carrier: AS Number: 24 Origin: Seattle WA Dest: Boston MA Duration:
297 Capacity: 14 Price: 140​

​
Below is an example of two indirect flights from Seattle to Boston:

Itinerary 0: 2 flight(s), 317 minutes
ID: 704749 Day: 10 Carrier: AS Number: 16 Origin: Seattle WA Dest: Orlando FL
Duration: 159 Capacity: 10 Price: 494
ID: 726309 Day: 10 Carrier: B6 Number: 152 Origin: Orlando FL Dest: Boston MA
Duration: 158 Capacity: 0 Price: 104
Itinerary 1: 2 flight(s), 317 minutes
ID: 704749 Day: 10 Carrier: AS Number: 16 Origin: Seattle WA Dest: Orlando FL
Duration: 159 Capacity: 10 Price: 494
ID: 726464 Day: 10 Carrier: B6 Number: 452 Origin: Orlando FL Dest: Boston MA
Duration: 158 Capacity: 7 Price: 760​
​
Note that for one-hop flights, the results are printed in the order of the itinerary, starting
from the flight leaving the origin and ending with the flight arriving at the destination.​
​
The returned itineraries should start from 0 and increase by 1 up to n as shown above. If
no itineraries match the search query, the system should return an informative error
message. See Query.java for the actual text.​
​
The user need not be logged in to search for flights.

All flights in an indirect itinerary should be under the same itinerary ID. In other words,
the user should only need to book once with the itinerary ID for direct or indirect trips.

●​ book lets a user book an itinerary by providing the itinerary number as returned by a
previous search. The user must be logged in to book an itinerary and must enter a valid
itinerary id that was returned in the last search that was performed within the same login
session. Make sure you make the corresponding changes to the tables in case of a
successful booking. Once the user logs out (by quitting the application), logs in (if they
previously were not logged in), or performs another search within the same login
session, then all previously returned itineraries are invalidated and cannot be booked. If
the booking is successful, then assign a new reservation ID to the booked itinerary. Note
that 1) each reservation can contain up to 2 flights (in the case of indirect flights), and 2)
each reservation should have a unique ID that incrementally increases by 1 for each
successful booking.

●​ pay allows a user to pay for an existing reservation. It first checks whether the user has
enough money to pay for all the flights in the given reservation. If successful, it updates
the reservation to be paid.

●​ reservations lists all reservations for the user. Each reservation must have a unique
identifier (which is different for each itinerary) in the entire system, starting from 1 and
increasing by 1 after a reservation has been made. There are many ways to implement
this. One possibility is to define an "ID" table that stores the next ID to use and update it
each time when a new reservation is made successfully. The user must be logged in to
view reservations. The itineraries should be displayed using a similar format as that used
to display the search results, and they should be shown in increasing order of
reservation ID under that username. Canceled reservations should not be displayed.

●​ cancel lets a user cancel an existing reservation. The user must be logged in to cancel
reservations and must provide a valid reservation ID. Make sure you make the
corresponding changes to the tables in case of a successful cancellation (e.g. if a
reservation is already paid, then the customer should be refunded).

●​ quit leaves the interactive system and logs out the current user (if logged in).​

Refer to the Javadoc in Query.java for a detailed specification/expected responses of the
commands above. Make sure your code produces outputs in the same formats as
prescribed!

1. Database Design (10 points)
Your first task is to design and add tables to your database. You should decide on the physical
layout given the logical data model described above. You can add other tables to your database
as well.

In the text file called createTables.sql, write the CREATE TABLE statements and any INSERT
statements needed to implement the logical data model above. You may use anything provided
in SQL Server.

You may want to write a separate script file with DROP TABLE or DELETE FROM statements;
it's useful to run it whenever you find a bug in your schema or data. You don’t need to turn in
anything for this.

2. Java Application (70 points)
Your second task is to write the Java application that your customers will use, by completing the
starter code. You only need to modify Query.java. Do not modify FlightService.java. For this lab,
we are only concerned about the correctness of your methods. You do not need to implement
any parallelization/transactions... yet. We expect that you use prepared statements where
applicable. Please make your code reasonably easy to read.

To keep things neat we have provided you with the Flight inner class that acts as a container for
your flight data. The toString method in the Flight class matches what is needed in methods like
search. We have also provided a sample helper method checkFlightCapacity that uses a
prepared statement. checkFlightCapacity outlines the way we think forming prepared
statements should go for this assignment (creating a constant SQL string, preparing it in the
prepareStatements method, and then finally using it).

Milestone 0: Implement clearTables
Implement this method in Query.java to clear the contents of any tables you have created for
this assignment (e.g., reservations). However, do not drop any of them and do not delete the
contents or drop the Flights table. After calling this method the database should be in the same
state as the beginning, i.e., with the Flights table populated and createTables.sql called.

This method is for running the test harness where each test case is assumed to start with a
clean database. clearTables should not take more than a minute. Make sure your database
schema is designed with this in mind.

Milestone 1: Implement create, login, and search
Aim to complete this by April 23.

Milestone 2: Implement book, pay, reservations, and cancel
Aim to complete this by April 30.

3. Test Cases (10 points)
To test that your transactions work correctly, we have provided a test harness using the JUnit
framework. Our test harness will compile your code and run the test cases in the folder you
provided. To run the harness, execute in the lab1 folder:

mvn test

For every test case it will either print pass or fail, and for all failed cases it will dump out what the
implementation returned, and you can compare it with the expected output in the corresponding
case file.

Each test case file is of the following format:

[command 1]
[command 2]
...
*
[expected output line 1]
[expected output line 2]
...
*
everything following ‘#’ is a comment on the same line

Your task is to write at least 1 test case for each of the 7 commands (you don't need to test quit).
Separate each test case in its own file and name it <command name>_<some descriptive name
for the test case>.txt and turn them in along with the original test cases. It’s fine to turn in test
cases for erroneous conditions (e.g., booking on a full flight, logging in with a non-existent
username).

4. Writeup (10 points)
Please describe and/or draw your database design. This is so we can understand your
implementation as close to what you were thinking. Justify your design choices in creating new
tables. Also, describe your thought process in deciding what needs to be persisted on the
database and what can be implemented in-memory (not persisted on the database). Please be
concise in your writeup (< ½ page).

	Laboratory 1 | Simple Application
	0. Setup and General Specifications
	10,000-foot view of the application
	Connect your application to your database
	Data Model
	Data Model

	Application Requirements
	Requirements

	1. Database Design (10 points)
	2. Java Application (70 points)
	Milestone 0: Implement clearTables
	Milestone 1: Implement create, login, and search
	Milestone 2: Implement book, pay, reservations, and cancel

	3. Test Cases (10 points)
	4. Writeup (10 points)

