
 Software Testing Laboratory

SOFTWARE TESTING LABORATORY

1. Design and develop a program in a language of your choice to solve the
triangle problem defined as follows: Accept three integers which are
supposed to be the three sides of a triangle and determine if the three values
represent an equilateral triangle, isosceles triangle, scalene triangle, or they do
not form a triangle at all. Assume that the upper limit for the size of any side is
10. Derive test cases for your program based on boundary- value analysis,
execute the test cases and discuss the results.

2. Design, develop, code and run the program in any suitable language to
 solve the commission problem. Analyze it from the perspective of

 Boundary value testing, derive different test cases, execute these test cases
 and discuss the test results.

3. ​Design, develop, code and run the program in any suitable language to

implement the NextDate function. Analyze it from the perspective of
boundary value testing, derive different test cases, execute these test cases and
discuss the test results.

4. Design and develop a program in a language of your choice to solve the triangle

problem defined as follows: Accept three integers which are supposed to be the
three sides of a triangle and determine if the three values represent an equilateral
triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all.
Assume that the upper limit for the size of any side is 10. Derive test cases for
your program based on equivalence class partitioning, execute the test cases and
discuss the results.

5. Design, develop, code and run the program in any suitable language to solve the

commission problem. Analyze it from the perspective of equivalence
class testing, derive different test cases, execute these test cases and discuss the
test results.

 6.​Design, develop, code and run the program in any suitable language to

Department of ISE Page 1

 Software Testing Laboratory

implement the NextDate function. Analyze it from the perspective of
equivalence class value testing, derive different test cases, and execute these test
cases and discuss the test results.

7. Design and develop a program in a language of your choice to solve the triangle
problem defined as follows: Accept three integers which are supposed to be
the three sides of a triangle and determine if the three values represent an
equilateral triangle, isosceles triangle, scalene triangle, or they do not form a
triangle at all. Derive test cases for your program based on decision-table
approach, execute the test cases and discuss the results.

8. Design, develop, code and run the program in any suitable language to solve the

commission problem. Analyze it from the perspective of decision table-based
testing, derive different test cases, execute these test cases and discuss the test
results.

9. Design, develop, code and run the program in any suitable language to solve the

commission problem. Analyze it from the perspective of dataflow testing, derive
different test cases, execute these test cases and discuss the test results.

10. Design, develop, code and run the program in any suitable language to

implement the binary search algorithm. Determine the basis paths and using
them derive different test cases, execute these test cases and discuss the test
results.

11. Design, develop, code and run the program in any suitable language to

implement the quicksort algorithm. Determine the basis paths and using
them derive different test cases, execute these test cases and discuss the test
results. Discuss the test results.

12. Design, develop, code and run the program in any suitable language to
implement an ​absolute letter grading procedure, making suitable assumptions.
Determine the basis paths and using them derive different test cases, execute
these test cases and discuss the test results.

Department of ISE Page 2

 Software Testing Laboratory

1. Design and develop a program in a language of your choice to solve the triangle
problem defined as follows: Accept three integers which are supposed to be the
three sides of a triangle and determine if the three values represent an equilateral
triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all.
Assume that the upper limit for the size of any side is 10. Derive test cases for your
program based on boundary-value analysis, execute the test cases and discuss the
results.

1.1 REQUIREMENT SPECIFICATIONS

R1. The system should accept 3 positive integer numbers (a, b, c) which
represents 3 sides of the triangle.
R2. Based on the input should determine if a triangle can be formed or
not.
R3. If the requirement R2 is satisfied then the system should determine the
type of the triangle, which can be

• Equilateral (i.e. all the three sides are equal)
• Isosceles (i.e Two sides are equal)
• Scalene (i.e All the three sides are unequal)

R4. Upper Limit for the size of any side is 10

1.2 DESIGN

 Algorithm:

Step 1: Input a, b & c i.e three integer values which represent three sides of the
triangle.
Step 2: if (a < (b + c)) and (b < (a + c)) and (c < (a + b) then
do Step 3

else
print not a triangle. do Step 6.

Step 3: if (a=b) and (b=c) then
Print triangle formed is equilateral. do Step 6.

 Step 4: if (a ≠ b) and (a ≠ c) and (b ≠ c) then
 Print triangle formed is scalene. do Step 6.

Department of ISE Page 3

 Software Testing Laboratory

 Step 5: Print triangle formed is Isosceles.
Step 6: stop

1.3 PROGRAM CODE:
#include<stdio.h>
#include<ctype.h>
#include<conio.h>
#include<process.h>
int main()
{

int a, b, c;
clrscr();
printf("Enter three sides of the triangle");
scanf("%d%d%d", &a, &b, &c);
if((a > 10) || (b > 10) || (c > 10))
{

printf("Out of range");
getch();
exit(0);

}
if((a<b+c)&&(b<a+c)&&(c<a+b))
{

if((a==b)&&(b==c))
{

printf("Equilateral triangle");
}
else if((a!=b)&&(a!=c)&&(b!=c))
{

 printf("Scalene triangle");
}

 else

Department of ISE Page 4

 Software Testing Laboratory

{
printf("Isosceles triangle");

 }
}

 else
 {
 printf("triangle cannot be formed");
 }
 getch();
 return 0;

 }

1.4 TESTING

1. Technique used: Boundary value analysis
2. Test Case design

For BVA problem the test cases can be generation depends on the
output and the constraints on the output. Here we least worried on the
constraints on Input domain.

The Triangle problem takes 3 sides as input and checks it for validity, hence n
= 3. Since BVA yields (4n + 1) test cases according to single fault assumption
theory, hence we can say that the total number of test cases will be (4*3+1)
=12+1=13.

The maximum limit of each side a, b, and c of the triangle is 10 units
according to requirement R4. So a, b and c lies between

1≤a≤10

1≤b≤10

1≤c≤10

Department of ISE Page 5

 Software Testing Laboratory

Equivalence classes for a:
E1: Values less than 1.
E2: Values in the range.
E3: Values greater than 10.

Equivalence classes for b:

 E4: Values less than 1

 E5: Values in the range.
 E6: Values greater than 10.

Equivalence classes for c:
E7: Values less than 1.
E8: Values in the range.
E9: Values greater than 10.

From the above equivalence classes we can derive the following test cases using
boundary value analysis approach.

T
C
Id

Test ​
Case
Description

Input Data Expected
Output

Actual
Output

Status

A b C

1 For A input is
not given

X 3 6 Not a Triangle

2 For B input is not
given

5 X 4 Not a Triangle

3 For C input is not
given

4 7 X Not a Triangle

4 Input of C is in
negative(-)

5 5 -1 Not a Triangle

Department of ISE Page 6

 Software Testing Laboratory

5 Two ​ sides ​
are same one
side is given​
​ different
input

5 5 1 Isosceles

Department of ISE Page 7

 Software Testing Laboratory

6 All Sides of

inputs
are equal

5 5 5 Equilateral

7 Two ​ sides ​
are
same one side
is given​
different input

5 5 9 Isosceles

8 The input of C is
out of range (i.e.,
range is <10)

5 5 10 Not a Triangle

9 Two ​sides ​ are
same one side is
given​different
input (i.e., A &
C are 5, B=1)

5 1 5 Isosceles

10 Two ​sides ​ are
same one side is
given​different
input (i.e., A &
C are 5, B=2)

5 2 5 Isosceles

11 Two ​ sides ​
are
same one side
is given​
different input
(i.e., A & C are
5, B=9)

5 9 5 Isosceles

Department of ISE Page 8

 Software Testing Laboratory

12 Two ​ sides ​
are
same one side
is given​
different input
(i.e., A & C are
5, B=10 so, it is
​ out ​ of ​
given range)

5 1
0

5 Not a Triangle

13 Two ​ sides ​
are
same one side
is given​
different input
(i.e., B & C are
5, A=1)

1 5 5 Isosceles

14 Two ​ sides ​
are
same one side
is given​
different input
(i.e., B & C are
5, A=2)

2 5 5 Isosceles

15 Two ​ sides ​
are same one
side is

9 5 5 Isosceles

 given ​ different
input (i.e., B &
C
are 5, A=9)

16 Two ​ sides ​
are
same one side
is given​
different input

10 5 5 Not a Triangle

Department of ISE Page 9

 Software Testing Laboratory

(i.e., B & C are
5, A=10, so the
given input of A
is out of range)

 Table-1: Test case for Triangle Problem

1.5 EXECUTION:

Execute the program and test the test cases in Table-1 against program and

complete the table with for Actual output column and Status column.

Test Report:
1. No of TC’s Executed:
2. No of Defects Raised:
3. No of TC’s Pass:
4. No of TC’s Failed:

1.6 SNAPSHOTS:
 1. ​Snapshot of Isosceles and Equilateral triangle and triangle can not be
formed.

Department of ISE Page 10

 Software Testing Laboratory

2. Snapshot for Isosceles and triangle cannot be formed

3. Snapshot for Isosceles and triangle cannot be formed

Department of ISE Page 11

 Software Testing Laboratory

4. Output screen for Triangle cannot be formed

1.7 REFERENCES
 1. Requirement Specification
 2. Assumptions

Department of ISE Page 12

 Software Testing Laboratory

2. ​ Design, develop, code and run the program in any suitable language to solve the
commission problem. Analyze it from the perspective of boundary value testing, derive
different test cases, execute these test cases and discuss the test results.

2.1 REQUIREMENT SPECIFICATION

Problem Definition: The Commission Problem includes a salesperson in the former
Arizona Territory sold rifle locks, stocks and barrels made by a gunsmith in
Missouri. Cost includes,
Locks- $45

Stocks- $30

Barrels- $25

The salesperson had to sell at least one complete rifle per month and production
limits were such that the most the salesperson could sell in a month was 70 locks,
80 stocks and 90 barrels.

After each town visit, the sales person sent a telegram to the Missouri gunsmith
with the number of locks, stocks and barrels sold in the town. At the end of the month,
the salesperson sent a very short telegram showing --1 lock sold. The gunsmith then
knew the sales for the month were complete and computed the salesperson’s
commission as follows:

On sales up to(and including) $1000= 10% On the
sales up to(and includes) $1800= 15% On the sales
in excess of $1800= 20%
The commission program produces a monthly sales report that gave the total number of
locks, stocks and barrels sold, the salesperson’s total dollar sales and finally the
commission

2.2 DESIGN
Algorithm
Step 1: Define lockPrice=45.0, stockPrice=30.0, barrelPrice=25.0

 Step 2: Input locks
 Step 3: while(locks!=-1) ‘input device uses -1 to indicate end of data goto
​ ​ Step 12

Step 4:input (stocks, barrels)

Department of ISE Page 13

 Software Testing Laboratory

Step 5: compute lockSales, stockSales, barrelSales and sales
Step 6: output(“Total sales:” sales)
Step 7: if (sales > 1800.0) goto Step 8 else goto Step 9

​ Step 8: commission=0.10*1000.0; commission=commission+0.15 *800.0;
 commission = commission + 0.20 * (sales-1800.0)

Step 9: if (sales > 1000.0) goto Step 10 else goto Step 11

Step10: commission=0.10* 1000.0; commission=commission + 0.15 *
(sales-1000.0)
Step 11: Output(“Commission is $”, commission) Step
12: exit

2.3 PROGRAM CODE:
#include<stdio.h>
#include<conio.h>
int main()
{

int locks, stocks, barrels, t_sales, flag = 0;
float commission;
clrscr();
printf("Enter the total number of locks");
scanf("%d",&locks);
if ((locks <= 0) || (locks > 70))
{
 flag = 1;

}
printf("Enter the total number of stocks");
scanf("%d",&stocks);
if ((stocks <= 0) || (stocks > 80))
{

flag = 1;
}
printf("Enter the total number of barrelss");

Department of ISE Page 14

 Software Testing Laboratory

scanf("%d",&barrels);
if ((barrels <= 0) || (barrels > 90))
{

flag = 1;
}
if (flag == 1)
{

printf("invalid input");
getch();
exit(0);

}
t_sales = (locks * 45) + (stocks * 30) + (barrels * 25);
if (t_sales <= 1000)
{

commission = 0.10 * t_sales;
}
else if (t_sales < 1800)
{

 commission = 0.10 * 1000;
 commission = commission + (0.15 * (t_sales - 1000));
 }
 else
 {
 commission = 0.10 * 1000;
 commission = commission + (0.15 * 800);
 commission = commission + (0.20 * (t_sales - 1800));

}
 printf("The total sales is %d \n The commission is %f",t_sales,
 commission);

getch(); return;
}

Department of ISE Page 15

 Software Testing Laboratory

2.4 TESTING

Technique used: Boundary value analysis
‘Boundary value analysis’ testing technique is used to identify errors at
boundaries rather than finding those exist in center of input domain.

