Software Testing Laboratory

SOFTWARE TESTING LABORATORY

1. Design and develop a program in a language of your choice to solve the

triangle problem defined as follows: Accept three integers which are
supposed to be the three sides of a triangle and determine if the three values
represent an equilateral triangle, isosceles triangle, scalene triangle, or they do
not form a triangle at all. Assume that the upper limit for the size of any side is
10. Derive test cases for your program based on boundary- value analysis,
execute the test cases and discuss the results.

2. Design, develop, code and run the program in any suitable language to

solve the commission problem. Analyze it from the perspective of
Boundary value testing, derive different test cases, execute these test cases
and discuss the test results.

3. Design, develop, code and run the program in any suitable language to
implement the NextDate function. Analyze it from the perspective of
boundary value testing, derive different test cases, execute these test cases and
discuss the test results.

4. Design and develop a program in a language of your choice to solve the triangle
problem defined as follows: Accept three integers which are supposed to be the
three sides of a triangle and determine if the three values represent an equilateral
triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all.
Assume that the upper limit for the size of any side is 10. Derive test cases for
your program based on equivalence class partitioning, execute the test cases and
discuss the results.

5. Design, develop, code and run the program in any suitable language to solve the
commission problem. Analyze it from the perspective of equivalence
class testing, derive different test cases, execute these test cases and discuss the
test results.

6.Design, develop, code and run the program in any suitable language to

Department of ISE Page 1

Software Testing Laboratory

implement the NextDate function. Analyze it from the perspective of
equivalence class value testing, derive different test cases, and execute these test
cases and discuss the test results.

7. Design and develop a program in a language of your choice to solve the triangle
problem defined as follows: Accept three integers which are supposed to be
the three sides of a triangle and determine if the three values represent an
equilateral triangle, isosceles triangle, scalene triangle, or they do not form a
triangle at all. Derive test cases for your program based on decision-table
approach, execute the test cases and discuss the results.

8. Design, develop, code and run the program in any suitable language to solve the
commission problem. Analyze it from the perspective of decision table-based
testing, derive different test cases, execute these test cases and discuss the test
results.

9. Design, develop, code and run the program in any suitable language to solve the
commission problem. Analyze it from the perspective of dataflow testing, derive
different test cases, execute these test cases and discuss the test results.

10. Design, develop, code and run the program in any suitable language to
implement the binary search algorithm. Determine the basis paths and using
them derive different test cases, execute these test cases and discuss the test
results.

11. Design, develop, code and run the program in any suitable language to

implement the quicksort algorithm. Determine the basis paths and using
them derive different test cases, execute these test cases and discuss the test
results. Discuss the test results.

12. Design, develop, code and run the program in any suitable language to
implement an absolute letter grading procedure, making suitable assumptions.
Determine the basis paths and using them derive different test cases, execute
these test cases and discuss the test results.

Department of ISE Page 2

Software Testing Laboratory

1. Design and develop a program in a language of your choice to solve the triangle
problem defined as follows: Accept three integers which are supposed to be the
three sides of a triangle and determine if the three values represent an equilateral
triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all.
Assume that the upper limit for the size of any side is 10. Derive test cases for your
program based on boundary-value analysis, execute the test cases and discuss the
results.

1.1 REQUIREMENT SPECIFICATIONS

R1. The system should accept 3 positive integer numbers (a, b, ¢) which
represents 3 sides of the triangle.
R2. Based on the input should determine if a triangle can be formed or

not.

R3. If the requirement R2 is satisfied then the system should determine the
type of the triangle, which can be
* Equilateral (i.e. all the three sides are equal)

* [sosceles (i.e Two sides are equal)
* Scalene (i.e All the three sides are unequal)

R4. Upper Limit for the size of any side is 10

1.2 DESIGN

Algorithm:
Step 1: Input a, b & c i.e three integer values which represent three sides of the
triangle.
Step 2:if (a<(b+c¢))and (b <(a+c))and (c <(a+ b) then
do Step 3
else
print not a triangle. do Step 6.
Step 3: if (a=b) and (b=c) then
Print triangle formed is equilateral. do Step 6.
Step 4: if (a# b) and (a # c¢) and (b # ¢) then

Print triangle formed is scalene. do Step 6.

Department of ISE Page 3

Software Testing Laboratory

Step 5: Print triangle formed 1s Isosceles.

Step 6: stop

1.3 PROGRAM CODE:
#include<stdio.h>

#include<ctype.h>

#include<conio.h>

#include<process.h>

int main()

{
inta, b, c;
clrscr();

printf("Enter three sides of the triangle");
scanf("%d%d%d", &a, &b, &c);
if((a>10) [| (b > 10) || (c > 10))

{
printf("Out of range");
getch();
exit(0);

b

if((a<b+c)&&(b<atc)&&(c<a+tb))

{
if((a==b)&&(b==c))

{
printf("Equilateral triangle");
}
else if((a!=b)&&(a!=c)&&(b!=c))
{
printf("Scalene triangle");
b
else

Department of ISE

Page 4

Software Testing Laboratory

{
printf("Isosceles triangle");
}
}
else
{
printf("triangle cannot be formed");
b
getch();
return 0;
b
1.4 TESTING

1. Technique used: Boundary value analysis
2. Test Case design

For BVA problem the test cases can be generation depends on the
output and the constraints on the output. Here we least worried on the
constraints on Input domain.

The Triangle problem takes 3 sides as input and checks it for validity, hence n
= 3. Since BVA yields (4n + 1) test cases according to single fault assumption
theory, hence we can say that the total number of test cases will be (4*3+1)
=12+1=13.

The maximum limit of each side a, b, and ¢ of the triangle is 10 units
according to requirement R4. So a, b and c lies between

1<a<10
1<b<10

1<c<10

Department of ISE Page 5

Software Testing Laboratory

Equivalence classes for a:
E1: Values less than 1.

E2: Values in the range.

E3: Values greater than 10.

Equivalence classes for b:

E4: Values less than 1

ES: Values in the range.

E6: Values greater than 10.

Equivalence classes for c:

E7: Values less than 1.

ES8: Values in the range.

E9: Values greater than 10.

From the above equivalence classes we can derive the following test cases using

boundary value analysis approach.

T Test Input Data Expected Actual Status
C Case A | b| C | Output Output
Id | Description
1 For A input i1s X | 3| 6 | Nota Triangle
not given
2 ForBinputisnot | 5 [X | 4 | Nota Triangle
given
3 ForCinputisnot | 4 [7 | X | Nota Triangle
given
4 Input of C is in | 5 5| -1 | Nota Triangle
negative(-)
Department of ISE Page 6

Software Testing Laboratory

5 Two sides 5 5
are same one
side is given

different
input

Isosceles

Department of ISE

Page 7

Software Testing Laboratory

6 All Sides of 5 | 5| 5 | Equilateral
inputs
are equal

7 Two sides 5 51 9 | Isosceles
are

same one side
1s given
different input

8 The inputof Cis | 5 5 | 10| Nota Triangle

out of range (i.e.,
range is <10)

9 Two sides are 5 1|5 Isosceles
same one side i1s
givendifferent
input (i.e., A &
Care 5, B=1)

10 | Two sides are 5 215 Isosceles
same one side is
givendifferent
mput (i.e., A &
C are 5, B=2)

11 Two sides 5 91| 5 Isosceles
are

same one side
1s given
different input
(e, A & Care
5, B=9)

Department of ISE Page 8

Software Testing Laboratory

12

Two sides
are

same one side

is given

different input

(ie., A & Care

5, B=10 so, it is
out of

given range)

Not a Triangle

13

Two sides
are

same one side
1s given
different input
(i.e., B & Care
5, A=1)

Isosceles

14

Two sides
are

same one side
is given
different input
(i.e., B & Care
5, A=2)

Isosceles

15

Two sides
are same one
side 1s

Isosceles

given different
input (i.e., B &
C

are 5, A=9)

16

Two sides
are

same one side
is given
different input

10

Not a Triangle

Department of ISE

Page 9

Software Testing Laboratory

(i.e., B & Care
5, A=10, so the
given input of A
is out of range)

Table-1: Test case for Triangle Problem

1.5 EXECUTION:

Execute the program and test the test cases in Table-1 against program and
complete the table with for Actual output column and Status column.

Test Report:
1. No of TC’s Executed:
2. No of Defects Raised:
3. No of TC’s Pass:
4. No of TC’s Failed:

1.6 SNAPSHOTS:
1. Snapshot of Isosceles and Equilateral triangle and triangle can not be

formed.

