XI класс

1. Ответ: да.

Решение. Разложим заданное число на множители. Тогда, получим $13^{13} + 13^{14} + 13^{15} = = 13^{13} (1 + 13 + 169) = 13^{13} \cdot 183 = 13^{13} \cdot 3 \cdot 61$ — делится на 61.

2. Ответ: (7, 1, 4), (13, 11, 16).

Решение. Умножим первое уравнение системы на 5, а второе – на (-3) и найдем их сумму:

$$a^2 - b^2 - 48 = 0 \iff a^2 - b^2 = 48 \iff a^2 - b^2 = 2^4 \cdot 3.$$

Заметим, что числа a+b и a-b одинаковой четности, и так как их произведение четно, то оба эти числа четны, причем 0 < a-b < a+b. Поэтому возможны лишь три случая:

$$\begin{cases} a+b=24, & \{a=13, \\ a-b=2. & \Longleftrightarrow \end{cases} \begin{cases} a=13, \\ b=11. \end{cases}$$
 и тогда из исходной системы находим c = 16.

$$\begin{cases} a+b=12, & a=8, \\ a-b=4, & \iff b=4, \end{cases}$$
 но в этом случае не существует натуральных значений с, удовлетворяющих вместе с $a=8$ и $b=4$ исходной системе.

$$\begin{cases} a+b=8, & \{a=7, \\ a-b=6, \iff b=1, \end{cases}$$
 и тогда из исходной системы находим $c=4$.

3. Ответ: 36°.

Решение. Так как боковые грани ADC и BDC — равные равнобедренные треугольники, то их биссектрисы AN и BN равны. Таким образом, треугольник ANB — равнобедренный с углом 60° при вершине и, следовательно, ΔANB — равносторонний. Поэтому AN = AB = AC. Рассмотрим грань ADC. В ней AD = DC и AN = AC. Обозначим $\angle ACD = 2x$. Так как треугольники ANC и ACD равнобедренные, то $\angle ANC = \angle ACN = 2x$ и $\angle DAC = \angle ACD = \angle ACN = 2x$. Так как AN — биссектриса угла DAC, то $\angle DAN = \angle NAC = 0,5\angle DAC = x$. В таком случае и $\angle ADN = \angle ANC - \angle DAN = 2x - x = x$. Подсчитывая сумму углов треугольника ADC, находим, что $5x = 180^{\circ}$, откуда $\angle ADC = x = 36^{\circ}$.

4. Ответ: 498 долларов.

Решение. Поскольку 300 и 198 делятся на 6, Петя сможет снять лишь сумму, кратную 6 долларам. Максимальное число, кратное 6 и не превосходящее 500, это 498.

Докажем, что снять 498 долларов возможно. Произведем следующие операции: 500-300=200, 200+198=398, 398-300=98, 98+198=296, 296+198=494. Сумма, лежащая в банке, уменьшилась на 6 долларов.

Проделав аналогичную процедуру 16 раз, Петя снимет 96 долларов. Затем он может снять 300, положить 198 и снова снять 300. В результате у него будет 498 долларов.

5. Ответ: а) можно; б) можно.

Решение. а) Рассмотрим произвольный треугольник ABC. Пусть O — центр вписанной в него окружности, а A_1 , B_1 , C_1 точки ее касания со сторонами BC, AC, AB соответственно.

Рассмотрим четырехугольник AC_1OB_1 . Его стороны OC_1 и OB_1 равны как радиусы вписанной окружности, а стороны AC_1 и AB_1 равны как касательные к вписанной окружности, проведенные из точки A. Поэтому AB_1 + OC_1 = AC_1 + OB_1 , т.е. суммы длин противоположных сторон четырехугольника AC_1OB_1 , равны. Следовательно, этот четырехугольник описанный. Аналогично доказывается, что и два других четырехугольника BA_1OC_1 и CA_1OB_1 являются описанными.