Boundary value analysis is a next part of Equivalence partitioning for
designing test cases where test cases are selected at the edges of the
equivalence classes.

BVA: Procedure

1. Partition the input domain using unidimensional partitioning. This leads to as
many partitions as there are input variables. Alternately, a single partition of an
input domain can be created using multidimensional partitioning. We will
generate several sub-domains in this Step.
2. Identify the boundaries for each partition. Boundaries may also be
identified using special relationships amongst the inputs.
3. Select test data such that each boundary value occurs in at least one test input.
4. BVA: Example: Create equivalence classes

Assuming that an item code must be in the range 99...999 and quantity in the
range 1...100,
Equivalence classes for code:
E1: Values less than 99.
E2: Values in the range.
E3: Values greater than 999.

Equivalence classes for qty:
E4:Value less than 1.
E5:Value in the range.
E6: Value greater than 100.

Department of ISE Page 16

 Software Testing Laboratory

BVA: Example: Identify boundaries

Equivalence classes and boundaries for find Price. Boundaries are indicated with an
x. Points near the boundary are marked *.

Test Case design
The Commission Problem takes locks, stocks and barrels as input and checks it for
validity. If it is valid, it returns the commission as its output. Here we have three
inputs for the program, hence n = 3.

Since BVA yields (4n
+

1) test cases according to
single

fault assumption

theory, hence we can say that the total number of test cases will be (4*3+1)
=12+1=13.

The boundary value test case can be generated over an output by using fallowing
constraints and these constraints are generated over commission:

C1: Sales up to(and including) $1000= 10% commission
C2: Sales up to(and includes) $1800= 15% commission
C3: Sales in excess of $1800= 20% commission

Department of ISE Page 17

 Software Testing Laboratory

Here from these constraints we can extract the test cases using the values of Locks,
Stocks, and Barrels sold in month. The boundary values for commission are 10%,
15% and 20%.

 Equivalence classes for 10% Commission:
E1: Sales less than
1000. E2: Sales equals
to 1000.
Equivalence classes for 15% Commission:
E3: Sales greater than 1000 and less than 1800.
E4: Sales equals to 1800
Equivalence classes for 20% Commission:
E5: Sales greater then 1800

From the above equivalence classes we can derive the following test cases using
boundary value analysis approach.

T
C
I
d

Test Case
Description

Input Data
Sal
es

Expecte
d

Output(Commissio
n)

Actu
al
Outp
ut

Stat
us Loc

ks
Stoc
ks

Barre
ls

1 Input test
cases
for ​
Locks=1,
Stocks=1,
Barrels=1

1 1 1 100 10

2 Input test
cases
for ​
Locks=1,
Stocks=1,
Barrels=2

1 1 2 125 12.5

3 Input test
cases
for ​
Locks=1,
Stocks=2,
Barrels=1

1 2 1 130 13

Department of ISE Page 18

 Software Testing Laboratory

4 Input test
cases
for ​
Locks=2,
Stocks=1,
Barrels=1

2 1 1 145 14.5

5 Input test
cases
for ​
Locks=5,
Stocks=5,
Barrels=5

5 5 5 500 50

6 Input test
cases
for ​
Locks=10,
Stocks=10,

10 10 9 975 97.5

Department of ISE Page 19

 Software Testing Laboratory

 Barrels=9
7 Input test

cases for​
Locks=10,
Stocks=9,
Barrels=10

10 9 10 970 97

8 Input test
cases
for ​
Locks=9,
Stocks=10,
Barrels=10

9 10 10 955 95.5

9 Input test
cases
for ​
Locks=10,
Stocks=10,
Barrels=10

10 10 10 100
0

100

1
0

Input test
cases
for ​
Locks=10,
Stocks=10,
Barrels=11

10 10 11 102
5

103.75

1
1

Input test
cases
for ​
Locks=10,
Stocks=11,
Barrels=10

10 11 10 103
0

104.5

1
2

Input test
cases
for ​
Locks=11,
Stocks=10,
Barrels=10

11 10 10 104
5

106.75

1
3

Input test
cases
for ​
Locks=14,

14 14 13 140
0

160

Department of ISE Page 20

 Software Testing Laboratory

Stocks=14,
Barrels=13

1
4

Input test
cases
for ​
Locks=18,
Stocks=18,
Barrels=17

18 18 17 177
5

216.25

1
5

Input test
cases
for ​
Locks=18,
Stocks=17,
Barrels=18

18 17 18 177
0

215.5

1
6

Input test
cases
for ​
Locks=17,
Stocks=18,

17 18 18 175
5

213.25

 Barrels=18
1
7

Input test
cases for​
Locks=18,
Stocks=18,
Barrels=18

18 18 18 180
0

220

1
8

Input test
cases
for ​
Locks=18,
Stocks=18,
Barrels=19

18 18 19 182
5

225

1
9

Input test
cases
for ​
Locks=18,
Stocks=19,
Barrels=18

18 19 18 183
0

226

Department of ISE Page 21

 Software Testing Laboratory

2
0

Input test
cases
for ​
Locks=19,
Stocks=18,
Barrels=18

19 18 18 184
5

229

2
1

Input test
cases
for ​
Locks=48,
Stocks=48,
Barrels=48

48 48 48 480
0

820

 Table-1 BVA Test case for commission problem.

This is how we can apply BVA technique to create test cases for our
Commission Problem.

2.5 EXECUTIONS

Execute the program and test the test cases in Table-1 against program and
complete the table with for Actual output column and Status column

TEST REPORT:
1. No of TC’s Executed:
2. No of Defects Raised:
3. No of TC’s Pass:
4. No of TC’s Failed:

2.6 SNAPSHOTS:
1. Snapshot for valid inputs

Department of ISE Page 22

 Software Testing Laboratory

2. Snapshots when the two inputs are same

3. Snapshots when the two inputs and all the inputs are same

Department of ISE Page 23

 Software Testing Laboratory

2.7 REFERENCES

 1. Requirement Specification
 2. Assumptions
3. Design, develop, code and run the program in any suitable language to implement
the NextDate function. Analyze it from the perspective of boundary value testing,

Department of ISE Page 24

 Software Testing Laboratory

derive different test cases, execute these test cases and discuss the test results.

3.1 REQUIREMENT SPECIFICATION

Problem Definition: "Next Date" is a function consisting of three variables like:
month, date and year. It returns the date of next day as output. It reads
Current date as input date

The constraints are

C1: 1 ≤ month ≤ 12
C2: 1 ≤ day ≤ 31
C3: 1812 ≤ year ≤ 2012.

If any one condition out of C1, C2 or C3 fails, then this function produces an output
"value of month not in the range 1...12".

Since many combinations of dates can exist, hence we can simply displays one
message for this function: "Invalid Input Date".

A very common and popular problem occurs if the year is a leap year. We have
taken into consideration that there are 31 days in a month. But what happens if​a
​ month ​ has ​ 30 ​ days ​ or​ even​ 29 ​ or ​ 28 ​ days?

A year is called as a leap year if it is divisible by 4, unless it is a century year.
Century years are leap years only if they are multiples of 400. So, 1992, 1996 and
2000 are leap years while 1900 is not a leap year.

3.2 DESIGN
Algorithm

Step 1: Input date in format DD.MM.YYYY
Step 2: if MM is 01, 03, 05,07,08,10 do Step 3 else Step 6

Step 3:if DD < 31 then do Step 4 else if DD=31 do Step 5 else
output(Invalid Date);
Step 4: tomorrowday=DD+1 goto Step 18

Department of ISE Page 25

 Software Testing Laboratory

Step 5: tomorrowday=1; tomorrowmonth=month + 1 goto Step 18
Step 6: if MM is 04, 06, 09, 11 do Step 7
Step 7: if DD<30 then do Step 4 else if DD=30 do Step 5 else
output(Invalid Date);
Step 8: if MM is 12
Step 9: if DD<31 then Step 4 else Step 10
Step 10: tomorrowday=1, tommorowmonth=1, tommorowyear=YYYY+1;
goto Step 18
Step 11: if MM is 2
Step 12: if DD<28 do Step 4 else do Step 13
Step 13: if DD=28 & YYYY is a leap do Step14 else Step 15
Step 14: tommorowday=29 goto Step 18
Step 15: tommorowday=1, tomorrowmonth=3, goto Step18;
Step 16: if DD=29 then do Step 15 else Step 17
Step 17: output(“Cannot have feb”, DD); Step19
Step 18: output(tomorrowday, tomorrowmonth, tomorrowyear);
Step 19: exit

3.3 PROGRAM CODE:
#include<stdio.h>
#include<conio.h>
main()
{
 int month[12]={31,28,31,30,31,30,31,31,30,31,30,31};
 int d,m,y,nd,nm,ny,ndays;
 clrscr();
printf("enter the date,month,year");
scanf("%d%d%d",&d,&m,&y);
ndays=month[m-1];
if(y<=1812 && y>2012)
{

printf("Invalid Input Year");
exit(0);

}
if(d<=0 || d>ndays)

Department of ISE Page 26

 Software Testing Laboratory

{

printf("Invalid Input Day");
exit(0);

}
if(m<1 && m>12)
{

printf("Invalid Input Month");
exit(0);

}
if(m==2)
{

if(y%100==0)
{

 if(y%400==0)
 ndays=29;
 }
 else
 if(y%4==0)
 ndays=29;
}
nd=d+1;
nm=m;
ny=y;
if(nd>ndays)
{

nd=1;
nm++;

}

if(nm>12)
{

nm=1;
Department of ISE Page 27

 Software Testing Laboratory

ny++;
}
printf("\n Given date is %d:%d:%d",d,m,y); printf("\n
Next day’s date is %d:%d:%d",nd,nm,ny); getch();
}

3.4 TESTING

Technique used: Boundary value analysis

‘Boundary value analysis’ testing technique is used to identify errors at
boundaries rather than finding those exist in center of input domain.

Boundary value analysis is a next part of Equivalence partitioning for
designing test cases where test cases are selected at the edges of the
equivalence classes.

BVA: Procedure

1. Partition the input domain using unidimensional partitioning. This leads to as
many partitions as there are input variables. Alternately, a single partition of an input
domain can be created using multidimensional partition. We will generate several
sub-domains in this Step.
2. Identify the boundaries for each partition. Boundaries may also be
identified using special relationships amongst the inputs.
3. Select test data such that each boundary value occurs in at least one test input.

BVA: Example: Create equivalence classes
Assuming that an item code must be in the range 99...999 and quantity in the range
1...100,

Equivalence classes for code:
E1: Values less than 99.
E2: Values in the range.
E3: Values greater than 999.

Department of ISE Page 28

 Software Testing Laboratory

Equivalence classes for qty:
E4: Values less than 1.
E5: Values in the range.
E6: Values greater than 100.

BVA: Example: Identify boundaries

Equivalence classes and boundaries for find Price. Boundaries are indicated with an
x. Points near the boundary are marked *.

Test Case design
The Next Date program takes date as input and checks it for validity. If it is valid, it
returns the next date as its output. Here we have three inputs for the program, hence
n = 3.

Since BVA yields (4n + 1) test cases according to single fault assumption
theory, hence we can say that the total number of test cases will be (4*3+1)
=12+1=13.

Department of ISE Page 29

 Software Testing Laboratory

The boundary value test cases can be generated by using following constraints

 C1: 1 ≤MM ≤12
C2: 1 ≤ DD ≤ 31
C3: 1812 ≤ YYYY ≤
2012.

Here from these constraints we can extract the test cases using the values of MM,
DD, and YYYY. The following equivalence classes can be generated for each
variable.

Equivalence classes for MM:
E1: Values less than 1.
E2: Values in the range.
E3: Values greater than 12.
Equivalence classes for DD:
E4: Values less than 1.
E5: Values in the range.
E6: Values greater than 31.
Equivalence classes for YYYY:
E7: Values less than 1812.
E8: Values in the range.
E9: Values greater than 2012.

From the above equivalence classes we can derive the following test cases using
boundary value analysis approach.