Department of ISE Page 10

Software Testing Laboratory

root@localhost:~

File Edit View Terminal Tabs Help

[root@localhost —~]# cc triangle2.c
[root@localhost ~1# ./a.out

Enter three sides of the triangle
5

5

-1

triangle cannot be formed
[root@localhost —~]# cc triangle2.c
[root@localhost ~1# ./a.out

Enter three sides of the triangle
5
5
1

Isosceles triangle
[root@localhost —1# cc triangle2.c
[root@localhost ~]1# ./a.out

Enter three sides of the triangle
5
5
5

Equilateral triangle
[root@localhost ~1#

2. Snapshot for Isosceles and triangle cannot be formed

root@localhost:~

Fle Edit WVWew Terminal Tabs Help

[root@localhost ~]# cc triangléz.c
[root@localhost ~]# ./a.out

Enter three sides of the triangle
5
5
9

Isosceles triangle
[root@localhost ~]# cc triangle2.c
[root@localhost ~]# ./a.out

Enter three sides of the triangle
5

5

10

triangle cannot be Tormed
[root@localhost ~]# cc triangle2.c
[root@localhost ~]# ./a.out

Enter three sides of the triangle
5
1
5

Isosceles triangle
[root@localhost ~]# |}

> |

3. Snapshot for Isosceles and triangle cannot be formed

Department of ISE

Page 11

Software Testing Laboratory

Fle Edit WView Terminal Tabs Help

[root@localhost ~]# cc triangle2.c
[root@localhost ~]# ./a.out

Enter three sides of the triangle
5
2
5

Isosceles triangle
[root@localhost ~]# cc triangle2.c
[root@localhost ~1# ./a.out

Enter three sides of the triangle
5
9
5

Isosceles triangle
[root@localhost ~]# cc triangle2.c
[root@localhost ~]# ./a.out

Enter three sides of the triangle
5

10

5

triangle cannot be formed
[root@localhost ~]# |J

root@localhost:~

4. Output screen for Triangle cannot be formed

root@localhost:~

File Edit View Terminal Tabs Help
[root@localhost ~]1# cc triangle2.c 1
[root@localhost ~1# ./a.out
Enter three sides of the triangle
10
5
5
triangle cannot be formed
[root@localhost ~1#
1.7 REFERENCES
1. Requirement Specification
2. Assumptions
Department of ISE Page 12

Software Testing Laboratory

2. Design, develop, code and run the program in any suitable language to solve the
commission problem. Analyze it from the perspective of boundary value testing, derive
different test cases, execute these test cases and discuss the test results.

2.1 REQUIREMENT SPECIFICATION

Problem Definition: The Commission Problem includes a salesperson in the former
Arizona Territory sold rifle locks, stocks and barrels made by a gunsmith in
Missouri. Cost includes,

Locks- $45

Stocks- $30
Barrels- $25

The salesperson had to sell at least one complete rifle per month and production
limits were such that the most the salesperson could sell in a month was 70 locks,
80 stocks and 90 barrels.

After each town visit, the sales person sent a telegram to the Missouri gunsmith
with the number of locks, stocks and barrels sold in the town. At the end of the month,
the salesperson sent a very short telegram showing --1 lock sold. The gunsmith then
knew the sales for the month were complete and computed the salesperson’s
commission as follows:

On sales up to(and including) $1000= 10% On the

sales up to(and includes) $1800= 15% On the sales

in excess of $1800=20%

The commission program produces a monthly sales report that gave the total number of
locks, stocks and barrels sold, the salesperson’s total dollar sales and finally the
commission

2.2 DESIGN
Algorithm
Step 1: Define lockPrice=45.0, stockPrice=30.0, barrelPrice=25.0
Step 2: Input locks
Step 3: while(locks!=-1) ‘input device uses -1 to indicate end of data goto
Step 12
Step 4:input (stocks, barrels)

Department of ISE Page 13

Software Testing Laboratory

Step 5: compute lockSales, stockSales, barrelSales and sales

Step 6: output(“Total sales:” sales)

Step 7: if (sales > 1800.0) goto Step 8 else goto Step 9

Step 8: commission=0.10*1000.0; commission=commission+0.15 *800.0;
commission = commission + 0.20 * (sales-1800.0)

Step 9: if (sales > 1000.0) goto Step 10 else goto Step 11
Step10: commission=0.10* 1000.0; commission=commission + 0.15 *
(sales-1000.0)

Step 11: Output(“Commission is $”’, commission) Step
12: exit

2.3 PROGRAM CODE:

#include<stdio.h>

#include<conio.h>

int main()

{
int locks, stocks, barrels, t sales, flag = 0;
float commission;
clrser();
printf("Enter the total number of locks");
scanf("%d",&locks);
if ((locks <= 0) || (Iocks > 70))

{
flag =1;

}

printf("Enter the total number of stocks");
scanf("%d",&stocks);
if ((stocks <= 0) || (stocks > 80))
{
flag =1;
b

printf("Enter the total number of barrelss");

Department of ISE Page 14

Software Testing Laboratory

scanf("%d",&barrels);
if (barrels <= 0) || (barrels > 90))

{
flag =1;
}
if (flag==1)
{
printf("invalid input");
getch();
exit(0);
}

t sales = (locks * 45) + (stocks * 30) + (barrels * 25);
if (t_sales <= 1000)

{
commission = 0.10 * t_sales;
}
else if (t_sales < 1800)
{
commission = 0.10 * 1000;
commission = commission + (0.15 * (t_sales - 1000));
b
else
{
commission = 0.10 * 1000;
commission = commission + (0.15 * 800);
commission = commission + (0.20 * (t_sales - 1800));
b

printf("The total sales is %d \n The commission is %f",t sales,

commission);
getch(); return;

Department of ISE Page 15

Software Testing Laboratory

2.4 TESTING

Technique used: Boundary value analysis

‘Boundary value analysis’ testing technique is used to identify errors at
boundaries rather than finding those exist in center of input domain.

Boundary value analysis is a next part of Equivalence partitioning for
designing test cases where test cases are selected at the edges of the
equivalence classes.

BVA: Procedure

1. Partition the input domain using unidimensional partitioning. This leads to as
many partitions as there are input variables. Alternately, a single partition of an
input domain can be created using multidimensional partitioning. We will
generate several sub-domains in this Step.

2. Identify the boundaries for each partition. Boundaries may also be
identified using special relationships amongst the inputs.

3. Select test data such that each boundary value occurs in at least one test input.

4. BVA: Example: Create equivalence classes

Assuming that an item code must be in the range 99...999 and quantity in the
range 1...100,

Equivalence classes for code:
E1: Values less than 99.

E2: Values in the range.

E3: Values greater than 999.

Equivalence classes for qty:
E4:Value less than 1.
E5:Value in the range.

E6: Value greater than 100.

Department of ISE Page 16

Software Testing Laboratory

BVA: Example: Identify boundaries

98 998
El
E3
E2
2 99
0
E5

Equivalence classes and boundaries for find Price. Boundaries are indicated with an
x. Points near the boundary are marked *.

Test Case design

The Commission Problem takes locks, stocks and barrels as input and checks it for
validity. If it is valid, it returns the commission as its output. Here we have three
inputs for the program, hence n = 3.

Since BVA yields (4n 1) test cases according to fault assumption
+ single

theory, hence we can say that the total number of test cases will be (4*3+1)
=12+1=13.

The boundary value test case can be generated over an output by using fallowing
constraints and these constraints are generated over commission:

C1: Sales up to(and including) $1000= 10% commission
C2: Sales up to(and includes) $1800= 15% commission
C3: Sales in excess of $1800=20% commission

Department of ISE Page 17

Software Testing Laboratory

Here from these constraints we can extract the test cases using the values of Locks,
Stocks, and Barrels sold in month. The boundary values for commission are 10%,
15% and 20%.

Equivalence classes for 10% Commission:

E1: Sales less than

1000. E2: Sales equals

to 1000.

Equivalence classes for 15% Commission:

E3: Sales greater than 1000 and less than 1800.
E4: Sales equals to 1800
Equivalence classes for 20% Commission:

ES: Sales greater then 1800

From the above equivalence classes we can derive the following test cases using
boundary value analysis approach.

Test Case Input Data Expecte Actu | g

us

ks ks Is es Output(Commissio Outp
n) ut

T

C Description | Loc Stoc Barre | Sl d al
I

d

1

Input test 1 1 1 100 | 10
cases

for
Locks=1,
Stocks=1,
Barrels=1

2 Input test 1 1 2 125 12.5
cases

for

Locks=1,
Stocks=1,
Barrels=2

3 Input test 1 2 1 130 13
cases

for
Locks=1,
Stocks=2,
Barrels=1

Department of ISE Page 18

Software Testing Laboratory

4 Input test 2 1 1 145 14.5
cases

for
Locks=2,
Stocks=1,
Barrels=1

5 Input test 5 5 5 500 | 50
cases

for

Locks=5,
Stocks=5,
Barrels=5

6 Input test 10 10 9 975 | 97.5
cases

for
Locks=10,
Stocks=10,

Department of ISE Page 19

Software Testing Laboratory

Barrels=9

7 Input test 10 9 10 970 | 97
cases for
Locks=10,
Stocks=9,
Barrels=10

8 Input test 9 10 10 955 | 955
cases

for
Locks=9,
Stocks=10,
Barrels=10

9 Input test 10 10 10 100 | 100
cases 0

for

Locks=10,
Stocks=10,
Barrels=10

1 Input test 10 10 11 102 103.75
0 cases 5

for

Locks=10,
Stocks=10,
Barrels=11

1 Input test 10 11 10 103 104.5
1 cases 0

for

Locks=10,
Stocks=11,
Barrels=10

1 Input test 11 10 10 104 106.75
2 cases 5
for
Locks=11,
Stocks=10,
Barrels=10

1 Input test 14 14 13 140 160
3 cases 0

for
Locks=14,

Department of ISE Page 20

Software Testing Laboratory

Stocks=14,
Barrels=13

1 Input test 18 18 17 177 | 216.25
4 cases 5
for

Locks=18,
Stocks=18,
Barrels=17

1 Input test 18 17 18 177 | 215.5
5 cases 0
for

Locks=18,
Stocks=17,
Barrels=18

1 Input test 17 18 18 175 | 213.25
6 cases 5
for

Locks=17,
Stocks=18,

Barrels=18

1 Input test 18 18 18 180 | 220
7 cases for 0
Locks=18,
Stocks=18,
Barrels=18

1 Input test 18 18 19 182 | 225
8 cases 5

for

Locks=18,
Stocks=18,
Barrels=19

1 Input test 18 19 18 183 | 226
9 cases 0
for

Locks=18,
Stocks=19,
Barrels=18

Department of ISE Page 21

Software Testing Laboratory

2 Input test 19
0 cases

for
Locks=19,
Stocks=18,
Barrels=18

18

18

184

229

2 Input test 48
1 cases

for
Locks=48,
Stocks=48,
Barrels=48

48

48

480

820

Table-1 BVA Test case for commission problem.

