Mark Scheme DC Circuits Test

Section A

- 1. C
- 2. B
- 3. C
- 4. B
- 5. D
- 6. A
- 7. B
- 8. C

SECTION B:

Question 9.

Question	Answer	Mark
Number		
11	Use of $V = IR$ to find total resistance or terminal p.d.	1
	Subtraction of resistance or p.d.s	1
	r = 8.2 Ω (accept 8 Ω)	1
	OR see $E = I(R+r)$	1
	Substitution of values into equation	1
	r = 8.2 Ω (accept 8 Ω)	1
	Example of answer	
	•	
	Total $R = 1.5 \text{ V} \div (17 \times 10^{-3} \text{ A}) = 88.2 \Omega$	
	$r = 88.2 - 80 = 8.2 \Omega$	
	Total for question	3

Question Number	Answer	Mark
11	p.d. is electrical energy(/coulomb) transferred between two points/electrical energy transformed/converted to other forms (1) e.m.f is the energy(/coulomb) supplied to a circuit/given to the	2
	charge/energy output of the cell (1) (full credit if wording implies emf as electrical energy source and pd as electrical energy sink)	
	If neither mark scored but reference to energy/charge is made scores 1 mark only	
	Total for question	2

(a)	Use of $Q = It$ Q = 450 C / A s	(1) (1)	2
	Example of calculation $Q = 15\ 000\ A \times 3.0 \times 10^{-2} s$ $Q = 450\ C$		
(b)	Use of $R = \rho l/A$	(1)	
	Length of conductor = 24 (m)	(1)	
	Height of statue = length $-1 \text{ m} = 23 \text{ m}$	(1)	
	Assumption: ANY ONE Included height of plinth. Conductor/wire doesn't carry on in ground Conductor/wire vertical/straight/parallel $ \frac{\text{Example of calculation}}{l = \frac{RA}{\rho}} $ $ l = \frac{2.7 \times 10^{-3} \ \Omega \times 1.5 \times 10^{-4} \ \text{m}^2}{1.7 \times 10^{-8} \ \Omega \ m} $	(1)	4
	l = 23.8 m		
	Height of statue = $23.8 - 1 = 22.8 \text{ m}$		
(c)	ANY ONE The idea that the lightning is attracted to /strikes/hits the conductor		
	OR Lightning takes shortest path (from cloud) /strikes highest point OR Action of points	(1)	1

11

QuestionNumber	• Answer	Mark
• 14(a)	 Use of resistors in parallel formula R = 9.1 Ω 	• 1 • 1
	 Example of answer 1/R = 1/10 + 1/100 1/R = 11/100 R = 9.1 Ω 	
• (b)	 Voltmeter is connected in parallel (stated or implied) OR voltmeter draws little current Resistors in parallel formula with either R_v or large value used 1/R_v is very small / negligible OR calculated value of 9.1 Ω plus comment 	• 1 • 1 • 1
•	•	•
•	Total for question	• 5

Question Number	Answer	Mark
16(a)(i)	Resistance at 20 $^{\circ}$ C = 1250 - 1300 (Ω)	(1)
(a)(ii)	Converts $k\Omega \to \Omega$ [look for 1000 (Ω)] Use of potential divider formula OR use of 2300 (Ω) to find current Reading on voltmeter = 2.6 - 2.7 V (ecf value from $(a)(i)$) Example of calculation $V = (1000 \ \Omega \div 2300 \ \Omega) \times 6 \ V$ $V = 2.6 \ V$	(1) (1) (1)
(b)	(decreasing temp causes) resistance of thermistor to increase Voltmeter reading decreases Candidates who think resistance will decrease leading to voltmeter increase can get 2nd mark.	(1)
	Total for question	6

Question Number	Answer	Mark
17 (a)	There must be a circuit with a power supply and a labelled wire/identifiable ends of a wire/wavy line/resistor/lamp in order to score any marks ANY TWO	
	Ammeter symbol in series with wire (not in the middle of) Voltmeter symbol in parallel with wire Variable power supply/variable resistor	(1) (1) (1)
		(max 2)
(b)	Use of $P = VI$ Rate of work = 4.5 W / J s ⁻¹	(1) (1)
(c)(i)	Correct use of $I = nqvA$ with $e = 1.6 \times 10^{-19}$ C $v = 3.0 \times 10^{-5}$ ms ⁻¹	(1) (1)
	Example of calculation	
	$v = 1.5/ (1.0 \times 10^{29} \times 1.6 \times 10^{-19} \times 3.1 \times 10^{-6}$ $v = 3.02 \times 10^{-5} \text{ ms}^{-1}$	
(c)(ii)	Increased lattice/ions/atoms vibrations (causing) resistance to increase OR increased electron collisions with	(1)
	ions/atoms	(1)
	(This leads to a) reduction in the drift velocity / v	(1)
	Total for question	9

14.

Question	Answer	Mark
Number		
18(a)	Use of V=IR	1
	V = 3.0 V	1
(b)	pd across 30 Ω resistor = 6.0 V ecf their answer (a)	1
	$I_2 = 6.0/30 = 0.20 \text{ A}$	1
(c)	I ₁ = 0.60 - 0.20 = 0.40 A	1
	R = 15 Ω $$ full ecf their answer for I_2 and their V across 30 Ω	1
	Total for question	6