б) Рассмотрим произвольный треугольник ABC. Пусть S – вписанная окружность этого треугольника. Проведем любую прямую, касающуюся окружности S и пересекающую две стороны треугольника (например, касательную, параллельную стороне AB).

Пусть М и N – точки пересечения проведенной прямой со сторонами AC и BC. Очевидно, что четырехугольник AMNB описанный. Теперь достаточно разбить треугольник MCN (как это было описано в предыдущем пункте, еще на три описанных четырехугольника.

Х класс

1. Ответ: 4 и 21.

Решение.
$$\frac{13m-1}{3m+5} = \frac{12m+20+m-21}{3m+5} = \frac{4(3m+5)+m-21}{3m+5} = 4 + \frac{m-21}{3m+5}$$

целое число, если $\frac{m-21}{3m+5}$ — целое, т.е. (m-21) (3m+5).

 $\prod_{p_H} m = 1$ 3m + 5 = 8, $_{3HAYHT} (m - 21) \mathbb{Z}(3m + 5)$ не выполняется.

 $\Pi_{\text{ри}} \ m = 2 \quad 3m + 5 = 11$, $_{3\text{начит}} \ (m - 21) \mathbb{Z}(3m + 5)$ не выполняется.

 $\Pi_{\text{ри}} \ m = 3 \quad 3m + 5 = 14$, $_{3\text{начит}} \ (m - 21) \mathbb{Z}(3m + 5)$ не выполняется.

 $\Pi_{\text{ри}} \ m = 4 \quad 3m + 5 = 17$, $_{3\text{начит}} \ (m - 21) \mathbb{Z}(3m + 5)$ выполняется.

 Π ри m=5 3m+5=20 , $_{3$ начит (m-21) $\mathbb{Z}(3m+5)$ не выполняется. И т.д.

 $\Pi_{\text{ри}} \ m = 21 \quad 3m + 5 = 68 \ _{, \ 3\text{начит}} \ (m - 21) \mathbb{Z}(3m + 5) \ _{\text{выполняется}}.$

2. Otbet: $\frac{-1 \pm \sqrt{5}}{2}$.

Решение. Обозначив $\begin{vmatrix} x^2+x \end{vmatrix}=t$, где t>0, получим $t^2+t-2=0$, откуда $t_1=1$, ($t_2=-2$ — не подходит). Далее, решая $\begin{vmatrix} x^2+x \end{vmatrix}=1$, получим уравнения $x^2+x-1=0$ и $x^2+x+1=0$ (не имеет действительных корней), находим из первого уравнения $x_{1,2}=\frac{-1\pm\sqrt{5}}{2}$.

3. Other: AB = 4cM, BC = 6cM.

Решение. Проведем биссектрису AD. Тогда $\angle 1 = \angle 2 = \angle 3$. В $\triangle ADC$ AD = DC. Пусть AB = x, AD = DC = y, тогда BC = x + 2, BD = x + 2 - y. Заметим, что $\triangle ABD \sim \triangle ABC$ по двум углам ($\angle B$ – общий, $\angle 1 = \angle 3$).

Из подобия имеем: $\frac{AB}{BC} = \frac{BD}{AB} = \frac{AD}{AC}$,

$$_{\text{ИЛИ}} \frac{x}{x+2} = \frac{x+2-y}{x} = \frac{y}{5}$$
.

Для нахождения х и у получим систему уравнений:

$$\begin{cases} \frac{x}{x+2} = \frac{y}{5}, \\ \frac{x+2-y}{x} = \frac{y}{5}, \end{cases} \Leftrightarrow \begin{cases} 5x = xy + 2y, \\ 5x + 10 - 5y = xy. \end{cases}$$

Вычитая из первого уравнения второе, получим 5y - 10 = 2y, откуда $y = \frac{10}{3}$, тогда x = 4. значит AB = 4cM, BC = 6cM. II способ. Указание: применить теорему синусов.