This is how we can apply BVA technique to create test cases for our

Commission Problem.

2.5 EXECUTIONS

Execute the program and test the test cases in Table-1 against program and
complete the table with for Actual output column and Status column

TEST REPORT:
1. No of TC’s Executed:

2. No of Defects Raised:

3. No of TC’s Pass:
4. No of TC’s Failed:

2.6 SNAPSHOTS:
1. Snapshot for valid inputs

Department of ISE

Page 22

Software Testing Laboratory

[root@localhost
[root@localhost

Enter the total
1

Enter the total
1

Enter the total
1

The total sales
The commission
[root@localhost
[root@localhost

Enter the total
1

Enter the total
1

Enter the total
2

The total sales
The commission

File Edit View Terminal Tabs Help

root@localhost:~

~1# cc commission5.c
~]# ./a.out

number of locks

number of stocks

number of barrelss

is 100

is 10.000000

~1# cc commission5.c
~1# ./a.out

number of locks

number of stocks

number of barrelss

is 125
is 12.500000

2. Snapshots when the two inputs are same

[root@localhost
[root@localhost

Enter the total
1

Enter the total
2

Enter the total
1

The total sales
The commission
[root@localhost
[root@localhost

Enter the total
2

Enter the total
1

Enter the total
1

The total sales
The commission

root@localhost:~

File Edit View Terminal Tabs Help

~]# cc commission5.c
~]1# ./a.out

number of locks

number of stocks

number of barrelss

is 130

is 13.000000

~]# cc commission5.c
~]1# ./a.out

number of locks

number of stocks

number of barrelss

is 145
is 14.5600000

3. Snapshots when the two inputs and all the inputs are same

Department of ISE

Page 23

Software Testing Laboratory

File Edit

[rocot@localhost
[root@localhost

Enter the total
5

Enter the total
5

Enter the total
5

The total sales
The commission
[root@localhost
[root@localhost

Enter the total
10

Enter the total
10

Enter the total
9

The total sales
The commission

View Termina

root@localhost:~

Taks Help
~1# cc commission5.c
~1# ./a.out

number of locks

number of stocks

number of barrelss

is 508

is 50.000000

~]1# cc commission5.c
~]# ./a.out

number of locks

number of stocks

number of barrelss

is 975
is 97.5000600

File Edit

[root@localhost
[root@localhost

Enter the total
10

Enter the total
9

Enter the total
10

The total sales
The commission
[root@localhost
[root@localhost

Enter the total
9

Enter the total
10

Enter the total
10

The total sales
The commission

View Terminal

root@localhost:~

Tabs Help
~1# cc commission5.c
~1# ./a.out

number of locks

number of stocks

number of barrelss

is 970

is 97.000000

~1# cc commission5.c
~]1# ./a.out

number of locks

number of stocks

number of barrelss

is 955
is 95.500000

2.7 REFERENCES

1. Requirement Specification

2. Assumptions
3. Design, develop, code and run the program in any suitable language to implement
the NextDate function. Analyze it from the perspective of boundary value testing,
Page 24

Department of ISE

Software Testing Laboratory

derive different test cases, execute these test cases and discuss the test results.

3.1 REQUIREMENT SPECIFICATION

Problem Definition: "Next Date" is a function consisting of three variables like:
month, date and year. It returns the date of next day as output. It reads

Current date as input date

The constraints are

Cl: 1 <month <12

C2:1<day<31

C3: 1812 <year <2012.
If any one condition out of C1, C2 or C3 fails, then this function produces an output
"value of month not in the range 1...12".

Since many combinations of dates can exist, hence we can simply displays one
message for this function: "Invalid Input Date".

A very common and popular problem occurs if the year is a leap year. We have
taken into consideration that there are 31 days in a month. But what happens ifa
month has 30 days or even 29 or 28 days?

A year is called as a leap year if it is divisible by 4, unless it is a century year.
Century years are leap years only if they are multiples of 400. So, 1992, 1996 and
2000 are leap years while 1900 is not a leap year.

3.2 DESIGN
Algorithm
Step 1: Input date in format DD.MM.YYYY
Step 2: if MM is 01, 03, 05,07,08,10 do Step 3 else Step 6

Step 3:if DD < 31 then do Step 4 else if DD=31 do Step 5 else
output(Invalid Date);
Step 4: tomorrowday=DD+1 goto Step 18

Department of ISE Page 25

Software Testing Laboratory

Step 5: tomorrowday=1; tomorrowmonth=month + 1 goto Step 18

Step 6: if MM is 04, 06, 09, 11 do Step 7

Step 7: if DD<30 then do Step4 else if DD=30 do Step5 else
output(Invalid Date);

Step 8: if MM is 12

Step 9: if DD<31 then Step 4 else Step 10

Step 10: tomorrowday=1, tommorowmonth=1, tommorowyear=YYYY+1;
goto Step 18

Step 11: if MM is 2

Step 12: if DD<28 do Step 4 else do Step 13

Step 13: if DD=28 & YYYY is a leap do Step14 else Step 15

Step 14: tommorowday=29 goto Step 18

Step 15: tommorowday=1, tomorrowmonth=3, goto Step18;

Step 16: if DD=29 then do Step 15 else Step 17

Step 17: output(“Cannot have feb”, DD); Step19

Step 18: output(tomorrowday, tomorrowmonth, tomorrowyear);

Step 19: exit

3.3 PROGRAM CODE:
#include<stdio.h>
#include<conio.h>
main()
{
int month[12]={31,28,31,30,31,30,31,31,30,31,30,31};
int d,m,y,nd,nm,ny,ndays;
clrscr();
printf("enter the date,month,year");
scanf("%d%d%d",&d,&m,&y);
ndays=month[m-1];
if(y<=1812 && y>2012)
{
printf("Invalid Input Year");
exit(0);
b
if(d<=0 || d>ndays)

Department of ISE Page 26

Software Testing Laboratory

{
printf("Invalid Input Day");
exit(0);
}
if(m<1 && m>12)
{
printf("Invalid Input Month");
exit(0);
b
if(m==2)
{
1f(y%100==0)
{
1f(y%400==0)
ndays=29;
b
else
1f(y%4==0)
ndays=29;
b
nd=d+1;
nm=m,;
ny=y;
if(nd>ndays)
{
nd=1;
nm-+-+;
b
if(nm>12)
{
nm=1;

Department of ISE

Page 27

Software Testing Laboratory

ny++;
}
printf("\n Given date is %d:%d:%d",d,m,y); printf("\n
Next day’s date is %d:%d:%d" ,nd,nm,ny); getch();
h

3.4 TESTING

Technique used: Boundary value analysis

‘Boundary value analysis’ testing technique is used to identify errors at
boundaries rather than finding those exist in center of input domain.

Boundary value analysis is a next part of Equivalence partitioning for
designing test cases where test cases are selected at the edges of the
equivalence classes.

BVA: Procedure

1. Partition the input domain using unidimensional partitioning. This leads to as
many partitions as there are input variables. Alternately, a single partition of an input
domain can be created using multidimensional partition. We will generate several
sub-domains in this Step.

2. Identify the boundaries for each partition. Boundaries may also be
identified using special relationships amongst the inputs.

3. Select test data such that each boundary value occurs in at least one test input.

BVA: Example: Create equivalence classes

Assuming that an item code must be in the range 99...999 and quantity in the range
1...100,

Equivalence classes for code:
E1l: Values less than 99.

E2: Values in the range.

E3: Values greater than 999.

Department of ISE Page 28

Software Testing Laboratory

Equivalence classes for qty:

E4: Values less than 1.
ES5: Values in the range.
E6: Values greater than 100.

BVA: Example: Identify boundaries

o8 100 998 1000

nty _—
A

0 101

E5

Equivalence classes and boundaries for find Price. Boundaries are indicated with an
X. Points near the boundary are marked *.

Test Case design

The Next Date program takes date as input and checks it for validity. If it is valid, it
returns the next date as its output. Here we have three inputs for the program, hence
n=3.

Since BVA yields (4n + 1) test cases according to single fault assumption
theory, hence we can say that the total number of test cases will be (4*3+1)
=12+1=13.

Department of ISE Page 29

Software Testing Laboratory

The boundary value test cases can be generated by using following constraints

Cl:1<MM<12
C2:1<DD <31

C3: 1812 < YYYY <
2012.

Here from these constraints we can extract the test cases using the values of MM,
DD, and YYYY. The following equivalence classes can be generated for each
variable.

Equivalence classes for MM:
E1: Values less than 1.

E2: Values in the range.

E3: Values greater than 12.
Equivalence classes for DD:
E4: Values less than 1.

ES5: Values in the range.

E6: Values greater than 31.
Equivalence classes for YYYY:

E7: Values less than 1812.
ES8: Values in the range.
E9: Values greater than 2012.