Department of ISE Page 30

 Software Testing Laboratory

TC
Id

Test ​
Case
Description

Input Data Expected
Output

Actual
Output

Status

M
M

D
D

YYY
Y

1 Testing for Invalid
months​
with character is
typed

Aa 1
5

1900 Invalid ​
Input
Month

2 Testing for
Invalid
Day with
character is typed

06 D
d

1901 Invalid ​
Input
Day

3 Testing for
Invalid
Year ​
with character is
typed

06 1
5

196y Invalid ​
Input
Year

4 Testing for
Invalid
Day, day with 00

03 0
0

2000 Invalid ​
Input
Day

5 Testing ​ for ​
Valid
input changing
the day​
within ​the month.

03 3
0

2000 03/31/2000

6 Testing ​ for​
Valid input
changing the day
​ within ​ ​
the month.

03 0
2

2000 03/03/2000

7 Testing for
Invalid
Day, day with 32

03 3
2

2000 Invalid ​
Input
Day

8 Testing for
Invalid
Day, month with
00

00 1
5

2000 Invalid ​
Input
Month

Department of ISE Page 31

 Software Testing Laboratory

9 Testing ​ for ​
Valid
input changing
the day​
within ​the month.
​ MM=11
DD=
15

11 1
5

2000 11/16/2000

10 Testing ​ for ​
Valid
input changing
the day​
within ​the month.
​ MM=02
DD=
15

02 1
5

2000 02/16/2000

11 Testing for
Invalid
Month, month
with 13

13 1
5

2000 Invalid ​
Input
Month

12 Testing for
Invalid year,​ year
​ should
>=1812

03 1
5

1811 Invalid ​
Input
Year

13 Testing ​ for
Valid input
changing the day
​ within the
month. MM=03
DD=15
YYYY=2011

03 1
5

2011 03/16/2011

14 Testing for​ Valid
input changing
the day​
within ​ the
month.​
​ MM=03
DD=15
YYYY=1813

03 1
5

1813 03/16/1813

Department of ISE Page 32

 Software Testing Laboratory

15 Testing for
Invalid year,​ year
​ should
<=2012

03 1
5

2013 Invalid ​
Input
Year

 Table-1: Test case for Next Date Problem

This is how we can apply BA technique to create test cases for our Next Date
Problem.

3.5 EXECUTIONS

Execute the program and test the test cases in Table-1 against program and
complete the table with for Actual output column and Status column

Test Report:

1. No of TC’s Executed:
2. No of Defects Raised:
3. No of TC’s Pass:
4. No of TC’s Failed:

3.6 SNAPSHOTS:
1. Snapshot for Invalid Input day and next date

Department of ISE Page 33

 Software Testing Laboratory

2. Snapshot to show the invalid day when the DD=32

3. Valid Output:

Department of ISE Page 34

 Software Testing Laboratory

3.7 REFERENCES:
1. Requirement Specification
2. Assumptions

4. Design and develop a program in a language of your choice to solve the triangle
problem defined as follows: Accept three integers which are supposed to be the

Department of ISE Page 35

 Software Testing Laboratory

three sides of a triangle and determine if the three values represent an equilateral
triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all.
Assume that the upper limit for the size of any side is 10. Derive test cases for your
program based on equivalence class partitioning, execute the test cases and discuss
the results.

4.1 REQUIREMENT SPECIFICATION

R1. The system should accept 3 positive integer numbers (a, b, c) which
represents 3 sides of the triangle.
R2. Based on the input should determine if a triangle can be formed or not. R3. If
the requirement R2 is satisfied then the system should determine the type of the
triangle, which can be

• Equilateral (i.e. all the three sides are equal)
• Isosceles (i.e. two sides are equal)
• Scalene (i.e. All the three sides are unequal)

R4. Upper Limit for the size of any side is 10

4.2 DESIGN

Form the given requirements we can draw the following conditions:
C1: a<b+c?
C2: b<a+c?
C3: c<a+b?
C4: a=b?
C5: a=c?
C6: b=c?

According to the property of the triangle, if any one of the three conditions C1,
C2 and C3 are not satisfied then triangle cannot be constructed. So only when
C1, C2 and C3 are true the triangle can be formed, then depending on conditions
C4, C5 and C6 we can decide what type of triangle will be

 formed(i.e requirements R3)
Algorithm:

Step 1: Input a, b & c i.e three integer values which represent three sides of the

Department of ISE Page 36

 Software Testing Laboratory

triangle.
Step 2: if (a < (b + c)) and (b < (a + c)) and (c < (a + b) then do

Step 3
else
print not a triangle. do Step 6.

Step 3: if (a=b) and (b=c) then
Print triangle formed is equilateral. do Step 6.

Step 4: if (a ≠ b) and (a ≠ c) and (b ≠ c) then
 Print triangle formed is scalene. do Step 6.

 Step 5: Print triangle formed is Isosceles.
 Step 6: stop

4.3 PROGRAM CODE
#include<stdio.h>
#include<ctype.h>
#include<conio.h>
#include<process.h>
int main()
{

int a, b, c;
clrscr();
printf("Enter three sides of the triangle");
scanf("%d%d%d", &a, &b, &c);
if((a > 10) || (b > 10) || (c > 10))
{

printf("Out of range");
getch();
exit(0);

}
 if((a<b+c)&&(b<a+c)&&(c<a+b))

{
 if((a==b)&&(b==c))

Department of ISE Page 37

 Software Testing Laboratory

{
printf("Equilateral triangle");

}
else if((a!=b)&&(a!=c)&&(b!=c))
{

 printf("Scalene triangle");

 }
 else

 printf("Isosceles triangle");
 }
else
{

 printf("triangle cannot be formed");
} getch(); return 0;

}

4.4 TESTING
1. Technique used: Equivalence class partitioning
2. Test Case design

Equivalence class partitioning technique focus on the Input domain, we can
obtain a richer set of test cases. What are some of the possibilities for the
three integers, a, b, and c? They can all be equal, exactly one pair can be
equal.

The maximum limit of each side a, b, and c of the triangle is 10 units
according to requirement R4. So a, b and c lies between

Department of ISE Page 38

 Software Testing Laboratory

1≤a≤10

1≤b≤10
1≤c≤10

First Attempt

Weak normal equivalence class: ​ In the problem statement, we note that
four possible outputs can occur: Not a Triangle, Scalene, Isosceles and
Equilateral. We can​ use​ these ​ to identify output ​ (range)
equivalence classes as follows:

R1= {<a,b,c>: the triangle with sides a, b, and c is equilateral}
R2= {<a,b,c>: the triangle with sides a, b, and c is isosceles}
R3= {<a,b,c>: the triangle with sides a, b, and c is scalene}
R4= {<a,b,c>: sides a, b, and c do not form a triangle}

Four weak normal equivalence class test cases, chosen arbitrarily from each class,
and invalid values for weak robust equivalence class test cases are as follows.

T
C
I
d

Test ​
Case
Description

Input Data Expected Output Actual
Output

Statu
s a b c

1 WN1 5 5 5 Equilateral

2 WN2 2 2 3 Isosceles

3 WN3 3 4 5 Scalene

4 WN4 4 1 2 Not a Triangle

5 WR1 -
1

5 5 Value of a is not in the
range​ of ​
permitted values

6 WR2 5 -
1

5 Value of b is not in the
range​ of ​
permitted values

Department of ISE Page 39

 Software Testing Laboratory

7 WR3 5 5 -
1

Value of c is not in the
range​ of ​
permitted values

8 WR4 1
1

5 5 Value of a is not in the
range​ of ​
permitted values

 9 WR5 5 1
1

5 Value of b is not in the
range ​ of ​
permitted values

1
0

WR6 5 5 1
1

Value of c is not in the
range​ of ​
permitted values

Table-1: Weak Normal and Weak Robust Test case for Triangle Problem

Second attempt

The strong normal equivalence class test cases can be generated by
using following possibilities:

D1 = {<a, b, c>: a=b=c}
D2 = {<a, b, c>: a=b, a≠ c}
D3= {<a, b, c>: a=c, a≠ b}
D4 = {<a, b, c>: b=c, a≠ b}
D5 = {<a, b, c>: a≠ b, a≠ c, b≠ c}
D6 = {<a, b, c>: a≥ b+ c} D7
= {<a, b, c>: b≥ a+ c} D8 =
{<a, b, c>: c≥ a+ b}

T
C
I
d

Test ​
Case
Descript
io n

Input Data Expected Output Actual
Output

Statu
s a b c

1 SR1 -
1

5 5 Value of a is not in the
range​ of ​
permitted values

Department of ISE Page 40

 Software Testing Laboratory

2 SR 2 5 -
1

5 Value of b is not in the
range​ of ​
permitted values

3 SR3 5 5 -
1

Value of c is not in the
range​ of ​
permitted values

5 SR5 5 -
1

-
1

Value of b, c is not in
the
range ​of ​ permitted
values

6 SR6 -
1

5 -
1

Value of a, c is not in
the range​ of ​
permitted values

7 SR7 -
1

-
1

-
1

Value of a, b, c is not in
the range of
permitted values

Table-2: Strong Robust Test case for Triangle Problem

4.5 EXECUTION:

Execute the program and test the test cases in Table-1 and Table-2 against
program and complete the table with for Actual output column ​ and Status
column

Test Report:
1. No of TC’s Executed:
2. No of Defects Raised:
3. No of TC’s Pass:
4. No of TC’s Failed:

Department of ISE Page 41

 Software Testing Laboratory

4.6 SNAPSHOTS:
1. Snapshot of Equilateral. Isosceles and scalene triangle.

2. Snapshot for Triangle cannot be formed

Department of ISE Page 42

 Software Testing Laboratory

3. Snapshot for the given range is Out of range and Triangle cannot be formed.

Department of ISE Page 43

 Software Testing Laboratory

4.7 REFERENCES

1. Requirement Specification
2. Assumptions

5. ​ Design, develop, code and run the program in any suitable language to solve the
commission problem. Analyze it from the perspective of equivalence class testing,
derive different test cases, execute these test cases and discuss the test results.

5.1 REQUIREMENT SPECIFICATION

Problem Definition: The Commission Problem includes a salesperson in the former
Arizona Territory sold rifle locks, stocks and barrels made by a gunsmith in
Missouri. Cost includes

Locks- $45

Stocks- $30

Barrels- $25

The salesperson had to sell at least one complete rifle per month and

Department of ISE Page 44

 Software Testing Laboratory

production limits were such that the most the salesperson could sell in a month
was 70 locks, 80 stocks and 90 barrels.

After each town visit, the sales person sent a telegram to the Missouri
gunsmith with the number of locks, stocks and barrels sold in the town. At the end
of the month, the salesperson sent a very short telegram showing --1 lock sold. The
gunsmith then knew the sales for the month were complete and computed the
salesperson’s commission as follows:

On sales up to(and including) $1000= 10% On
the sales up to(and includes) $1800= 15% On the
sales in excess of $1800= 20%
The commission program produces a monthly sales report that gave the total
number of locks, stocks and barrels sold, the salesperson’s total dollar sales and
finally the commission.

5.2 DESIGN

Algorithm:
Step 1: Define lockPrice=45.0, stockPrice=30.0, barrelPrice=25.0
Step2: Input locks

Step3: while(locks!=-1) ‘input device uses -1 to indicate end of data goto
Step 12
Step 4:input (stocks, barrels)
Step 5: compute lockSales, stockSales, barrelSales and sales
Step 6: output(“Total sales:” sales)
Step 7: if (sales > 1800.0) goto Step 8 else goto Step 9
Step 8: commission=0.10*1000.0; commission=commission+0.15 * 800.0;

commission = commission + 0.20 * (sales-1800.0)
 Step 9: if (sales > 1000.0) goto Step 10 else goto Step 11
 Step 10: commission=0.10* 1000.0; commission=commission + 0.15 *

(sales-1000.0)
Step 11: Output(“Commission is $”, commission)
Step 12: exit

5.3 PROGRAM CODE:
#include<stdio.h>

Department of ISE Page 45

 Software Testing Laboratory

#include<conio.h>
int main()
{

int locks, stocks, barrels, t_sales, flag = 0;
float commission;
clrscr();
printf("Enter the total number of locks");
scanf("%d",&locks);
if ((locks <= 0) || (locks > 70))
{

flag = 1;
}

 printf("Enter the total number of stocks");
scanf("%d",&stocks);
if ((stocks <= 0) || (stocks > 80))
{

flag = 1;
}
printf("Enter the total number of barrelss");
scanf("%d",&barrels);
if ((barrels <= 0) || (barrels > 90))
{

flag = 1;
}
if (flag == 1)
{

printf("invalid input");
getch();
exit(0);

}
t_sales = (locks * 45) + (stocks * 30) + (barrels * 25);
if (t_sales <= 1000)

Department of ISE Page 46

 Software Testing Laboratory

{
commission = 0.10 * t_sales;

}
else if (t_sales < 1800)
{

 commission = 0.10 * 1000;
 commission = commission + (0.15 * (t_sales - 1000));

}
else
{

 commission = 0.10 * 1000;
 commission = commission + (0.15 * 800);
 commission = commission + (0.20 * (t_sales - 1800));

}
printf("The total sales is %d \n The commission is %f",t_sales,

commission);
getch(); return;

}
5.4 TESTING

Technique used: Equivalence Class testing

Test selection using equivalence partitioning allows a tester to subdivide the input
domain into a relatively small number of sub-domains, say N>1, as shown.