4 4. Ответ: 16.

Решение. $1+2+4+8+\ldots+2n=65535$ — это сумма геометрической прогрессии, где $a_1=1,\ a_2=2,$ и т.д. Таким образом, q=2. Формула суммы $S_n=\frac{b_1(1-q^n)}{1-q}.$

$$65535 = \frac{(2^n - 1)}{2 - 1}; \quad 2^n - 1 = 65535; \quad 2^n = 65536; \quad 2^n = 2^{16}; \quad n = 16.$$

5. Решение: Если хотя бы 1 грань четырёхугольник, то ребер не меньше 8. Будем искать многогранник с треугольными гранями. Пусть граней n, тогда ребер $\frac{3n}{2}$. $\frac{3n}{2}$ =7, тогда n =4 $\frac{2}{3}$ не является натуральным числом. Значит, многогранника с 7 ребрами не существует.

IX класс

1. Решение.

$$n^3 + 3n^2 + 5n + 3 = n^3 + 3n^2 + 6n - n + 3 = n(n^2 - 1) + 3(n^2 + 2n + 1) =$$

 $= n(n+1)(n-1) + 3(n+1)(n+1) = (n-1)n(n+1) + 3(n+1) \ 3$, т.к. первое слагаемое — это произведение трех последовательных натуральных чисел, т.е. оно кратно 3, а второе слагаемое содержит множитель 3, значит и вся сумма кратна 3.

2. Ответ. 3) y = -3x + 12; 4) y = -x - 12. Решение.

Из четырёх прямых только прямая a имеет положительный угловой коэффициент, следовательно, она задаётся *уравнением* 2 и пересекает оси координат в точках (0; 12) и (-12; 0).

Так как *уравнение* 1 Дима записал полностью, его графиком является прямая, проходящая через начало координат, то есть прямая c.

У прямой b модуль углового коэффициента больше, чем у прямой c, значит, начало уравнения прямой b Дима записал под номером 3. Так как эта прямая проходит через точку (0;12), она задаётся уравнением y = -3x + 12.

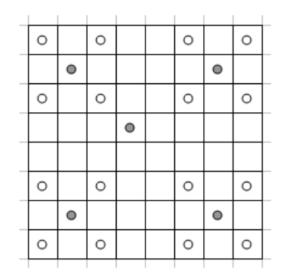
Прямая d проходит через точку (-12;0) и через точку (12; -24) – точку пересечения прямых b и c, координаты которой легко находятся как решение системы линейных уравнений: y = -3x + 12 и y = -2x.

Найдём уравнение прямой d. Для этого рассмотрим систему двух уравнений: $0 = -12k_4 + b_4$ и $-24 = 12k_4 + b_4$. Сложив эти уравнения, получим $b_4 = -12$. Подставив в первое уравнение, получим $k_4 = -1$.

3. Ответ. 16.

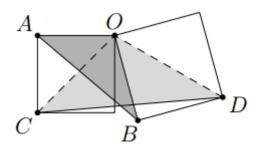
Решение.

Заметим, что каждый король, снятый с доски, мог бить не более 4 из оставшихся (иначе и некоторые из оставшихся били бы друг друга). Поэтому число оставшихся королей не может превосходить число снятых более чем в 4 раза, то есть не может быть больше 16. Пример приведён на рисунке: серым обозначены короли, которых необходимо убрать.



3. Other: $1:\sqrt{2}$.

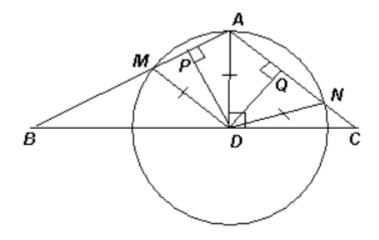
Решение. Пусть точка O — общая вершина двух квадратов, а их стороны равны a и b. Диагонали квадратов равны $\sqrt{2}a$ и $\sqrt{2}b$ соответственно. Кроме того, $\angle COD = \angle COB + \angle BOD = \angle COB + 45^\circ = \angle COB + \angle AOC = \angle AOB$. Треугольники AOB и COD подобны по общему углы и пропорциональным сторонам при этом угле. Следовательно, $AB:CD=1:\sqrt{2}$.