From the above equivalence classes we can derive the following test cases using
boundary value analysis approach.

Department of ISE Page 30

Software Testing Laboratory

TC | Test Input Data Expected Actual Status

Id | Case M | D| YYY | Output Output
Description M D| Y

1 Testing for Invalid | Aa | 1 1900 | Invalid
months 5 Input
with character is Month
typed

2 Testing for 06 D [1901 Invalid
Invalid d Input
Day with Day
character is typed

3 Testing for 06 1 196y | Invalid
Invalid 5 Input
Year Year
with character is
typed

4 Testing for 03 0 2000 | Invalid
Invalid 0 Input
Day, day with 00 Day

5 Testing for 03 | 3 2000 [03/31/2000
Valid 0
input changing
the day
within the month.

6 Testing for 03 | 0 [2000 [03/03/2000
Valid input 2
changing the day

within

the month.

7 Testing for 03 3 2000 | Invalid
Invalid 2 Input
Day, day with 32 Day

8 Testing for 00 1 2000 | Invalid
Invalid 5 Input
Day, month with Month
00

Department of ISE Page 31

Software Testing Laboratory

Testing for

Valid

input changing

the day

within the month.
MM=11

DD=

15

11

2000

11/16/2000

10

Testing for

Valid

input changing

the day

within the month.
MM=02

DD=

15

02

2000

02/16/2000

11

Testing for
Invalid

Month, month
with 13

13

2000

Invalid
Input
Month

12

Testing for
Invalid year, year

should
>=1812

03

1811

Invalid
Input
Year

13

Testing for
Valid input
changing the day
within the
month. MM=03
DD=15
YYYY=2011

03

2011

03/16/2011

14

Testing for ~ Valid
input changing
the day
within the
month.

MM=03
DD=15
YYYY=1813

03

1813

03/16/1813

Department of ISE

Page 32

Software Testing Laboratory

15

Testing for
Invalid year, year

should
<=2012

03

2013

Invalid
Input
Year

Table-1: Test case for Next Date Problem

This is how we can apply BA technique to create test cases for our Next Date

Problem.

3.5 EXECUTIONS

Execute the program and test the test cases in Table-1 against program and
complete the table with for Actual output column and Status column

Test Report:

1. No of TC’s Executed:
2. No of Defects Raised:

3. No of TC’s Pass:
4. No of TC’s Failed:

3.6 SNAPSHOTS:

1. Snapshot for Invalid Input day and next date

Department of ISE

Page 33

Software Testing Laboratory

root@localhost:~

File Edit View Terminal Tabs Help
[root@localhost ~]# cc nextdate.c
[root@localhost ~]# ./a.out

enter the date,month,year

[c]¢]

03

2000

Invalid Input Day

[root@localhost ~]# cc nextdate.c
[root@localhost ~]# ./a.out

enter the date,month,year

30

|03

2000

Given date is 30:3:2000

Next days date is 31:3:2000
[root@localhost ~]# cc nextdate.c
[root@localhost ~]# ./a.out

enter the date,month,year

02

03

2000

Given date 1is 2:3:2000

Next days date is 3:3:2000

5>]

< |

2. Snapshot to show the invalid day when the DD=32

root@localhost:~

Fle Edit View Terminal Tabs Help

[root@localhost ~]1# cc nextdate.c [~
[root@localhost ~1# ./a.out
enter the date,month,year
32
03
2000
Invalid Input Day
[root@localhost ~]# cc nextdate.c
[root@localhost ~]# ./a.out
enter the date,month,year
15
11
2000
Given date 1is 15:11:2000
Next days date is 16:11:2000
[root@localhost ~]# cc nextdate.c
[root@localhost ~]# ./a.out
enter the date,month,year
15
2
2000
Given date is 15:2:2000
Next days date is 16:2:2000 -
3. Valid Output:
Department of ISE Page 34

Software Testing Laboratory

root@localhost:~

Fle Edit View Terminal Tabs Help
[root@localhost ~]# cc nextdate.c
[root@localhost ~]1# ./a.out

enter the date,month,year

Given date is 15:11:2000

Next days date is 16:11:2000
[root@localhost ~]# cc nextdate.c
[root@localhost ~]1# ./a.out

enter the date,month,year

Given date is 15:3:1811

Next days date is 16:3:1811
[root@localhost ~1# |

3.7 REFERENCES:
1. Requirement Specification

2. Assumptions

4. Design and develop a program in a language of your choice to solve the triangle
problem defined as follows: Accept three integers which are supposed to be the

Department of ISE Page 35

Software Testing Laboratory

three sides of a triangle and determine if the three values represent an equilateral
triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all.
Assume that the upper limit for the size of any side is 10. Derive test cases for your
program based on equivalence class partitioning, execute the test cases and discuss
the results.

4.1 REQUIREMENT SPECIFICATION

R1. The system should accept 3 positive integer numbers (a, b, c) which
represents 3 sides of the triangle.
R2. Based on the input should determine if a triangle can be formed or not. R3. If
the requirement R2 is satisfied then the system should determine the type of the
triangle, which can be

* Equilateral (i.e. all the three sides are equal)

* [sosceles (i.e. two sides are equal)
* Scalene (i.e. All the three sides are unequal)

R4. Upper Limit for the size of any side is 10
4.2 DESIGN

Form the given requirements we can draw the following conditions:
C1: a<b+c?

C2: b<a+c?

C3: c<atb?

C4: a=b?

C5: a=¢?

C6: b=c?

According to the property of the triangle, if any one of the three conditions C1,
C2 and C3 are not satisfied then triangle cannot be constructed. So only when
Cl1, C2 and C3 are true the triangle can be formed, then depending on conditions
C4, C5 and C6 we can decide what type of triangle will be
formed(i.e requirements R3)

Algorithm:

Step 1: Input a, b & c i.e three integer values which represent three sides of the

Department of ISE Page 36

Software Testing Laboratory

triangle.

Step 2: if (a < (b +¢)) and (b <(a+c)) and (¢ < (a + b) then do
Step 3
else

print not a triangle. do Step 6.
Step 3: if (a=b) and (b=c) then
Print triangle formed 1s equilateral. do Step 6.
Step 4: if (a # b) and (a # c¢) and (b # c) then
Print triangle formed is scalene. do Step 6.
Step 5: Print triangle formed is Isosceles.

Step 6: stop

4.3 PROGRAM CODE
#include<stdio.h>
#include<ctype.h>
#include<conio.h>

#include<process.h>

int main()

{
inta, b, c;
clrscr();

printf("Enter three sides of the triangle");
scanf("%d%d%d", &a, &b, &c);
if((a>10) || (b>10) || (¢ > 10))

{
printf("Out of range");
getch();
exit(0);
b
if((a<b+c)&&(b<atc)&&(c<atb))
{
if((a==b)&&(b==c))
Department of ISE Page 37

Software Testing Laboratory

{

printf("Equilateral triangle");
}
else if((a!=b)&&(a!=c)&&(b!=c))
{

printf("Scalene triangle");

}

else
printf("Isosceles triangle");
b

else

{

printf("triangle cannot be formed");
} getch(); return 0;

4.4 TESTING
1. Technique used: Equivalence class partitioning
2. Test Case design

Equivalence class partitioning technique focus on the Input domain, we can
obtain a richer set of test cases. What are some of the possibilities for the
three integers, a, b, and c? They can all be equal, exactly one pair can be
equal.

The maximum limit of each side a, b, and ¢ of the triangle is 10 units
according to requirement R4. So a, b and c lies between

Department of ISE Page 38

Software Testing Laboratory

1<a<10

1<b<10
1<c<10

First Attempt

Weak normal equivalence class: In the problem statement, we note that
four possible outputs can occur: Not a Triangle, Scalene, Isosceles and
Equilateral. We can use these to identify output (range)
equivalence classes as follows:

Ri= {<a,b,c>: the triangle with sides a, b, and ¢ is equilateral }

Ro= {<a,b,c>: the triangle with sides a, b, and c is isosceles}

R3= {<a,b,c>: the triangle with sides a, b, and c is scalene}

R4= {<a,b,c>: sides a, b, and ¢ do not form a triangle}

Four weak normal equivalence class test cases, chosen arbitrarily from each class,
and invalid values for weak robust equivalence class test cases are as follows.