In strict mathematical terms, the sub-domains by definition are disjoint. ​ The
four subsets shown in (a) constitute a partition of the input domain while the subsets

Department of ISE Page 47

 Software Testing Laboratory

in (b) are not. Each subset is known as an equivalence class.

Example:
Consider an application A that takes an integer denoted by age as input. Let us
suppose that the only legal values of age are in the range [1..120]. The set of input
values is now divided into a set E containing all integers in the range
[1..120] and a set U containing the remaining integers.

Further, assume that the application is required to process all values in the range
[1..61] in accordance with requirement R1 and those in the range [62..120]
according to requirement R2. Thus E is further subdivided into two
regions depending on the expected behavior.
Similarly, it is expected that all invalid inputs less than or equal to 1 are to be treated
in one way while all greater than 120 are to be treated differently.
This leads to a subdivision of U into two categories.
Tests selected using the equivalence partitioning technique aim at targeting faults in
the application under test with respect to inputs in any of the four regions, i.e. two
regions containing expected inputs and two regions containing the unexpected
inputs.

Department of ISE Page 48

 Software Testing Laboratory

​

>120

It is expected that any single test selected from the range [1...61] will reveal any
fault with respect to R1. Similarly, any test selected from the region
[62...120] will reveal any fault with respect to R2. A similar expectation
applies to the two regions containing the unexpected inputs

Department of ISE Page 49

 Software Testing Laboratory

TEST CASE DESIGN

The input domain of the commission problem is naturally partitioned by the limits
on locks, stocks and barrels. These equivalence classes are exactly those that
would also be identified by traditional equivalence class testing. The first class is
the valid input; the other two are invalid. The input domain equivalence classes
lead to very unsatisfactory sets of test cases. Equivalence classes defined on the
output range of the commission function will be an improvement.

The valid classes of the input variables are:
L1 = {locks: 1≤locks≤70}
L2 = {locks = -1} (occurs if locks = -1 is used to control input iteration) S1
= {stocks:1≤stocks≤80}
B1 = {barrels: 1≤barrels≤90}
The corresponding invalid classes of the input variables are: L3
= {locks: locks = 0 OR locks < -1}
L4 = {locks: locks > 70}
S2 = {stocks: stocks<1}
S3 = { stocks: stocks>80}
B2 ={barrels: barrels<1}
B3 ={ barrels: barrels>90}

One problem occurs, however. The variables lock are also used as a sentinel
to indicate no more telegrams. When a value of -1 is given for locks, the
while loop terminates, and the values of totallocks, totalstocks and
totalbarrels are used to compute sales, and then commission.
Expect for the names of the variables and the interval endpoint values, this
isidentical to our first version of the NextDate function. therefore we will
have exactly one week normal equivalence class test case – and again, it is
identical to the strong normal equivalence class test case. Note that the case
for locks =-1 just terminates the iteration.

Department of ISE Page 50

 Software Testing Laboratory

First attempt
We will have eight weak robust test cases.
T
C
I
d

Test Case
Descriptio
n

Input Data Sales Expected
Output(Commission)

Actu
al
Outp
ut

Stat
us Loc

ks
Stoc
ks

Barr
els

1 WR1 10 10 10 $100 10

2 WR2 -1 40 45 Program
terminates

Program terminates

3 WR3 -2 40 45 Values of
locks not
inthe range
1...70

Values of locks not in
the
range 1...70

4 WR4 71 40 45 Values of
locks not
inthe range
1...70

Values of locks not in
the
range 1...70

5 WR5 35 -1 45 Values of
stocks not
inthe range
1...80

Values of stocks not in
the
range 1...80

6 WR6 35 81 45 Values of
stocks not
inthe range
1...80

Values of stocks not in
the
range 1...80

7 WR7 10 9 10 970 97

8 WR8 9 10 10 955 95.5

Department of ISE Page 51

 Software Testing Laboratory

Second attempt:

Finally, a corner of the cube will be in 3 space of the additional strong robust
equivalence class test cases:

T
C
I
d

Test ​
Case
Descriptio
n

Input Data Sales Expected
Output(Commissio
n)

Actua
l
Outp
ut

Stat
us Loc

ks
Stoc
ks

Barre
ls

1 SR1 -2 40 45 Values of locks
not in the
range
1...70

Values of locks not
in
the range 1...70

2 SR2 35 -1 45 Values of
stocks
not in the
range
1...80

Values of stocks
not
in the range 1...80

3 SR3 35 40 -2 Values of
barrels
not in the
range
1...90

Values of barrels not
in the range 1...90

4 SR4 -2 -1 45 Values of locks
not in the
range
1...70
Values of
stocks not in
the range
1...80

Values of locks not
in
the range 1...70
Values of stocks
not in the range
1...80

5 SR5 -2 40 -1 Values of locks
not in the
range
1...70
Values of
barrels not in
the range
1...90

Values of locks not
in
the range 1...70
Values of barrels
not in the range
1...90

Department of ISE Page 52

 Software Testing Laboratory

6 SR6 35 -1 -1 Values of
stocks
not in the
range
1...80
Values of
barrels not in
the range
1...90

Values of stocks
not
in the range 1...80
Values of barrels
not in the range
1...90

7 SR7 -2 -1 -1 Values of locks
not in the
range
1...70
Values of
stocks not in
the range
1...80
Values of
barrels not in
the range
1...90

Values of locks not
in
the range 1...70
Values of stocks
not in the range
1...80
Values of barrels
not in the range
1...90

5.5 EXECUTIONS

Execute the program and test the test cases in Table-1 against program and
complete the table with for Actual output column and Status column

Test Report:

1. No of TC’s Executed:
2. No of Defects Raised:
3. No of TC’s Pass:
4. No of TC’s Failed:

5.6 SNASHOTS
1. Snapshot for invalid inputs

Department of ISE Page 53

 Software Testing Laboratory

Department of ISE Page 54

 Software Testing Laboratory

2. Invalid Input and commission for when the all inputs are 10

5.7 REFERENCES
1. Requirement Specification
2. Assumptions​

Department of ISE Page 55

 Software Testing Laboratory

6. Design, develop, code and run the program in any suitable language to implement
the NextDate function. Analyze it from the perspective of equivalence
class value testing, derive different test cases, execute these test cases and discuss
the test results.

6.1 REQUIREMENT SPECIFICATION

Problem Definition: "Next Date" is a function consisting of three variables like:
month, date and year. It returns the date of next day as output. It reads current
date as input date.

The constraints are

C1: 1 ≤ month ≤ 12
C2: 1 ≤ day ≤ 31
C3: 1812 ≤ year ≤ 2012.

If any one condition out of C1, C2 or C3 fails, then this function produces an
output "value of month not in the range 1...12".

Since many combinations of dates can exist, hence we can simply displays one
message for this function: "Invalid Input Date".

A very common and popular problem occurs if the year is a leap year. We have
taken into consideration that there are 31 days in a month. But what happens
if a month has 30 days or even 29 or 28 days ?

A year is called as a leap year if it is divisible by 4, unless it is a century year.
Century years are leap years only if they are multiples of 400. So, 1992, 1996 and
2000 are leap years while 1900 is not a leap year.

Furthermore, in this Next Date problem we find examples of Zipf's law also, which
states that "80% of the activity occurs in 20% of the space". Thus in this case
also, much of the source-code of Next Date function is devoted to the leap year
considerations.

Department of ISE Page 56

 Software Testing Laboratory

6.2 DESIGN
Algorithm:

Step 1: Input date in format DD.MM.YYYY
Step 2: if MM is 01, 03, 05,07,08,10 do Step 3 else Step 6
Step 3:if DD < 31 then do Step 4 else if DD=31 do Step 5 else output(Invalid
Date);
Step 4: tomorrowday=DD+1 goto Step 18
Step 5: tomorrowday=1; tomorrowmonth=month + 1 goto Step 18
Step 6: if MM is 04, 06, 09, 11 do Step 7
Step 7: if DD<30 then do Step 4 else if DD=30 do Step 5 else output(Invalid
Date);
Step 8: if MM is 12
Step 9: if DD<31 then Step 4 else Step 10
Step 10: tomorrowday=1, tommorowmonth=1, tommorowyear=YYYY+1; goto
Step 18
Step 11: if MM is 2
Step12: if DD<28 do Step 4 else do Step 13
Step 13: if DD=28 & YYYY is a leap do Step 14 else Step 15
Step 14: tommorowday=29 goto Step18
Step 15: tommorowday=1, tomorrowmonth=3, goto Step 18;
Step 16: if DD=29 then do Step15 else Step 17
Step 17: output(“Cannot have feb”, DD); Step 19
Step 18: output(tomorrowday, tomorrowmonth, tomorrowyear);
Step 19: exit

6.3 PROGRAM CODE:

#include<stdio.h>
#include<conio.h>
main()
{
int month[12]={31,28,31,30,31,30,31,31,30,31,30,31};
int d,m,y,nd,nm,ny,ndays;

Department of ISE Page 57

 Software Testing Laboratory

clrscr();
printf("enter the date,month,year");
scanf("%d%d%d",&d,&m,&y);
ndays=month[m-1];
if(y<=1812 && y>2012)
{

printf("Invalid Input Year");
exit(0);

}

if(d<=0 || d>ndays)
{

printf("Invalid Input Day");
exit(0);

}
if(m<1 && m>12)
{

printf("Invalid Input Month");
exit(0);

}

if(m==2)
{

if(y%100==0)
{

 if(y%400==0)
 ndays=29;

}
else
if(y%4==0)

Department of ISE Page 58

 Software Testing Laboratory

ndays=29;
nd=d+1;
nm=m;
ny=y;
}
if(nd>ndays)
{

nd=1;
nm++;

}
if(nm>12)
{

nm=1;
ny++;

}
if(nm>12)
{

nm=1;
ny++;

}
printf("\n Given date is %d:%d:%d",d,m,y); printf("\n
Next day’s date is %d:%d:%d",nd,nm,ny); getch();
}

6.4 TESTING

Technique used: Equivalence Class testing

Test selection using equivalence partitioning allows a tester to subdivide the input
domain into a relatively small number of sub-domains, say N>1, as shown.

Department of ISE Page 59

 Software Testing Laboratory

In strict mathematical terms, the sub-domains by definition are disjoint. The four
subsets shown in (a) constitute a partition of the input domain while the
subsets in (b) are not. Each subset is known as an equivalence class.

Example:
Consider an application A that takes an integer denoted by age as input. Let us
suppose that the only legal values of age are in the range [1..120]. The set of input
values is now divided into a set E containing all integers in the range
[1..120] and a set U containing the remaining integers.

Further, assume that the application is required to process all values in the range
[1..61] in accordance with requirement R1 and those in the range [62..120]
according to requirement R2. Thus E is further subdivided into two
regions depending on the expected behavior.

Department of ISE Page 60

 Software Testing Laboratory

Similarly, it is expected that all invalid inputs less than or equal to 1 are to be treated
in one way while all greater than 120 are to be treated differently.
This leads to a subdivision of U into two categories,

Tests selected using the equivalence partitioning technique aim at targeting faults in
the application under test with respect to inputs in any of the four regions, i.e. two
regions containing expected inputs and two regions containing the unexpected
inputs.

It is expected that any single test selected from the range [1...61] will reveal any
fault with respect to R1. Similarly, any test selected from the region
[62...120] will reveal any fault with respect to R2. A similar expectation
applies to the two regions containing the unexpected inputs.

Test Case design

The NextDate function is a function which will take in a date as input and produces
as output the next date in the Georgian calendar. It uses three variables
(month, day and year) which each have valid and invalid intervals.