4. Ответ: mc/n.

Решение.

Докажем, что $AM \cdot AB = AN \cdot AC$. Это можно сделать по-разному. Один из способов. В прямоугольных треугольниках ADB и ADC проведём высоты DP и DQ соответственно (см. рис.). Тогда $AP \cdot AB = AD^2 = AQ \cdot AC$. Так как треугольники ADM и ADN — равнобедренные, то AP = 12AM и AQ = 12AN.



Заменив AP и AQ в равенстве AP·AB = AQ·AC, получим требуемое.

VIII класс

1. Ответ: 28 и 34.

Решение.

Решая эту задачу, следует рассуждать с конца.

Шаг в игре	Первый пират	Второй пират
Конец игры	19	43
3	19	43
2	38	24
1	14	48
Начало игры	28	34

2. Ответ: \angle NMK = 80° , \angle MKN = 60° , \angle MNK = 40° . Решение.

1) В треугольнике NME : \angle NME = x , \angle MNE = 180° - 2^{x} .

2) В треугольнике FMK :
$$\angle K = 180^{\circ}$$
- $x - \frac{x}{2} = 180^{\circ}$ - 1,5 x .

3) В треугольнике MNK : 180° - 1,5 $x + x + 360^{\circ}$ - 4 $x = 180^{\circ}$

$$x = 80^{\circ}$$

3. Ответ: $\sqrt{2003} + \sqrt{2001} < 2\sqrt{2002}$. Решение.

Пусть
$$A = \sqrt{\kappa + 1} + \sqrt{\kappa - 1}$$
, $B = 2\sqrt{\kappa}$ (где $\kappa = 2002$).

Тогда
$$A^2 - B^2 = 2\kappa + 2\sqrt{\kappa^2 - 1} - 4\kappa = 2(\sqrt{\kappa^2 - 1} - \kappa) < 0.$$

Поэтому A < B.

4. Other:
$$\frac{5}{126}$$
.

Решение. Обозначим горизонтальные стороны прямоугольников через a_1 , a_2 ,..., a_5 , а вертикальные - b_1 , b_2 ,..., b_5 . Площадь прямоугольника равна произведению его сторон. Применяя это к «диагональным» прямоугольникам, получим $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 = a_1 b_1 a_2 b_2 \cdots a_5 b_5$. Применяя эту же формулу к «поддиагональным» прямоугольникам, получим $6 \cdot 7 \cdot 8 \cdot 9 =$

 $a_2\ b_1\ .\ a_3\ b_2\ .\ a_4\ b_3\ .\ a_5\ b_4$. Разделив первое равенство на второе, получим $\frac{1\cdot 2\cdot 3\cdot 4\cdot 5}{6\cdot 7\cdot 8\cdot 9}=a_1\ b_5$. Это и есть искомая площадь и она равна $\frac{5}{126}$.

5. Ответ: 259.

Решение. Пусть x_1 , x_2 , x_3 , x_4 - это цифры 1,9,9,6, расставленные в некотором порядке. Тогда сумма, о которой идет речь в условии задачи, содержит $(x_2 + x_3 + x_4)$ единиц и $(x_1 + x_2 + x_3)$ десятков. Следовательно, сумма равна $10 \cdot (x_1 + x_2 + x_3) + (x_2 + x_3 + x_4) = 10 \cdot x_1 + 11 \cdot (x_2 + x_3) + x_4$. Наибольшей она будет тогда, когда $x_2 = x_3 = 9$, $x_1 = 6$, $x_4 = 1$, т.е. порядок цифр должен быть таким : 6,9,9,1, а сумма равна 259.