T | Test Input Data Expected Output Actual Statu
C | Case al bl e Output S
I Description
d
1 WNI 5 5 | 5 | Equilateral
2 WN2 2121 3 Isosceles
3 WN3 31 4] 5| Scalene
4 [WN4 4 1 1| 2| Nota Triangle
5 WRI1 - 5 | 5 | Value of a is not in the
1 range of
permitted values
6 | WR2 5| - 5 | Value of b is not in the
1 range of
permitted values

Department of ISE Page 39

Software Testing Laboratory

Value of ¢ is not in the
range of
permitted values

Value of a is not in the
range of
permitted values

Value of b is not in the

range of
permitted values

7 | WR3
8 | WR4
91 WRS
1 WR6
0

Value of ¢ is not in the
range of
permitted values

Table-1: Weak Normal and Weak Robust Test case for Triangle Problem

Second attempt

The strong normal equivalence class test cases can be generated by

using following possibilities:

D1 = {<a, b, c>: a=b=c}

D2 = {<a, b, c>: a=b, a# ¢}

D3= {<a, b, c>: a=c, a£ b}

D4 = {<a, b, c>: b=c, a# b}

D5 = {<a, b, c>: a# b, a# ¢, b£c}
D6 = {<a, b, c>: a> b+ c} D7

= {<a, b, c>: b>at c} D8 =
{<a, b, c>:c>at b}

T Test Input Data Expected Output Actual Statu
C Case albl c Output s
I Descript
d ion
1 SR1 - 5 5 | Value of a is not in the
1 range of
permitted values
Department of ISE Page 40

Software Testing Laboratory

2 SR 2 5 - 5 | Value of b is not in the
1 range of
permitted values
3 SR3 5 5 - Value of ¢ is not in the

1 | range of
permitted values

5 SR5 5 - - Value of b, ¢ is not in
1 1 the
range of permitted
values
6 SR6 - 5 - Value of a, ¢ is not in
1 1 | therange of

permitted values
7 SR7 - - - Value of a, b, ¢ is not in
1 1 1 | the range of

permitted values

Table-2: Strong Robust Test case for Triangle Problem
4.5 EXECUTION:

Execute the program and test the test cases in Table-1 and Table-2 against
program and complete the table with for Actual output column and Status
column

Test Report:
1. No of TC’s Executed:

2. No of Defects Raised:
3. No of TC’s Pass:
4. No of TC’s Failed:

Department of ISE Page 41

Software Testing Laboratory

4.6 SNAPSHOTS:
1. Snapshot of Equilateral. Isosceles and scalene triangle.

root@localhost:~

File Edit ¥Yiew Terminal Tabs Help

[root@localhost —]1# cc triangle3.c
[root@localhost ~]1# ./a.out

Enter three sides of the triangle
5
5
5

Equilateral triangle
[root@localhost ~]# cc triangle3.c
[root@localhost ~1# ./a.out

Enter three sides of the triangle
2
2
3

Isosceles triangle
[root@localhost ~]# cc triangle3.c
[root@localhost ~]1# ./a.out

Enter three sides of the triangle
3
a
5

Scalene triangle
[root@localhost ~]# |

2. Snapshot for Triangle cannot be formed

Department of ISE Page 42

Software Testing Laboratory

root@localhost:~

File Edit View Terminal Tabs Help

[root@localhost ~]# cc triangle3.c 2]
[root@localhost ~1# ./a.out

Enter three sides of the triangle
4
1
2

triangle cannot be formed
[root@localhost ~]# cc triangle3.c
[root@localhost ~]1# ./a.out

Enter three sides of the triangle
-1
5
5

triangle cannot be formed
[root@localhost ~]# cc triangle3.c
[root@localhost ~1# ./a.out

Enter three sides of the triangle
5

-1

5

triangle cannot be formed
[root@localhost ~1#]

3. Snapshot for the given range is Out of range and Triangle cannot be formed.

= root@localhost:~ -
File Edit ¥View Terminal Tabs Help

[root@localhost ~]# cc triangle3.c
[root@localhost ~1# ./a.out

Enter three sides of the triangle
5

5

-1

triangle cannot be formed
[root@localhost ~]1# cc triangle3.c
[root@localhost ~]1# ./a.out

Enter three sides of the triangle
11

5

5

Out of range

[root@localhost ~1# cc triangle3.c
[root@localhost ~]1# ./a.out

Enter three sides of the triangle
5

11

5

Out of range

[root@localhost ~1#

Department of ISE Page 43

Software Testing Laboratory

root@localhost:~

File Edit View TJerminal Tabs Help

[root@localhost —1# cc triangle3.c
[root@localhost ~]1# ./a.out

lEnter three sides of the triangle
5

5

11

Out of range

[root@localhost ~1# B

4.7 REFERENCES

1. Requirement Specification

2. Assumptions

5. Design, develop, code and run the program in any suitable language to solve the
commission problem. Analyze it from the perspective of equivalence class testing,
derive different test cases, execute these test cases and discuss the test results.

5.1 REQUIREMENT SPECIFICATION

Problem Definition: The Commission Problem includes a salesperson in the former
Arizona Territory sold rifle locks, stocks and barrels made by a gunsmith in
Missouri. Cost includes

Locks- $45
Stocks- $30

Barrels- $25

The salesperson had to sell at least one complete rifle per month and

Department of ISE Page 44

Software Testing Laboratory

production limits were such that the most the salesperson could sell in a month
was 70 locks, 80 stocks and 90 barrels.

After each town visit, the sales person sent a telegram to the Missouri
gunsmith with the number of locks, stocks and barrels sold in the town. At the end
of the month, the salesperson sent a very short telegram showing --1 lock sold. The
gunsmith then knew the sales for the month were complete and computed the
salesperson’s commission as follows:

On sales up to(and including) $1000=10% On

the sales up to(and includes) $1800= 15% On the

sales in excess of $1800=20%

The commission program produces a monthly sales report that gave the total
number of locks, stocks and barrels sold, the salesperson’s total dollar sales and
finally the commission.

5.2 DESIGN
Algorithm:
Step 1: Define lockPrice=45.0, stockPrice=30.0, barrelPrice=25.0
Step2: Input locks

Step3: while(locks!=-1) ‘input device uses -1 to indicate end of data goto
Step 12
Step 4:input (stocks, barrels)
Step 5: compute lockSales, stockSales, barrelSales and sales
Step 6: output(“Total sales:” sales)
Step 7: if (sales > 1800.0) goto Step 8 else goto Step 9
Step 8: commission=0.10*1000.0; commission=commission+0.15 * 800.0;
commission = commission + 0.20 * (sales-1800.0)
Step 9: if (sales > 1000.0) goto Step 10 else goto Step 11
Step 10: commission=0.10* 1000.0; commission=commission + 0.15 *

(sales-1000.0)
Step 11: Output(“Commission is $”, commission)
Step 12: exit

5.3 PROGRAM CODE:
#include<stdio.h>

Department of ISE Page 45

Software Testing Laboratory

#include<conio.h>
int main()
{
int locks, stocks, barrels, t sales, flag = 0;
float commission;
clrser();
printf("Enter the total number of locks");
scanf("%d",&locks);
if ((locks <= 0) || (Iocks > 70))
{
flag =1;
h

printf("Enter the total number of stocks");
scanf("%d",&stocks);
if ((stocks <= 0) || (stocks > 80))
{
flag =1;
}
printf("Enter the total number of barrelss");
scanf("%d",&barrels);
if ((barrels <= 0) || (barrels > 90))

{
flag =1;
b
if (flag==1)
{
printf("invalid input");
getch();
exit(0);
}

t sales = (locks * 45) + (stocks * 30) + (barrels * 25);
if (t_sales <= 1000)

Department of ISE Page 46

Software Testing Laboratory

{
commission = 0.10 * t_sales;
}
else if (t_sales < 1800)
{

commission = 0.10 * 1000;
commission = commission + (0.15 * (t_sales - 1000));

else

{

commission = 0.10 * 1000;
commission = commission + (0.15 * 800);
commission = commission + (0.20 * (t_sales - 1800));

h

printf("The total sales is %d \n The commission is %f",t sales,

commission);
getch(); return;

}
5.4 TESTING

Technique used: Equivalence Class testing

Test selection using equivalence partitioning allows a tester to subdivide the input
domain into a relatively small number of sub-domains, say N>1, as shown.

(@) (b)

In strict mathematical terms, the sub-domains by definition are disjoint. The
four subsets shown in (a) constitute a partition of the input domain while the subsets
Page 47

Department of ISE

Software Testing Laboratory

in (b) are not. Each subset is known as an equivalence class.

Example:

Consider an application A that takes an integer denoted by age as input. Let us
suppose that the only legal values of age are in the range [1..120]. The set of input
values is now divided into a set E containing all integers in the range

[1..120] and a set U containing the remaining integers.

Further, assume that the application is required to process all values in the range
[1..61] in accordance with requirement R1 and those in the range [62..120]
according to requirement R2. Thus E is further subdivided into two

regions depending on the expected behavior.

Similarly, it is expected that all invalid inputs less than or equal to 1 are to be treated
in one way while all greater than 120 are to be treated differently.

This leads to a subdivision of U into two categories.

Tests selected using the equivalence partitioning technique aim at targeting faults in
the application under test with respect to inputs in any of the four regions, i.e. two
regions containing expected inputs and two regions containing the unexpected
inputs.

integers

Department of ISE Page 48

Software Testing Laboratory

It is expected that any single test selected from the range [1...61] will reveal any
fault with respect to RI1. Similarly, any test selected from the region
[62...120] will reveal any fault with respect to R2. A similar expectation
applies to the two regions containing the unexpected inputs

Department of ISE Page 49

Software Testing Laboratory

TEST CASE DESIGN

The input domain of the commission problem is naturally partitioned by the limits
on locks, stocks and barrels. These equivalence classes are exactly those that
would also be identified by traditional equivalence class testing. The first class is
the valid input; the other two are invalid. The input domain equivalence classes
lead to very unsatisfactory sets of test cases. Equivalence classes defined on the
output range of the commission function will be an improvement.

The valid classes of the input variables are:
L1 = {locks: 1<locks<70}

L2 = {locks = -1} (occurs if locks = -1 is used to control input iteration) S1
= {stocks:1<stocks<80}
B1 = {barrels: 1<barrels<90}

The corresponding invalid classes of the input variables are: L3
= {locks: locks = 0 OR locks < -1}

L4 = {locks: locks > 70}

S2 = {stocks: stocks<1}

S3 = { stocks: stocks>80}

B2 ={barrels: barrels<l}

B3 ={ barrels: barrels>90}

One problem occurs, however. The variables lock are also used as a sentinel
to indicate no more telegrams. When a value of -1 is given for locks, the
while loop terminates, and the values of totallocks, totalstocks and
totalbarrels are used to compute sales, and then commission.