Department of ISE Page 61

 Software Testing Laboratory

First Attempt

A first attempt at creating an equivalence relation might produce intervals
such as these:

Valid Intervals

M1 = {month: 1 ≤ month ≤ 12}
D1 = {day: 1 ≤day ≤31}
Y1 = {year: 1812 ≤ year ≤2012}

Valid Intervals

M1 = {month: 1 ≤ month ≤ 12}
 D1 = {day: 1 ≤day ≤31}
Y1 = {year: 1812 ≤ year ≤2012}

Invalid Intervals

M2 = {month: month < 1}
 M3 = {month: month > 12}
 D2 = {day: day < 1}
D3 = {day: day > 31}
Y2 = {year: year < 1812}
Y3 = {year: year > 2012}

At a first glance it seems that everything has been taken into account and our
day, month and year intervals have been defined well. Using these intervals we
produce test cases using the four different types of Equivalence Class
testing.
Weak and Strong Normal

Department of ISE Page 62

 Software Testing Laboratory

T
C
I
d

Test Case
Description

Input Data Expected
Output

Actual
Output

Status

M
M

D
D

YYY
Y

1 Testing for Valid
input​
changing the day
within the month.

6 15 1900 6/16/1900

Table 1: Weak and Strong Normal

Since the number of variables is equal to the number of valid classes, only one
weak normal equivalence class test case occurs, which is the same as the
strong normal equivalence class test case (Table 1).

Weak Robust:

T
C
I
d

Test
Case

Descriptio
n

Input Data Expecte
d

Outp
ut

Actual
Output

Status
M
M

D
D

YY
YY

1 Testing for
Valid input​
changing the
day within the
month.

6 15 1900 6/16/1900

2 Testing ​
for
Invalid Day,
day with​
negative
number it is not
possible

6 -1 1900 Day not in range

3 Testing ​
for
Invalid Day,
day with​
Out ​ of
range​ ​
i.e., DD=32

6 32 1900 Day not in range

Department of ISE Page 63

 Software Testing Laboratory

4 Testing ​
for
Invalid ​
Month, month​
​ with
negative
number it is not
possib
le

-1 15 1900 Month not in
range

5 Testing ​
for
Invalid ​
month, month
with out of​
range ​ i.e.,
MM=13​ ​
​ it should
MM<=12

13 15 1900 Month not in
range

6 Testing for
Year, year is
out of range
YYYY=1899,
​
it should
<=1812

6 15 1899 Year not in
range

7 Testing for Year,

year is out
of range
YYYY=2013,
​
it should
<=2012

6 15 2013 Year not in
range

 Table 2: Weak Robust

(Table 2) we can see that weak robust equivalence class testing will just test the
ranges of the input domain once on each class. Since we are testing weak and not
normal, there will only be at most one fault per test case (single fault assumption)
unlike Strong Robust Equivalence class testing.

Department of ISE Page 64

 Software Testing Laboratory

Strong Robust:

This is a table showing one corner of the cube in 3d-space (the three other
corners would include a different combination of variables) since the
complete table would be too large to show.

T
C
I
d

Test
Case

Descriptio
n

Input Data Expecte
d

Outp
ut

Actual
Output

Status
M
M

D
D

YYY
Y

1 Testing for Month
is not in range
MM=-1 i.e.,​ in
​ negative
number there is not
possible have to be
month​ in​
negative number

-
1

1
5

1900

Month not
in range

2 Testing for Day is
not in range DD=-1
i.e., in negative
​
number there is not
possible have to be
Day in negative
number

6

-
1

1900

Day not in range

3 Testing for Year
is
not ​ in ​
range YYYY=1899
i.e., Year should
<=1812

6

1
5

1899

Year not
in range

Department of ISE Page 65

 Software Testing Laboratory

4 Testing for Day and
month is not in range
MM=-1, DD=-1 i.e.,
in negative​ ​
number there is not
possible have to be
Day and Month
​ in ​
negative number

-
1

-
1

1900

i) Day not
in range
ii) Month not
in range

5 i) Testing for Day
is not in range and
Year is not in range
DD=-1 i.e.,​ in
​ negative
number there is not
possible have to be
Day​ in ​
negative number, and
ii) YYYY=1899, so
the
range ​ of ​ year
​ is
<=18
12

6

-
1

1899

i) Day not
in range
ii) Year not in
range

6 i) Testing for
Month
is not in range MM=-
1 and i.e., in negative
number there is not
possible have to be
Day​ in ​
negative number, and
ii) ​ Year ​ is ​ not ​
in
range ​
YYYY=1899, year
should <=1812

-
1

1
5

1899

i) Month not
in range
ii) Year not
in range

Department of ISE Page 66

 Software Testing Laboratory

7 i) Testing for Day
is not in range
DD=-1 i.e.,​ in
​ negative
number there is not
possible have to be
Day​ in ​
negative number
ii) Testing for Month
is not in range MM=-
1 and i.e., in negative
number there is not
possible have to be
Day​ in ​
negative number, and
iii) Year is not
in
range
YYYY=1899, year
should <=1812

-
1

-
1

1899

i) Day not
in range
ii) Month not
in range
iii) Year not in
range

Second Attempt

As said before the equivalence relation is vital in producing useful test cases and
more time must be spent on designing it. If we focus more on the
equivalence relation and consider more greatly what must happen to an input date
we might produce the following equivalence classes:

M1 = {month: month has 30 days}
M2 = {month: month has 31 days}
M3 = {month: month is February}

Here month has been split up into 30 days (April, June, September and
November), 31 days (January, March, April, May, July, August, October and
December) and February.

D1 = {day: 1 ≤ day ≤ 28}
D2 = {day: day = 29}

Department of ISE Page 67

 Software Testing Laboratory

D3 = {day: day = 30}
D4 = {day: day = 31}

Day has been split up into intervals to allow months to have a different
number of days; we also have the special case of a leap year (February 29 days).

Y1 = {year: year = 2000}
Y2 = {year: year is a leap year}
Y3 = {year: year is a common year}

Year has been split up into common years, leap years and the special case the year
2000 so we can determine the date in the month of February.

Here are the test cases for the new equivalence relation using the four types of
Equivalence Class testing.

Weak Normal

T
C
I
d

Test Case Description Input Data Expected
Output

Actual
Output

Status

M
M

D
D

YYY
Y

Department of ISE Page 68

 Software Testing Laboratory

1 Testing for all Valid
input changing the day
within the month.

6 14 2000 6/15/2000

2 Testing for Valid input
changing ​ the ​
day within the month.

7 29 1996 7/30/1996

3 Testing for Leaf
year,
i.e., MM=2 (Feb)
the input DD=30,
there is not possible
date 30, in leaf year
only 28 and 29 will
occur.

2 30 2002 Impossible date

4 Testing for
Impossible
Date, i.e., MM=6
(June) the input
DD=31, there is only
30 days in the month
​ of​ June, ​
So, DD=31​ ​
is​ Impossible
Date.

6 31 2000 Impossible
input
date

Table 3: Weak normal

Department of ISE Page 69

 Software Testing Laboratory

Strong Normal
TC
ID

Test Case
Description

Input Data Expected
Output

Actual
Output

Status

M
M

D
D

YYY
Y

1 SN1 6 14 2000 6/15/2000

2 SN2 6 14 1996 6/15/1996

3 SN3 6 14 2002 6/15/2002

4 SN4 6 29 2000 6/30/2000

5 SN5 6 29 1996 6/30/1996

6 SN6 6 29 2002 6/30/2002

7

SN7
6 30 2000 Invalid Input

Date

8

SN8
6 30 1996 Invalid Input

Date

9

SN9
6 30 2002 Invalid Input

Date

10

SN10
6 31 2000 Invalid Input

Date

11

SN11
6 31 1996 Invalid Input

Date

12

SN12
6 31 2002 Invalid Input

Date

13 SN13 7 14 2000 7/15/2000

14 SN14 7 14 1996 7/15/1996

15 SN15 7 14 2002 7/15/2002

16 SN16 7 29 2000 7/30/2000

17 SN17 7 29 1996 7/30/1996

18 SN18 7 29 2002 7/30/2002

19 SN19 7 30 2000 7/31/2000

Department of ISE Page 70

 Software Testing Laboratory

20 SN20 7 30 1996 7/31/1996

21 SN21 7 30 2002 7/31/2002

22 SN22 7 31 2000 8/1/2000

23 SN23 7 31 1996 8/1/1996

24 SN25 7 31 2002 8/1/2002

25 SN24 2 14 2000 2/15/2000

26 SN26 2 14 1996 2/15/1996

27 SN27 2 14 2002 2/15/2002

28 SN28 2 29 2000 Invalid Input
Date

29 SN29 2 29 1996 3/1/1996

30 SN30 2 29 2002 Invalid Input
Date

31 SN31 2 30 2000 Invalid Input
Date

32 SN32 2 30 1996 Invalid Input
Date

33 SN33 2 30 2002 Invalid Input
Date

34 SN34 2 31 2000 Invalid Input
Date

35 SN35 2 31 1996 Invalid Input
Date

36 SN36 2 31 2002 Invalid Input
Date

 Table 4: Strong Normal
6.5 EXECUTIONS

Execute the program and test the test cases in Table-1 against program and
complete the table with for Actual output column and Status column

Test Report:
1. No of TC’s Executed:
2. No of Defects Raised:

Department of ISE Page 71

 Software Testing Laboratory

3. No of TC’s Pass:
4. No of TC’s Failed:

6.6 SNAPSHOTS:
1. Snapshot to show the nextdate for current date and invalid day is entered

2. Invalid Input

6.7 REFERENCES:
1. Requirement Specification
2. Assumptions

Department of ISE Page 72

 Software Testing Laboratory

7. Design and develop a program in a language of your choice to solve the triangle
problem defined as follows: Accept three integers which are supposed to be the
three sides of a triangle and determine if the three values represent an equilateral
triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all.
Derive test cases for your program based on decision-table approach, execute the
test cases and discuss the results.

7.1 REQUIREMENT SPECIFICATION:
R1. The system should accept 3 positive integer numbers (a, b, c) which
represents 3 sides of the triangle. Based on the input it should determine if a triangle
can be formed or not.
R2. If the requirement R1 is satisfied then the system should determine the type of
the triangle, which can be

• Equilateral (i.e. all the three sides are equal)
• Isosceles (i.e Two sides are equal)
• Scalene (i.e All the three sides are unequal)

else suitable error message should be displayed. Here we assume that user gives
three positive integer numbers as input.

7.2 DESIGN:
Form the given requirements we can draw the following conditions: C1:
a<b+c?
C2: b<a+c?
C3: c<a+b?
C4: a=b?
C5: a=c?
C6: b=c?
According to the property of the triangle, if any one of the three conditions C1,
C2 and C3 are not satisfied then triangle cannot be constructed. So only when C1,
C2 and C3 are true the triangle can be formed, then depending on conditions
C4, C5 and C6 we can decide what type of triangle will be formed. (i.e requirement
R2).

Algorithm:
Step 1: Input a, b & c i.e three integer values which represent three sides of the

Department of ISE Page 73

 Software Testing Laboratory

triangle.
Step 2: if (a < (b + c)) and (b < (a + c)) and (c < (a + b) then

do Step 3
else
print not a triangle. do Step 6.

Step 3: if (a=b) and (b=c) then
Print triangle formed is equilateral. do Step 6.

 Step 4: if (a ≠ b) and (a ≠ c) and (b ≠ c) then
Print triangle formed is scalene. do Step 6.

Step 5: Print triangle formed is Isosceles.
Step 6: stop

7.3 PROGRAM CODE:
#include<stdio.h>
#include<ctype.h>
#include<conio.h>
#include<process.h>
int main()
{

int a, b, c;
clrscr();
printf("Enter three sides of the triangle");
scanf("%d%d%d", &a, &b, &c);
if((a<b+c)&&(b<a+c)&&(c<a+b))
{

if((a==b)&&(b==c))
{

printf("Equilateral triangle");
}
else if((a!=b)&&(a!=c)&&(b!=c))
{

printf("Scalene triangle");
}

Department of ISE Page 74

 Software Testing Laboratory

else
 printf("Isosceles triangle");

 }
 else
 {
 ​ printf("triangle cannot be formed");
 } getch(); return 0;
}

7.4
TESTING:
Technique Used: Decision Table Approach

Decision Table-Based Testing has been around since the early 1960’s; it is used to
depict complex logical relationships between input data. A Decision Table is the
method used to build a complete set of test cases without using the internal
structure of the program in question. In order to create test cases we use a table to
contain the input and output values of a program.The decision table is as given
below:

Conditions

Condition Entries (Rules)

R
1

R
2

R
3

R
4

R
5

R
6

R
7

R
8

R
9

R
10

R
11

C1: a<b+c? F T T T T T T T T T T
C2: b<a+c? -- F T T T T T T T T T
C3: c<a+b? -- -- F T T T T T T T T
C4: a=b? -- -- -- F T T T F F F T
C5: a=c? -- -- -- T F T F T F F T
C6: b=c? -- -- -- T T F F F T F T

Actions Action Entries
a1: ​ Not ​
a
Triangle

X

X

X

a2: Scalene X

Department of ISE Page 75

 Software Testing Laboratory

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X

The “--“ symbol in the table indicates don’t care values. The table shows the
six conditions and 5 actions. All the conditions in the decision table are binary;
hence, it is called as “Limited Entry decision table”.