Expect for the names of the variables and the interval endpoint values, this
isidentical to our first version of the NextDate function. therefore we will
have exactly one week normal equivalence class test case — and again, it is
identical to the strong normal equivalence class test case. Note that the case
for locks =-1 just terminates the iteration.

Department of ISE Page 50

Software Testing Laboratory

First attempt
We will have eight weak robust test cases.
T| Test Case Input Data Sales Expected Actu Stat
C Descriptio Loc Stoc Barr Output(Commission) al us
I'| n ks ks els Outp
d ut
1] WRI1 10 10 10 $100 10
2 WR2 -1 40 45 Program Program terminates
terminates
3 WR3 -2 40 45 Values of Values of locks not in
locks not the
inthe range range 1...70
1...70
41 WR4 71 40 45 Values of Values of locks not in
locks not the
inthe range range 1...70
1..70
51 WRS 35 -1 45 Values of Values of stocks not in
stocks not the
inthe range range 1...80
1...80
6| WR6 35 81 45 Values of Values of stocks not in
stocks not the
inthe range range 1...80
1...80
71 WR7 10 9 10 970 97
8| WRS 9 10 10 955 95.5
Department of ISE Page 51

Software Testing Laboratory

Second attempt:

Finally, a corner of the cube will be in 3 space of the additional strong robust

equivalence class test cases:

T Test Input Data Sales Expected Actua | Stat
C| Case Loc | Stoc | Barre Output(Commissio | 1 us
I | Descriptio | kg Ks Is n) Outp
d | n ut
1 SR1 -2 40 45 Values of locks | Values of locks not
not in the in
range the range 1...70
1..70
2 SR2 35 -1 45 Values of Values of stocks
stocks not
not in the in the range 1...80
range
1...80
3 SR3 35 40 -2 Values of Values of barrels not
barrels in the range 1...90
not in the
range
1...90
4 SR4 -2 -1 45 Values of locks | Values of locks not
not in the in
range the range 1...70
1...70 Values of stocks
Values of not in the range
stocks not in 1...80
the range
1...80
5 SR5 -2 40 -1 Values of locks | Values of locks not
not in the in
range the range 1...70
1..70 Values of barrels
Values of not in the range
barrels not in 1...90
the range
1...90
Department of ISE Page 52

Software Testing Laboratory

6 SR6 35 -1 -1 Values of Values of stocks
stocks not
not in the in the range 1...80
range Values of barrels
1...80 not in the range
Values of 1...90
barrels not in
the range
1..90

7 SR7 -2 -1 -1 Values of locks | Values of locks not
not in the in
range the range 1...70
1...70 Values of stocks
Values of not in the range
stocks not in 1...80
the range Values of barrels
1...80 not in the range
Values of 1...90
barrels not in
the range
1..90

5.5 EXECUTIONS

Execute the program and test the test cases in Table-1 against program and

complete the table with for Actual output column and Status column

Test Report:

1. No of TC’s Executed:
2. No of Defects Raised:
3. No of TC’s Pass:

4. No of TC’s Failed:

5.6 SNASHOTS

1. Snapshot for invalid inputs

Department of ISE

Page 53

Software Testing Laboratory

root@localhost:~

Fle Edit View Terminal Tabs Help

[root@localhost ~]# cc commission6.c [ﬂ
[root@localhost ~1# ./a.out

Enter the total number of locks
35

Enter the total number of stocks
-1

Enter the total number of barrelss
45

invalid input
[root@localhost ~]# cc commissioné.c
[root@localhost ~]# ./a.out

Enter the total number of locks
35

Enter the total number of stocks
81

Enter the total number of barrelss
45

invalid input
[root@localhost ~1# |j

Department of ISE Page 54

Software Testing Laboratory

2. Invalid Input and commission for when the all inputs are 10

[root@localhost
[root@localhost

Enter the total
10

Enter the total
10

Enter the total
10

The total sales
The commission
[root@localhost
[root@localhost

Enter the total
-1

Enter the total
40

Enter the total
415

invalid input
[root@localhost

File Edit Wiew Terminal Tabs Help

root@localhost:~

~]1# cc commission6.c
~]# ./a.out

number of locks
number of stocks

number of barrelss

is 1000

is 100.000000

~]1# cc commission6.c
~]# ./a.out

number of locks

number of stocks

number of barrelss

~1# .

root@localhost:~

File Edit ¥iew JTerminal Tabs Help
[root@localhost ~1# cc commissioné.c [ﬂ
[root@localhost ~]1# ./ a.out
Enter the total number of locks
-2
Enter the total number of stocks
40
Enter the total number of barrelss
45
invalid input
[root@localhost ~]1# cc commission6.c
[root@localhost ~1# ./ a.out
Enter the total number of locks
71
Enter the total number of stocks
40
Enter the total number of barrelss
45
invalid input
[root@localhost ~1# B
5.7 REFERENCES
1. Requirement Specification
2. Assumptions
Department of ISE Page 55

Software Testing Laboratory

6. Design, develop, code and run the program in any suitable language to implement
the NextDate function. Analyze it from the perspective of equivalence
class value testing, derive different test cases, execute these test cases and discuss
the test results.

6.1 REQUIREMENT SPECIFICATION

Problem Definition: "Next Date" is a function consisting of three variables like:
month, date and year. It returns the date of next day as output. It reads current
date as input date.

The constraints are

Cl: 1 <month <12
C2: 1 <day <3l
C3: 1812 <year<2012.

If any one condition out of C1, C2 or C3 fails, then this function produces an
output "value of month not in the range 1...12".

Since many combinations of dates can exist, hence we can simply displays one
message for this function: "Invalid Input Date".

A very common and popular problem occurs if the year is a leap year. We have
taken into consideration that there are 31 days in a month. But what happens
if a month has 30 days or even 29 or 28 days ?

A year is called as a leap year if it is divisible by 4, unless it is a century year.
Century years are leap years only if they are multiples of 400. So, 1992, 1996 and
2000 are leap years while 1900 is not a leap year.

Furthermore, in this Next Date problem we find examples of Zipf's law also, which
states that ""80% of the activity occurs in 20% of the space'. Thus in this case
also, much of the source-code of Next Date function is devoted to the leap year
considerations.

Department of ISE Page 56

Software Testing Laboratory

6.2 DESIGN
Algorithm:

Step 1: Input date in format DD.MM.YYYY
Step 2: if MM is 01, 03, 05,07,08,10 do Step 3 else Step 6
Step 3:1f DD < 31 then do Step 4 else if DD=31 do Step 5 else output(Invalid

Date);

Step 4: tomorrowday=DD+1 goto Step 18

Step 5: tomorrowday=1; tomorrowmonth=month + 1 goto Step 18

Step 6: if MM is 04, 06, 09, 11 do Step 7

Step 7: if DD<30 then do Step 4 else if DD=30 do Step 5 else output(Invalid
Date);

Step 8: if MM is 12

Step 9: if DD<31 then Step 4 else Step 10

Step 10: tomorrowday=1, tommorowmonth=1, tommorowyear=YYYY+1; goto

Step 18

Step 11: if MM is 2

Step12: if DD<28 do Step 4 else do Step 13

Step 13: if DD=28 & YYYY is a leap do Step 14 else Step 15
Step 14: tommorowday=29 goto Step18

Step 15: tommorowday=1, tomorrowmonth=3, goto Step 18;
Step 16: if DD=29 then do Step15 else Step 17

Step 17: output(“Cannot have feb”, DD); Step 19

Step 18: output(tomorrowday, tomorrowmonth, tomorrowyear);
Step 19: exit

6.3 PROGRAM CODE:

#include<stdio.h>

#include<conio.h>

main()

{

int month[12]={31,28,31,30,31,30,31,31,30,31,30,31};

int d,m,y,nd,nm,ny,ndays;

Department of ISE Page 57

Software Testing Laboratory

clrser();

printf("enter the date,month,year");
scanf("%d%d%d",&d,&m,&y);
ndays=month[m-1];

if(y<=1812 && y>2012)

{
printf("Invalid Input Year");
exit(0);
b
1f(d<=0 || d>ndays)
{
printf("Invalid Input Day");
exit(0);
b
1f(m<1 && m>12)
{
printf("Invalid Input Month");
exit(0);
}
if(m==2)
{
if(y%100==0)
{
if(y%400==0)
ndays=29;
b
else
if(y%4==0)
Department of ISE

Page 58

Software Testing Laboratory

ndays=29;
nd=d+1;
nm=m;
ny=y;
h
if(nd>ndays)
{
nd=1;
nm-++;
}
if(nm>12)
{
nm=1;
ny++;
}
if(nm>12)
{
nm=1;
ny++;

h

printf("\n Given date is %d:%d:%d",d,m,y); printf("\n
Next day’s date is %d:%d:%d",nd,nm,ny); getch();

}

6.4 TESTING

Technique used: Equivalence Class testing

Test selection using equivalence partitioning allows a tester to subdivide the input
domain into a relatively small number of sub-domains, say N>1, as shown.

Department of ISE

Page 59

Software Testing Laboratory

mains by definition are disjoint. The four
of the input domain while the
vn as an equivalence class.

~nsmans E ‘{:' s g paseavanas o ':bl wawo) Integer denoted by age as input. Let us

suppose that the only legal values of age are in the range [1..120]. The set of input
values 1s now divided into a set E containing all integers in the range
[1..120] and a set U containing the remaining integers.

integers

Further, assume that the application is required to process all values in the range
[1..61] in accordance with requirement R1 and those in the range [62..120]
according to requirement R2. Thus E is further subdivided into two

regions depending on the expected behavior.

Department of ISE Page 60

Software Testing Laboratory

[62-120

Similarly, it is expected that all invalid inputs less than or equal to 1 are to be treated
in one way while all greater than 120 are to be treated differently.
This leads to a subdivision of U into two categories,

Tests selected using the equivalence partitioning technique aim at targeting faults in
the application under test with respect to inputs in any of the four regions, i.e. two
regions containing expected inputs and two regions containing the unexpected
inputs.

It is expected that any single test selected from the range [1...61] will reveal any
fault with respect to RI1. Similarly, any test selected from the region
[62...120] will reveal any fault with respect to R2. A similar expectation
applies to the two regions containing the unexpected inputs.

Test Case design

The NextDate function is a function which will take in a date as input and produces
as output the next date in the Georgian calendar. It uses three variables
(month, day and year) which each have valid and invalid intervals.

Department of ISE Page 61

Software Testing Laboratory

First Attempt

A first attempt at creating an equivalence relation might produce intervals

such as these:

Valid Intervals

M1 = {month: 1 <month <12}
D1 = {day: 1 <day <31}
Y1 = {year: 1812 <year <2012}

Valid Intervals

M1 = {month: 1 < month < 12}
D1 = {day: 1 <day <31}
Y1 = {year: 1812 < year <2012}

Invalid Intervals

M2 = {month: month < 1}
M3 = {month: month > 12}
D2 = {day: day <1}

D3 = {day: day > 31}

Y2 = {year: year < 1812}
Y3 = {year: year > 2012}

At a first glance it seems that everything has been taken into account and our
day, month and year intervals have been defined well. Using these intervals we

produce test cases using the four different types of Equivalence Class

testing.
Weak and Strong Normal

Department of ISE

Page 62

Software Testing Laboratory

input

changing the day

within the month.

T Test Case Input Data Expected Actual Status
C Description M D vYy | Output Output

I M| D|Y

d

1 Testing for Valid [6 15 |1 1900 6/16/1900

Table 1: Weak and Strong Normal
Since the number of variables is equal to the number of valid classes, only one

weak normal equivalence class test case occurs, which is the same as the

strong normal equivalence class test case (Table 1).

Weak Robust:

T
C
I

d

Test
Case

Descriptio
n

Input Data

M
M

D
D

YY
YY

Expecte
d

Outp
ut

Actual
Output

Status

Testing for
Valid input
changing the
day within the
month.

15

1900

6/16/1900

Testing
for

Invalid Day,
day with
negative
number it is not

possible

1900

Day not in range

Testing
for

Invalid
day with
Out of
range

1.e., DD=32

Day,

32

1900

Day not in range

Department of ISE

Page 63

Software Testing Laboratory

4 Testing -1 15] 1900 Month not in
for range
Invalid
Month, month
with
negative

number it is not

possib
le

5 Testing 13 15 | 1900 Month not in

for range
Invalid
month, month
with out of
range ie.,
MM=13

it should
MM<=12

6 Testing for 6 15 | 1899 Year not in
Year, year is range

out of range
YYYY=1899,

it should
<=1812

7 Testing for Year, | 6 15] 2013 Year not in

year is out range
of range
YYYY=2013,

it should
<=2012

Table 2: Weak Robust

(Table 2) we can see that weak robust equivalence class testing will just test the
ranges of the input domain once on each class. Since we are testing weak and not
normal, there will only be at most one fault per test case (single fault assumption)
unlike Strong Robust Equivalence class testing.

Department of ISE Page 64

Software Testing Laboratory

Strong Robust:

This is a table showing one corner of the cube in 3d-space (the three other
corners would include a different combination of wvariables) since the

complete table would be too large to show.

Test Input Data Expecte
Case D YYY d

D Y Outp
n ut

==

Descriptio

Nl

Actual
Output

Status

1 Testing for Month
is not in range
MM=-11i.e., in
negative
number there is not - 1 1900
possible have to be 1 5
month in

Month not
in range

negative number

2 Testing for Day is
not in range DD=-1
ie., in negative
_ 6 - 1900 | Day not in range
number there is not
possible have to be
Day in negative
number

3 Testing for Year
is

not in 6 1 1899
range YYYY=1899 5
i.e., Year should
<=1812

Year not
in range

Department of ISE

Page 65

Software Testing Laboratory

Testing for Day and
month is not in range
MM=-1, DD=-1 i.e.,

in negative %) Day not
number there is not In range
possible have to be 1900 | ii) Month not
Day and Month in range
in

negative number
1) Testing for Day
is not in range and
Year is not in range
DD=-11ie., in

negative
number there is not 1) Day not
possible have to be in range
Day in 1899 | 1i) Year not in
negative number, and range
i) YYYY=1899, so
the
range of year

is
<=18
12
1) Testing for
Month
is not in range MM=-
1 and i.e., in negative
number there is not 1) Month not
possible have to be in range
1899 | 1ii) Year not

Day in

negative number, and
i) Year is not

in

range

YYYY=1899, year
should <=1812

in range

Department of ISE

Page 66

Software Testing Laboratory

7 1) Testing for Day
is not in range
DD=-11ie., in
negative
number there is not
possible have to be

Day in

negative number D ¢

.. . 1) Day no

i1) Testing for Month ; Y

. . in range

1s not in range MM=- ii) Month not
1 and i.e., in negative in range

number there is not B B 1899

possible have to be
Day in
negative number, and

ii1) Year not in

range

iii) Year is not

in

range
YYYY=1899, year
should <=1812

Second Attempt

As said before the equivalence relation is vital in producing useful test cases and
more time must be spent on designing it. If we focus more on the
equivalence relation and consider more greatly what must happen to an input date
we might produce the following equivalence classes:

M1 = {month: month has 30 days}
M2 = {month: month has 31 days}
M3 = {month: month is February}

Here month has been split up into 30 days (April, June, September and
November), 31 days (January, March, April, May, July, August, October and
December) and February.

DI = {day: 1 <day <28}
D2 = {day: day =29}

Department of ISE Page 67

Software Testing Laboratory

D3 = {day: day = 30}
D4 = {day: day =31}

Day has been split up into intervals to allow months to have a different
number of days; we also have the special case of a leap year (February 29 days).

Y1 = {year: year = 2000}

Y2 = {year: year is a leap year}

Y3 = {year: year is a common year}

Year has been split up into common years, leap years and the special case the year

2000 so we can determine the date in the month of February.

Here are the test cases for the new equivalence relation using the four types of

Equivalence Class testing.

Weak Normal
T Test Case Description Input Data Expected Actual Status
C M D YYY | Output Output
I M D Y
d

Department of ISE

Page 68

Software Testing Laboratory

Testing for all Valid
input changing the day
within the month.

14

2000

6/15/2000

Testing for Valid input
changing the
day within the month.

29

1996

7/30/1996

Testing for Leaf
year,

ie, MM=2 (Feb)
the input DD=30,
there is not possible
date 30, in leaf year
only 28 and 29 will
occur.

30

2002

Impossible date

Testing for
Impossible

Date, ie., MM=6
(June) the input
DD=31, there is only
30 days in the month

of June,

So, DD=31

is Impossible
Date.

31

2000

Impossible
input
date

Table 3: Weak normal

Department of ISE

Page 69

Software Testing Laboratory

Strong Normal

TC Test Case Input Data Expected Actual Status
ID Description M | D | YYY | Output Output
M D Y
1 SN1 6 14 | 2000 [6/15/2000
2 SN2 6 14 1996 | 6/15/1996
3 SN3 6 14 | 2002 6/15/2002
4 SN4 6 29 2000 | 6/30/2000
5 SN5 6 29 1996 | 6/30/1996
6 SN6 6 29 2002 6/30/2002
7 6 30 2000 | Invalid Input
SN7
Date
8 6 30 1996 | Invalid Input
SN8
Date
9 6 30 2002 Invalid Input
SN9
Date
10 6 31 2000 Invalid Input
SN10
Date
11 6 31 1996 | Invalid Input
SN11
Date
12 6 31 2002 Invalid Input
SN12
Date
13 SN13 7 14 | 2000 [7/15/2000
14 SN14 7 14 1996 | 7/15/1996
15 SN15 7 14 | 2002 7/15/2002
16 SN16 7 29 2000 | 7/30/2000
17 SN17 7 29 1996 | 7/30/1996
18 SN18 7 29 2002 7/30/2002
19 SN19 7 30 | 2000 [7/31/2000
Department of ISE Page 70

Software Testing Laboratory

20 SN20 7 30 1996 7/31/1996

21 SN21 7 30 2002 7/31/2002

22 SN22 7 31 2000 8/1/2000

23 SN23 7 31 1996 8/1/1996

24 SN25 7 31 2002 8/1/2002

25 SN24 2 14 2000 2/15/2000

26 SN26 2 14 1996 2/15/1996

27 SN27 2 14 2002 2/15/2002

28 SN28 2 29 2000 Invalid Input
Date

29 SN29 2 29 1996 3/1/1996

30 SN30 2 29 2002 Invalid Input
Date

31 SN31 2 30 2000 Invalid Input
Date

32 SN32 2 30 1996 Invalid Input
Date

33 SN33 2 30 2002 Invalid Input
Date

34 SN34 2 31 2000 Invalid Input
Date

35 SN35 2 31 1996 Invalid Input
Date

36 SN36 2 31 2002 Invalid Input
Date

Table 4: Strong Normal
6.5 EXECUTIONS

Execute the program and test the test cases in Table-1 against program and
complete the table with for Actual output column and Status column