Each column of the decision table represents a test case. That is,
The table is read as follows:

 Action: Not a Triangle

1. When condition C1 is false we can say that with the given ‘a’ ‘b’ and ‘c’

values, it’s Not a
triangle.

2. Similarly condition C2 and C3, if any one of them are false, we can say that
with the given ‘a’ ‘b’ and ‘c’ values it’s Not a triangle.

 Action: Impossible

3. When conditions C1, C2, C3 are true and two conditions among C4, C5, C6 is
true, there is no chance of one conditions among C4, C5, C6 failing. So we can
neglect these rules.

Example: if condition C4: a=b is true and C5: a=c is true

Then it is impossible, that condition C6: b=c will fail, so the action is
Impossible.

 Action: Isosceles

4. When conditions C1, C2, C3 are true and any one condition among C4, C5
and C6 is true with remaining two conditions false then action is Isosceles
triangle.

Example: If condition C4: a=b is true and C5: a=c and C6: b=c are false, it
means two sides are equal. So the action will be Isosceles triangle.

 Action: Equilateral

Department of ISE Page 76

 Software Testing Laboratory

5. When conditions C1, C2, C3 are true and also conditions C4, C5 and C6 are
true then, the action is Equilateral triangle.

 Action: Scalene

6. When conditions C1, C2, C3 are true and conditions C4, C5 and C6 are false
i.e sides a, b and c are different, then action is Scalene triangle.
Number of Test Cases = Number of Rules.

Using the decision table we obtain 11 functional test cases: 3 impossible cases,

3 ways of failing the triangle property, 1 way to get an equilateral triangle, 1 way
to get a scalene triangle, and 3 ways to get an isosceles triangle.
Deriving test cases using

 Decision Table Approach:
 Test Cases:

T
C
I
D

Test
Case

Descriptio
n

a

B

c
Expecte

d
Outp

ut

Actual
Output

Status

1
Testing ​
for
Requirement 1

4

1

2
Not ​
a
Triangle

2
Testing ​
for
Requirement 1

1

4

2
Not ​
a
Triangle

3
Testing ​
for
Requirement 1

1

2

4
Not ​
a
Triangle

4
Testing ​
for
Requirement 2

5

5

5

Equilateral

5
Testing ​
for
Requirement 2

2

2

3

Isosceles

6
Testing ​
for
Requirement 2

2

3

2

Isosceles

Department of ISE Page 77

 Software Testing Laboratory

7
Testing ​
for
Requirement 2

3

2

2

Isosceles

8
Testing ​
for
Requirement 2

3

4

5

Scalene

7.5 EXECUTION & RESULT DISCUSION

Execute the program against the designed test cases and complete the table for
Actual output column and status column.
Test Report:

1. No of TC’s Executed: 08

2. No of Defects Raised:

3. No of TC’s Pass:
 4. No of TC’s Failed:

The decision table technique is indicated for applications characterised by any of
the following:
Prominent if-then-else logic

Logical relationships among input variables

Calculations involving subsets of the input variables

Cause-and-effect relationship between inputs and outputs

The decision table-based testing works well for triangle problem because a lot of
decision making i.e if-then-else logic takes place.

7.6 SNAPSHOTS:
1. Output screen of Triangle cannot be formed

Department of ISE Page 78

 Software Testing Laboratory

2. Output screen of Equilateral and Isosceles Triangle.

Department of ISE Page 79

 Software Testing Laboratory

3. Output screen for Scalene Triangle

7.7. REFERENCES:
1. Requirement Specification
2. Assumption.
8. ​ Design, develop, code and run the program in any suitable language to solve the

Department of ISE Page 80

 Software Testing Laboratory

commission problem. Analyze it from the perspective of decision table-based
testing, derive different test cases, execute these test cases and discuss the test
results.

8.1 REQUIREMENT SPECIFICATION:
R1: The system should read the number of Locks, Stocks and Barrels sold in a
month.

(i.e 1≤ Locks≤ 70) (i.e
1 ≤ Stocks ≤ 80) (i.e 1
≤ Barrels ≤ 90).

R2: If R1 is satisfied the system should compute the salesperson’s commission
depending on the total number of Locks, Stocks & Barrels sold else it should display
suitable error message. Following is the percentage of commission for the sales
done:

10% on sales up to (and including) $1000

15% on next $800

20% on any sales in excess of $1800

Also the system should compute the total dollar sales. The system should
output salespersons total dollar sales, and his commission.

8.2 DESIGN:

Form the given requirements we can draw the following conditions:

C1: 1≤locks≤70? Locks = -1? (occurs if locks = -1 is used to control input
iteration).

 C2: 1≤stocks≤80? Here C1 can be expanded as:
 C1a: 1≤locks
 C3: 1≤barrels≤90? C1b: locks≤70
 C4: sales>1800?
C5: sales>1000?
C6: sales≤1000?

Algorithm:

Department of ISE Page 81

 Software Testing Laboratory

Step 1: Input 3 integer numbers which represents number of Locks, Stocks and
Barrels sold.
Step 2: compute the total sales =

(Number of Locks sold *45) + (Number of Stocks sold *30) + (Number of
Barrels sold *25)
Step 3: if a totals sale in dollars is less than or equal to $1000

then commission = 0.10* total Sales do Step 6
Step 4: else if total sale is less than $1800

then commission1 = 0.10* 1000
commission = commission1 + (0.15 * (total sales – 1000))
do Step 6

Step 5: else commission1 = 0.10* 1000
commission2 = commission1 + (0.15 * 800))
commission = commission2 + (0.20 * (total sales – 1800)) do

Step 6
Step 6: Print commission.
Step 7: Stop.

8.3 PROGRAM CODE:
#include<stdio.h>
#include<conio.h>
int main()
{

int locks, stocks, barrels, t_sales, flag = 0;
float commission;
clrscr();
printf("Enter the total number of locks");
scanf("%d",&locks);
if ((locks <= 0) || (locks > 70))
{

flag = 1;
}

 printf("Enter the total number of stocks");
scanf("%d",&stocks);

Department of ISE Page 82

 Software Testing Laboratory

if ((stocks <= 0) || (stocks > 80))
{

flag = 1;
}
 printf("Enter the total number of stocks");
scanf("%d",&stocks);
if ((stocks <= 0) || (stocks > 80))
{

flag = 1;
}
printf("Enter the total number of barrelss");
scanf("%d",&barrels);
if ((barrels <= 0) || (barrels > 90))
{

flag = 1;
}
if (flag == 1)
{

printf("invalid input");
getch();
exit(0);

}
t_sales = (locks * 45) + (stocks * 30) + (barrels * 25);
if (t_sales <= 1000)
{

commission = 0.10 * t_sales;
}
else if (t_sales < 1800)
{

commission = 0.10 * 1000;
commission = commission + (0.15 * (t_sales - 1000));

 }
Department of ISE Page 83

 Software Testing Laboratory

 else
 {
 commission = 0.10 * 1000;
 commission = commission + (0.15 * 800);
 commission = commission + (0.20 * (t_sales - 1800));
 }

printf("The total sales is %d \n The commission is %f",t_sales,
commission);

getch();
return;

}

8.4 TESTING

Technique Used: Decision Table Approach

The decision table is given below

Conditions Condition Entries (Rules)
C1: 1≤locks≤70? F T T T T T
C2: 1≤stocks≤80? -- F T T T T

 C3: 1≤barrels≤90? -- -- F T T T
 C4: sales>1800? -- -- -- T F F
 C5: sales>1000? -- -- -- -- T F
 C6: sales≤1000? -- -- -- -- -- T
Actions Action Entries
a1: com1 = 0.10*Sales X
a2: ​ com2 ​
=
com1+0.15*(sales-1000)

X

a3: ​ com3 ​
=
com2+0.20*(sales-1800)

X

a4: Out of Range. X X X

Department of ISE Page 84

 Software Testing Laboratory

Using the decision table we get 6 functional test cases: 3 cases out of range, 1 case
each for sales greater than $1800, sales greater than $1000, sales less than or equal
to $1000.

 DERIVING TEST CASES USING Decision Table Approach:
Test Cases

T
C
I
D

Test ​
Case
Description

Loc
ks

Stock
s

Barrel
s

Expected
Output

Actual
Output

Status

1

Testing ​
for
Requirement 1
Condition 1 (C1)

-2

40

45

Out of Range

2

Testing ​
for
Requirement 1
Condition 1 (C1)

90

40

45

Out of Range

3

Testing ​
for
Requirement 1
Condition 2 (C2)

35

-3

45

Out of Range

4

Testing ​
for
Requirement 1
Condition 2 (C2)

35

100

45

Out of Range

5

Testing ​
for
Requirement 1
Condition 3 (C3)

35

40

-10

Out of Range

6

Testing ​
for
Requirement 1
Condition 3 (C3)

35

40

150

Out of Range

7
Testing ​
for
Requirement 2

5

5

5

500

a1:50

8
Testing ​
for
Requirement 2

15

15

15

150
0

a2:
175

Department of ISE Page 85

 Software Testing Laboratory

9
Testing ​
for
Requirement 2

25

25

25

250
0

a3:
360

 8.5 EXECUTION & RESULT DISCUSION:

Execute the program against the designed test cases and complete the table
for Actual output column and status column.
TEST REPORT:

1. No of TC’s Executed:

2. No of Defects Raised:

3. No of TC’s Pass:

4. No of TC’s Failed:
The commission problem is not well served by a decision table analysis
because it has very little decisional. Because the variables in the equivalence
classes are truly independent, no impossible rules will occur in a decision table in
which condition correspond to the equivalence classes.

8.6 SNAPSHOTS:
1. Snapshot for Total sales and commission when total sales are within 1000 and
1800

Department of ISE Page 86

 Software Testing Laboratory

2. Snapshot when the inputs all are 25.

8.7 REFERENCES:

1. Requirement Specification
2. Assumptions

Department of ISE Page 87

 Software Testing Laboratory

9. ​ Design, develop, code and run the program in any suitable language to solve the
commission problem. Analyze it from the perspective of dataflow testing, derive
different test cases, execute these test cases and discuss the test results.

9.1 REQUIREMENT SPECIFICATION

Problem Definition: The Commission Problem includes a salesperson in the
former Arizona Territory sold rifle locks, stocks and barrels made by a
gunsmith in Missouri. Cost includes

Locks- $45

Stocks- $30

Barrels- $25

The salesperson had to sell at least one complete rifle per month and
production limits were such that the most the salesperson could sell in a month
was 70 locks, 80 stocks and 90 barrels.

After each town visit, the sales person sent a telegram to the Missouri
gunsmith with the number of locks, stocks and barrels sold in the town. At the
end of the month, the salesperson sent a very short telegram showing -
-1 lock sold. The gunsmith then knew the sales for the month were complete
and computed the salesperson’s commission as follows:

On sales up to(and including) $1000= 10% On

Department of ISE Page 88

 Software Testing Laboratory

the sales up to(and includes) $1800= 15% On the
sales in excess of $1800= 20%
The commission program produces a monthly sales report that gave the total
number of locks, stocks and barrels sold, the salesperson’s total dollar sales and
finally the commission

9.2 DESIGN
Algorithm:
Step 1: Define lockPrice=45.0, stockPrice=30.0, barrelPrice=25.0
Step2: Input locks
Step3: while(locks!=-1) ‘input device uses -1 to indicate end of data goto
Step 12
Step 4:input (stocks, barrels)

 Step 5: compute lockSales, stockSales, barrelSales and sales
Step 6: output(“Total sales:” sales)
Step 7: if (sales > 1800.0) goto Step 8 else goto Step 9
Step 8: commission=0.10*1000.0; commission=commission+0.15 * 800.0;

commission = commission + 0.20 * (sales-1800.0)
 Step 9: if (sales > 1000.0) goto Step 10 else goto Step 11

Step10: commission=0.10* 1000.0; commission=commission + 0.15 *
(sales-1000.0)

 Step 11: Output(“Commission is $”, commission)
 Step12: exit

9.3 PROGRAM CODE:
#include<stdio.h>
#include<conio.h>
int main()
{

int locks, stocks, barrels, t_sales, flag = 0;
float commission;
clrscr();
printf("Enter the total number of locks");
scanf("%d",&locks);

Department of ISE Page 89

 Software Testing Laboratory

if ((locks <= 0) || (locks > 70))
{

flag = 1;
}
printf("Enter the total number of stocks");
scanf("%d",&stocks);
if ((stocks <= 0) || (stocks > 80))
{

flag = 1;
}
printf("Enter the total number of barrelss");
scanf("%d",&barrels);
if ((barrels <= 0) || (barrels > 90))
{

flag = 1;
}
if (flag == 1)
{

printf("invalid input");
getch();
exit(0);

}
t_sales = (locks * 45) + (stocks * 30) + (barrels * 25);
if (t_sales <= 1000)
{

commission = 0.10 * t_sales;
}
else if (t_sales < 1800)
{

 commission = 0.10 * 1000;
 commission = commission + (0.15 * (t_sales - 1000));

Department of ISE Page 90

 Software Testing Laboratory

 }
else
{

 commission = 0.10 * 1000;
 commission = commission + (0.15 * 800);
 commission = commission + (0.20 * (t_sales - 1800));
 }

printf("The total sales is %d \n The commission is %f",t_sales,
commission);
getch(); return; }

9.4 TESTING TECHNIQUE: DATAFLOW TESTING
A structural testing technique
• Aims to execute sub-paths from points where each variable is defined to points
where it is referenced. These sub-paths are called definition-use pairs, or du-pairs
(du-paths, du-chains) Data flow testing is centred on variables (data) Data flow
testing follows the sequences of events related to a given data item with the
objective to detect incorrect sequences It explores the effect of using the value
produced by every and each computation.

Variable definition
Occurrences of a variable where a variable is given a new value (assignment,
input by the user, input from a file, etc.) Variable DECLARATION is NOT its
definition !!!

Variable uses
Occurences of a variable where a variable is not given a new value (variable
DECLARATION is NOT its use)

 p-uses (predicate uses)
Occur in the predicate portion of a decision statement such as if-then-else,
while-do etc.

 c-uses (computation uses)
All others, including variable occurrences in the right hand side of an
assignment statement, or an output statement

du-path: A sub-path from a variable definition to its use.
Department of ISE Page 91

 Software Testing Laboratory

Test case definitions based on four groups of coverage
– All definitions.

– All c-uses.

– All p-uses.

– All du-paths.

DATA FLOW TESTING: KEY Steps

Given a code (program or pseudo-code).

1. Number the lines.

2. List the variables.

3. List occurrences & assign a category to each variable.

4. Identify du-pairs and their use (p- or c-).

5. Define test cases, depending on the required coverage.

line catogar
y

 Definition c-us
e

p-us
e

1

2

3

4

5

6

7

8

9 locks, stocks, barrels

1 locks, stocks, barrels

Department of ISE Page 92

 Software Testing Laboratory

0
1
1

1
2

Flag

1
3

1
4

 flag

1
5

1
6

1
7

1
8

1
9

2
0

t_sales

locks, stocks,
barrels

2
1

 t_sales

2
2

2
3

commission t_sales

Department of ISE Page 93

 Software Testing Laboratory

2
4

2
5

 t_sales

2
6

2
7

commission

2
8

commission commission, t_sales

2
9

3
0

3
1

3
2

commission

3
3

commission commission

3
4

commission commission, t_sales

3
5

3
6

 commission

3
7

3
8

3
9

Table: list occurrences & assign a category to each variable

Department of ISE Page 94

 Software Testing Laboratory

definition - use pair variables()
start line → end line c-us

e
p-us

e
9→1

0
 loc

ks
9→1

0
 stock

s
9→1

0
 barrel

s
9→2

0
lock

s

9→2
0

stock
s

9→2
0

barrel
s

12→1
4

 fla
g

20→2
1

 t_sal
es

20→2
3

t_sal
es

20→2
5

 t_sal
es

20→2
8

t_sal
es

20→3 t_sal

Department of ISE Page 95

 Software Testing Laboratory

4 es
23→3

6
commission

27→2
8

commission

28→3
6

commission

32→3
3

commission

33→3
4

commission

34→3
6

commission

 Table: Define test cases

TEST CASES BASED ON ALL DEFINITION
To achieve 100% All-definitions data flow coverage at least one sub-path from
each variable definition to some use of that definition (either c- or p- use) must be
executed.

 Input
s

Expected output

Variable(s) d
u-
pa
ir

su
b-
pat
h

locks stock
s

barrels t_sale
s

commis
s ion

lock
s,
stock
s,
barrel
s

9→20 9,10,20 1
0

1
0

1
0

1000

locks,
stock

9→10 9→10 5 -
1

2
2

Invalid Input

Department of ISE Page 96

 Software Testing Laboratory

s,
barrel
s

Fl
ag

12→1
4

12→14 -
1

4
0

4
5

Invalid Input

t_sales 20→2

1
20,21 5 5 5 500

t_sales 20→2
5

20,21,2
5

1
5

1
5

1
5

1500

commissio
n

23→3
6

23→36 5 5 5 5
0

commissio
n

27→3
6

27,28,3
6

1
5

1
5

1
5

 175

commissio
n

32→3
6

32,33,3
4,
3
6

2
5

2
5

2
5

 360

9.5 EXECUTION

Execute the program and test the test cases in above Tables against
program and complete the table with for Actual output column ​ and
Status column.

9.6 SNAPSHOTS:
1. Snapshot for Total sales and commission when total sales are within 1000
and Invalid input

Department of ISE Page 97

 Software Testing Laboratory

2. Invalid Input and Total sales and commission when total sales are within
1000

Department of ISE Page 98

 Software Testing Laboratory

3. Snapshot for for Total sales and commission when total sales are within

1800 and to find out the total commission 360

4. Snapshot for total sales and commission

Department of ISE Page 99

 Software Testing Laboratory

9.7 REFERENCES

1. Requirement Specification.
2. Assumptions.

10. ​Design, develop, code and run the program in any suitable language to

Department of ISE Page 100

 Software Testing Laboratory

implement the binary search algorithm. Determine the basis paths and using them
derive different test cases, execute these test cases and discuss the test results.

10.1 REQUIREMENTS SPECIFICATION

R1: The system should accept ‘n’ number of elements and key element that is to be
searched among ‘n’ elements..
R2: Check if the key element is present in the array and display the position if
present otherwise print unsuccessful search.

10.2 DESIGN

We use integer array as a data structure to store ‘n’ number of elements. Iterative
programming technique is used.

Algorithm:

Step 1: Input value of ‘n’. Enter ‘n’ integer numbers in array int mid;
Step 2: Initialize low = 0, high = n -1
Step 3: until (low <= high) do mid

= (low + high) / 2 if (
a[mid] == key)

then do Step 5
else if (a[mid] > key)
then do

high = mid - 1

Department of ISE Page 101

 Software Testing Laboratory

 else low = mid + 1
Step 4: Print unsuccessful search do Step 6.

Step 5: Print Successful search. Element found at position mid+1.
Step 6: Stop.

10.3 PROGRAM CODE:
1​ #include<stdio.h>
2​ #include<conio.h>
3​ int main()
4​ {

 5​ Int a[20],n,low,high,mid,key,I;
 6​ int flag=0;
 7​ clrscr();
8​ printf("Enter the value of n:\n");
9​ scanf("%d",&n);
10​ if(n>0)
11​ {
12​ ​ printf("Enter %d elements in ASCENDING order\n",n);
13​ ​ for(i=0;i<n;i++)
14​ ​ {
15​ ​ scanf("%d",&a[i]);
16​ ​ }
17​ ​ printf("Enter the key element to be searched\n");
18​ ​ scanf("%d",&key);
19​ ​ low-=0;
20​ ​ high=n-1;
21​ while(low<=high)
Department of ISE Page 102

 Software Testing Laboratory

22​ ​ {
23​ ​ mid=(low+high)/2;
24​ ​ if(a[mid]==key)
25​ ​ {
26​ ​ flag=1;
27​ ​ break;
28​ }
29​ ​ else if(a[mid]<key)
30​ ​ {
31​ low=mid+1;

32 }
 33 else
 34 {
 35 high=mid-1;
 36​ }
 37​ ​ }

 38​ ​ if(flag==1)
 39​ printf("Successful search\n Element found at Location

 %d\n",mid+1);
 40​ else
 41​ ​ printf(“Key element is not found”);

 42​ }

 43​ ​ else

 44​ ​ printf("Wrong input");
 45​ ​ getch();
 46​ ​ return 0;
 47 }

Department of ISE Page 103

 Software Testing Laboratory

10.4 TESTING

Technique Used: Basis Path Testing

Basis path testing is a form of Structural testing (White Box testing).
The method devised by McCabe to carry out basis path testing has four Steps.
These are:
1. Compute the program graph.

2. Calculate the cyclomatic complexity.

3. Select a basis set of paths.

4. Generate test cases for each of these paths.

Department of ISE Page 104

 Software Testing Laboratory

Below is the program graph of binary search code.

Using the program graph we derive (Deci
Binary search program

Program Graph Nodes DD – Path Name
First 5

Department of ISE Page 105

 Software Testing Laboratory

A 6,7,8,9,10
B 11
C 12,13,14
D 15,16,17
E 18
F 19,20
G 37
H 21
I 22,23,24,25,26,2

7
J 28
K 29.30,31
L 32,33,34,35
M 38
N 40
O 41

The cyclomatic complexity of a

connected graph is provided by the

formula V(G) = e – n + 2p. The number

of edges is represented by e, the

number of nodes by n and the number

of connected regions by p. If we apply

this formula to the graph given below,

the number of linearly independent

circuits is:

Number of edges = 21

Number of nodes = 15

Number of connected regions =
1

21 – 15 + 2(1) = 4.

Department of ISE Page 106

 Software Testing Laboratory

Here we are dealing code level

dependencies, which are absolutely

incompatible with the latent

assumption, that basis path are

independent. McCabe’s procedure

successfully identifies basis path that are

topologically independent, but when

these contradict semantic dependencies,

topologically possible paths are seen to

be logically infeasible. One solution to

this problem is to always require that

flipping a decision result in a

semantically feasible path. For this

problem we identify some of the rules:

If node C not traversed, then node M
should be traversed.

If node E and node G is traversed,

then node M should be traversed.

If node I is traversed, then node N

should be traversed.

Taking into consideration the above
rules, next step is to find the basis paths.

According to cyclomatic complexity 4

feasible basis path exists:

P1: A, B, D, E, G, N, O

​

if n value is 0.

P2: A, B, C, B, D, E, F, H, I, G, M, O
​
key element found.
P3: A, B, C B, D, E, F, H, J, K, E, F, H, J, K, E, G, N, O
​
key element not found.

P4: A, B, C, B, D, E, F, H, J, L, E, F, H, J, L, E, G, N, O
​
key element not found.

Department of ISE Page 107

 Software Testing Laboratory

DERIVING TEST CASES USING BASIS
PATH TESTING

The last step is to devise test cases for
the basis paths.

TEST CASES

T
C
I
D

Test ​
Case
Description

Val
ue
of
‘n‘

array
elemen
ts

1

Testing ​
for
requirement 1
Path P1

0

--

2

Testing ​
for
requirement
2
Path P2

4

2,3,5,6,7

3

Testing ​
for
requirement
2
Path P3

3

1,2,5

4

Testing ​
for
requirement
2
Path P4

3

1,2,5

5

Testing ​
for
requirement
2
Path
P4+P2-P1

5

1,2,4,6,7

6

Testing ​
for
requirement
2
Path
P3+P2-P1

5

4,5,7,8,9

8

k
​
a
p
4

10.5 EXECUTION & RESULT DISCUSION:

Execute the program against the
designed test cases and complete the
table for

Actual output column and status
column.

Test Report:

1. No of TC’s Executed: 06

2. No of Defects Raised:

3. No of TC’s Pass:

4. No of TC’s Failed:

Department of ISE Page 108

 Software Testing Laboratory

10.6 SNAPSHOTS:

1. Snapshot to check successful search
and not found key element.

2. Snapshot to check successful search
and not found key element.

10.7 REFERENCES:
1. Requirement Specification

2. Assumptions

Department of ISE Page 109

 Software Testing Laboratory

11. ​ Design, develop, code and run the
program in any suitable language to
implement the quicksort algorithm.
Determine the basis paths and using
them derive different test cases, execute
these test cases and discuss the test
results. discuss the test results.

11.1
REQUIREMENTS
SPECIFICATION

R1: The system should accept ‘n’ number

of elements and key element that is to be

searched among ‘n’ elements.

R2: Check if the key element is present

in the array and display the position if

present otherwise print unsuccessful

search.

1
1
.
2
D
E
S
I
G
N

We use integer array as a data structure

to store ‘n’ number of elements. Iterative

programming technique is used.

1

1
.
3
P
R
O
G
R
A
M
C
O
D
E
:
// An
iterati
ve
imple
ment
ation
of
quick
sort
1​ #include <stdio.h>

 // A utility function to swap two elements
2​ void swap (int* a, int* b)
{

 3​ int t = *a;
 4​ *a = *b;
 5​ *b = t;
6​ }

/* This function is same in both iterative
and recursive*/
7​ int partition (int arr[], int l, int h)
8​ {

Department of ISE Page 110

 Software Testing Laboratory

 9​ int x = arr[h]; int i = (l - 1),j;

Department of ISE Page 111

 Software Testing Laboratory

11 ​ for (j = l; j <= h- 1; j++)
12​ {

 13​ if (arr[j] <= x)
 14 {

 15​ i++;
 16​ swap (&arr[i], &arr[j]);
 17 }

18​ }

19​ swap (&arr[i + 1], &arr[h]);
20​ return (i + 1);

 21 }

/* A[] --> Array to be sorted, l -->
Starting index, h --> Ending index */

 22 void quickSortIterative (int
arr[], int l, int h)
 23 {

/
/
C
r
e
a
t
e
a
n
a
u
x
i
l

i
a
r
y
2
4
i
n
t
s
t
a
c
k
[
1
0
]
,
p
;

/
/
i
n
i
t
i
a
l
i
z
e
t

Department of ISE Page 112

 Software Testing Laboratory

o
p
o
f
2
5
i
n
t
t
o
p
=
-
1
;

/
/
p
u
s
h
i
n
i
t
i
a
l
v
a
l
u
e

s
o
f
l
a
n
d
h
t
o
2
6
s
t
a
c
k
s
t
a
c
k
[
+
+
t
o
p
]
=
l
;
27 stack[++top] = h;

// Keep popping from stack while is not empty

Department of ISE Page 113

 Software Testing Laboratory

 28 while (top >= 0)
 29 {

// Pop h and l
 30 h = stack[top--];
 31 l = stack[top--];

Department of ISE Page 114

 Software Testing Laboratory

// Set pivot
element at its
correct position in
sorted array

 32 p = partition(
arr, l, h);

// If there are elements on left side
of pivot, then push left
// side to stack

33 if (p-1 > l)
34 {

 35 stack[++top] = l;
 36 stack[++top] = p - 1;

 37 }

// If there are elements on right side
of pivot, then push right
/
/
s
i
d
e
t
o

 38 stack if (p+1 < h)
 39 {

 40 stack[++top] = p + 1;
 41 stack[++top] = h;
 42 }

 43 }
 44 }

//

Dri
ver
pro
gra
m
to
test
abo
ve
fun
ctio
ns
int
mai
n()
{

int arr[20],n,i;
clrscr();
printf("Enter the size of the array");
scanf("%d",&n);
printf("Enter %d elements",n);
for(i=0;i<n;i++)

scanf("%d",&arr[i]);

quickSortIterative(arr, 0, n - 1);

printf("Elements of the array
are;");

Department of ISE Page 115

 Software Testing Laboratory

f
o
r
(
i
=
0
;
i
<
n
;
i
+
+
)

printf("%d",arr[i]);

 getch();
 return 0;

}

11.4 TESTING
Program Graph for partition:

Department of ISE Page 116

 Software Testing Laboratory

Using program graph we derive DD path
graph for partition()

DD
Path
Nam

es

Program
Graph

A 50,51,52,53
B 54
C 56
D 57,58,59,60,61,6

2
E 64,65,66,67,68

Cyclomatic complixity
No. of edges =6
N
o
.
o
f
n
o
d
e

s
=
5
e
-
n
+
2
6-5+2 =3
No. of predicate nodes +1 (i.e., node B
and node C)
2+1=3
No. of region + 1
R1 and R2 are two regions
2+1=3

Department of ISE Page 117

 Software Testing Laboratory

According to cyclomatic complexity 3
basis path exists. They are,

P1: A, B, E
P
2
:
A
,
B
,
C
,
D
,
B
,
E
P
3
:
A
,
B
,
C
,
B
,
E

Deriving
test cases
using
basis

path
testing:
Test
Cases

TC
ID

Test
Case

Descripti
on

Arra
y
eleme
nts

Expected output

Arra
y

Value of
i

1 Testing
for
path P1

5 5 0

2 Testing
for
path P2

5, 4, 6,
2,
7

5, 4, 6,
2,
7

4

3 Testing
for
path P3

5, 4, 6,
7,
5

5, 4, 6,
7,
5

0

Department of ISE Page 118

 Software Testing Laboratory

Department of ISE Page 119

 Software Testing Laboratory

Department of ISE Page 120

 Software Testing Laboratory

CYCLOMATIC COMPLEXITY

No. of nodes = 8
N
o
.
o
f
n
o
d
e
s
=
1
0
e

-
n
+
2
1
0
-
8
+
2
=
4
No. of predicate nodes + 1
3+1=4 (i.e., node
B, D & F)
No. of regions+1

 3+1=4 (i.e., Region R1, R2 & R3)

According to cyclomatic complexity 4
basis path exists. They are
P
1
:
A
,
B
,
C
,
D
,
E
,
F
,
G
,
B
,
H

Department of ISE Page 121

 Software Testing Laboratory

P
2
:
A
,
B
,
C
,
D
,
E
,
F
,
B
,
H
P3: A, B, C, D, F, G, B, H
P4: A, B, C, D, F, B, H

Department of ISE Page 122

 Software Testing Laboratory

Deriving test cases using basis path
testing
Test cases:

T
C
I
D

Test Case
Description

Array
elemen
ts

E

1 Testing for
path
1

5, 7, 4, 2,
1,
3

2,
7,
4

2 Testing for
path
2

5, 4, 8, 2,
7

5,
8

3 Testing for
path
3

5, 4, 6, 7,
3

3,
5

11.5 EXECUTION
Compile the program and en

inputs Test above table array elements fo
cases.

11.6 SNAPSHOTS:
1. Snapshot of quick sort sorted elements
are displayed, when the n=6

Department of ISE Page 123

 Software Testing Laboratory

2. Snapshot of quick sort sorted elements
are displayed, when the n=5

3. Snapshot of quick sort sorted elements
are displayed, when the n=5

11.7 REFERENCES:
1. Requirement Specification
2. Assumptions

Department of ISE Page 124

 Software Testing Laboratory

12. Design, develop, code and run the
program in any suitable language to
implement an​ absolute​ letter ​
grading ​ procedure, making suitable
assumptions. Determine the basis paths
and using them derive different test
cases, execute these test cases and
discuss the test results.

12.1 REQUIREMENTS SPECIFICATION:
R1: The system should accept marks of 6
subjects, each marks in the range 1 to
100.

i.e., for example, ​ 1<=marks<=100
1<=kannada<=1
00
1<=maths<=100
etc.

R2: If R1 is satisfied compute average of
marks scored and percentage of the
same and depending on percentage
display the grade.

12.2 DESIGN:
We use the total percentage of marks to
grade the student marks.

<35 &&

>0 of

percentag

e make it

as FAIL

avmar<=

40 &&

avmar>3

5 make it

as Grade

C

avmar<=

50 &&

avmar>4

0 make it

as Grade

C+

avmar<=

60 &&

avmar>5

0 make it

as Grade

B

avmar<=

70 &&

avmar>6

0 make it

as Grade

B+

avmar<=

80 &&

avmar>7

0 make it

as Grade

A

avmar<=

100 &&

avmar>8

0 make it

as Grade

A+

12.3 PROGRAM CODE:

Department of ISE Page 125

 Software Testing Laboratory

#include<stdio.h>
main()
1​ {
2​ float kan,eng,hindi,maths,science,
sst,avmar;
3
​
p
ri
n
tf
(
"
L
e
tt
e
r
G
r
a
d
i
n
g
\
n
"
);
4 printf("SSLC Marks Grading\n");

5 printf("Enter the marks for 6 Kanna

 6 scanf("%f",&kan);

Department of ISE Page 126

 Software Testing Laboratory

7​ printf("enter the marks for
English:");

8​ scanf("%f",&eng);
9​ printf("enter the marks for Hindi:");
10​ scanf("%f",&hindi);
11​ printf("enter the marks for Maths");
12​ scanf("%f",&maths);
13​ printf("enter the marks for
Science:");
14​ scanf("%f",&science);
15​ printf("enter the marks for
Social Science:");

16​ scanf("%f",&sst);

17​
avmar=(kan+eng+hindi+maths+sc
ience+sst)/6.25;

18​ printf("the average marks
are=%f\n",avmar);

19 if((avmar<35)&&(avmar>0))

2
0
​
p
r
i
n
t
f
(
"
f
a
i
l

"
)
;
21
elseif((avmar<=40)&&(avar>35))

 22​ printf("Grade C");
23
elseif((avmar<=50)&&(avma
r>40))
24 printf("Grade C+");
25
elseif((avmar<=60)&&(a
vmar>50))
 26 printf("Grade B");
27
elseif((avmar<=70)&&(
avmar>60))
28 printf("Grade
B+");
29
elseif((avmar<=80)&&(avmar>70))
30 printf("Grade A");
31
elseif((avmar<=100)&&(avmar>80))

32 printf("Grade A+");
33 else

34 printf(“Invalid”);

35 }

Department of ISE Page 127

 Software Testing Laboratory

Department of ISE Page 128

 Software Testing Laboratory

Using the program graph derive DD
path graph

DD path
Names

Program Graph Nodes

A 1, 2, 3, 4, 5, 6, 7, 8 . . . 18
B 19
C 20, 21, 22
D 23
E 24
F 25
G 26
H 27
I 28
J 29
K 30
L 31
M 32
N 33
O 34
P 35
Q 37
R 36

Department of ISE Page 129

 Software Testing Laboratory

CYCLOMATIC COMPLEXITY
No. of nodes = 18
No. of edges = 24

e-n+2
24-18+2=8

No. of predicate nodes + 1
7 + 1 = 8 (i.e., B, D, F, H, J, L, N)

No. of regions + 1
7 + 1 = 8 (i.e., Regions R1, R2, R3, R4,
R5, R6, R7)

According to
cyclomatic
complexity we can
derive 8 basis path.

P1: A, B, R q
P2: A, B, C, D, E, q
P3: A, B, C, D,
F, G, q
P4: A, B, C, D,
F, H, I, q
P5:
A, B,
C, D,
F, H,
J, K,
q
P6: A, B, C,
D, F, H, J, L,
M, q
P7:
A,

B, C,
D, F,
H, J,
L, N,
O, q
P8: A, B, C,
D, F, H, J, L,
N, P, q

Test Cases:

TC
ID

Test Description

Inpu
t

Expecte
d

Outpu
t

1

Testing for path P1

K=50
E=50
H=50
M=50
S=50
SST=15
0

Invalid
Input

Department of ISE Page 130

 Software Testing Laboratory

2

Testing for path P2

K=30
E=30
H=30
M=35
S=35
SST=35
Avg=32
5

3

Testing for path P3

K=40
E=38
H=37
M=40
S=40
SST=38
Avg=38
83

4

Testing for path P4

K=45
E=47
H=48
M=46
S=49
SST=50
Avg=47
5

5

Testing for path P5

K=55
E=58
H=60
M=56
S=57
SST=60
Avg=57.
6

6

Testing for path P6

K=65
E=65
H=65
M=65
S=65
SST=65
Avg=65.0

Grade
B+

Department of ISE Page 131

 Software Testing Laboratory

7

Testing for path P7

K=75
E=72
H=78
M=75
S=80
SST=80
Avg=76
6

8

Testing for path P8

K=85
E=90
H=80
M=95
S=85
SST=85
Avg=86
66

12.5 EXECUTION
Compile the program and enter inputs fo
subject marks, then it will

display the Total percentage, depending o
the percentage it will shows the Grade an
test the test cases for above table.

12.6 SNAPSHOTS:
1. Snapshot to Show Fail and Grade C

Department of ISE Page 132

 Software Testing Laboratory

2. Snapshot to show Grade B and Grade
C+

3. Snapshot to show the Grade A and
Grade B+

Department of ISE Page 133

 Software Testing Laboratory

4. Snapshot to show the Grade A+

12.7 REFERENCES:
1. Requirement Specification
2. Assumptions

Department of ISE Page 134

 Software Testing Laboratory

EXECUTION
STEPS IN
LINUX

1. Open Terminal
2. Then open VI –Editor using the

filename, following command
will shows that

[root@localhost ~]#
vi Triangle.c

3. Write the Suitable code for the
given program

4. Then compile and execute the
program using the command;

[root@localhost ~]#
cc triangle.c

5. Then execute the command;

[root@localhost ~]#
./a.out

6. Enter the suitable input for the
program.

7. Then will get the suitable output.

Department of ISE Page 135