Test Report:

1. No of TC’s Executed:
2. No of Defects Raised:

Department of ISE

Page 71

Software Testing Laboratory

3. No of TC’s Pass:
4. No of TC’s Failed:
6.6 SNAPSHOTS:
1. Snapshot to show the nextdate for current date and invalid day is entered

root@localhost:~

File Edit Wiew Terminal Tabs Help

[root@localhost ~]1# cc nextdate2.c
[root@localhost ~1# ./a.out

enter the date,month,year

15

6

1900

Given date 1s 15:6:1900

Next days date 1s 16:6:1900
[root@localhost ~]# cc nextdatel.c
[root@localhost ~]1# ./a.out

enter the date,month,year

-1

6

1900

Invalid Input Day

[root@localhost ~]1# cc nextdate2.c
[root@localhost ~]1# ./a.out

enter the date,month,year

32

6

1900

Invalid Input Day

[root@localhost ~1#

2. Invalid Input

root@localhost:~

File Edit View Terminal Tabs Help
[root@localhost ~]# cc nextdate2.c
[root@localhost ~]# ./a.out

enter the date,month,vyear

15

-1

1900

Invalid Input Day

[roct@localhost ~1#

6.7 REFERENCES:
1. Requirement Specification

2. Assumptions

Department of ISE

Page 72

Software Testing Laboratory

7. Design and develop a program in a language of your choice to solve the triangle
problem defined as follows: Accept three integers which are supposed to be the
three sides of a triangle and determine if the three values represent an equilateral
triangle, isosceles triangle, scalene triangle, or they do not form a triangle at all.
Derive test cases for your program based on decision-table approach, execute the
test cases and discuss the results.

7.1 REQUIREMENT SPECIFICATION:
R1. The system should accept 3 positive integer numbers (a, b, ¢) which
represents 3 sides of the triangle. Based on the input it should determine if a triangle
can be formed or not.
R2. If the requirement R1 is satisfied then the system should determine the type of
the triangle, which can be

* Equilateral (i.e. all the three sides are equal)

* [sosceles (i.e Two sides are equal)

* Scalene (i.e All the three sides are unequal)
else suitable error message should be displayed. Here we assume that user gives
three positive integer numbers as input.

7.2 DESIGN:

Form the given requirements we can draw the following conditions: C1:

a<b+c?

C2: b<atc?

C3: c<at+b?

C4: a=b?

CS: a=c?

C6: b=c?

According to the property of the triangle, if any one of the three conditions Cl1,

C2 and C3 are not satisfied then triangle cannot be constructed. So only when C1,
C2 and C3 are true the triangle can be formed, then depending on conditions

C4, C5 and C6 we can decide what type of triangle will be formed. (i.e requirement
R2).

Algorithm:
Step 1: Input a, b & ¢ 1.e three integer values which represent three sides of the

Department of ISE Page 73

Software Testing Laboratory

triangle.
Step 2: if (a<(b +c¢)) and (b <(a+c)) and (c < (a + b) then
do Step 3

else

print not a triangle. do Step 6.
Step 3: if (a=b) and (b=c) then

Print triangle formed is equilateral. do Step 6.
Step 4: if (a#b) and (a # ¢) and (b # ¢) then

Print triangle formed is scalene. do Step 6.
Step 5: Print triangle formed is Isosceles.
Step 6: stop

7.3 PROGRAM CODE:
#include<stdio.h>
#include<ctype.h>
#include<conio.h>

#include<process.h>

int main()

{
int a, b, c;
clrser();

printf("Enter three sides of the triangle");
scanf("%d%d%d", &a, &b, &c);
if((a<b+c)&&(b<atc)&&(c<atb))

{

if((a==b)&&(b==c))
{

printf("Equilateral triangle");

h
else if((al=b)&&(a!=c)&&(b!=c))

{

printf("Scalene triangle");

}

Department of ISE Page 74

Software Testing Laboratory

else

printf("Isosceles triangle");

printf("triangle cannot be formed");

} getch(); return 0;

}
else
{
}
7.4
TESTING:

Technique Used: Decision Table Approach

Decision Table-Based Testing has been around since the early 1960’s; it is used to
depict complex logical relationships between input data. A Decision Table is the
method used to build a complete set of test cases without using the internal
structure of the program in question. In order to create test cases we use a table to

contain the input and output values of a program.The decision table is as given

below:
Condition Entries (Rules)
Conditions rlr IlrlIr IR |IrR IR IR IR 1110 11{1
1 2 3 4 5 6 7 8 9
Cl: a<b+c? F T T T T T T T T T T
C2: b<atc? -- F T T T T T T T T T
C3: c<atb? -- -- F T T T T T T T T
C4: a=b? -- -- -- F T T T F F F T
C5: a=c? -- -- -- T F T F T F F T
C6: b=c? -- -- -- T T F F F T F T
Actions Action Entries
al: Not
N X X X
Triangle
a2: Scalene X
Department of ISE Page 75

Software Testing Laboratory

a3: Isosceles X X X

a4: Equilateral X

a5: Impossible X X X

The “--“ symbol in the table indicates don’t care values. The table shows the
six conditions and 5 actions. All the conditions in the decision table are binary;
hence, it is called as “Limited Entry decision table”.

Each column of the decision table represents a test case. That is,
The table is read as follows:
Action: Not a Triangle

1. When condition C1 is false we can say that with the given ‘a’ ‘b’ and ‘c’

values, 1it’s Not a
triangle.

2. Similarly condition C2 and C3, if any one of them are false, we can say that
with the given ‘a’ ‘b’ and ‘c’ values it’s Not a triangle.
Action: Impossible

3. When conditions C1, C2, C3 are true and two conditions among C4, C5, C6 is
true, there is no chance of one conditions among C4, C5, C6 failing. So we can

neglect these rules.
Example: if condition C4: a=b is true and C5: a=c is true

Then it is impossible, that condition C6: b=c will fail, so the action is

Impossible.

Action: Isosceles

4. When conditions C1, C2, C3 are true and any one condition among C4, C5
and C6 is true with remaining two conditions false then action is Isosceles

triangle.
Example: If condition C4: a=b is true and C5: a=c and C6: b=c are false, it

means two sides are equal. So the action will be Isosceles triangle.

Action: Equilateral

Department of ISE Page 76

Software Testing Laboratory

5. When conditions C1, C2, C3 are true and also conditions C4, C5 and C6 are

true then, the action is Equilateral triangle.

Action: Scalene

6. When conditions C1, C2, C3 are true and conditions C4, C5 and C6 are false
i.e sides a, b and c are different, then action is Scalene triangle.

Number of Test Cases = Number of Rules.

Using the decision table we obtain 11 functional test cases: 3 impossible cases,

3 ways of failing the triangle property, 1 way to get an equilateral triangle, 1 way

to get a scalene triangle, and 3 ways to get an isosceles triangle.

Deriving test cases using
Decision Table Approach:

Test Cases:
T Test Expecte Actual S
C Case d Output tatus
I Descriptio Outp
D n ut
Testing Not
1
for a
Requirement 1 Triangle
Testing Not
2
for a
Requirement 1 Triangle
Testing Not
3
for a
Requirement 1 Triangle
4 Testing Eauil l
for quilatera
Requirement 2
Testing
5 f Isosceles
or
Requirement 2
Testing
6 f Isosceles
or
Requirement 2
Department of ISE Page 77

Software Testing Laboratory

Testing

P 3 2 | 2 | Isosceles
or

Requirement 2

Testing

8 3 4 | 5 Scalene
for

Requirement 2

7.5 EXECUTION & RESULT DISCUSION

Execute the program against the designed test cases and complete the table for
Actual output column and status column.
Test Report:

1. No of TC’s Executed: 08
2. No of Defects Raised:

3. No of TC’s Pass:

4. No of TC’s Failed:
The decision table technique is indicated for applications characterised by any of
the following:
Prominent if-then-else logic

Logical relationships among input variables
Calculations involving subsets of the input variables
Cause-and-effect relationship between inputs and outputs

The decision table-based testing works well for triangle problem because a lot of
decision making i.e if-then-else logic takes place.

7.6 SNAPSHOTS:

1. Output screen of Triangle cannot be formed

Department of ISE Page 78

Software Testing Laboratory

[root@localhost:~ -
Fle Edit View Terminal Tabs Help
[root@localhost ~]# cc trianglel.c a
[root@localhost ~]1# ./a.out
Enter three sides of the triangle
4
1
2
triangle cannot be formed
[root@localhost ~1# cc trianglel.c
[root@localhost ~]# ./a.out
Enter three sides of the triangle
1
4
2
triangle cannot be formed
[root@localhost ~]# cc trianglel.c
[root@localhost ~]# ./a.out
Enter three sides of the triangle
1
2
4
triangle cannot be formed
[root@localhost ~1#]

2. Output screen of Equilateral and Isosceles Triangle.

Department of ISE Page 79

Software Testing Laboratory

root@localhost:~

hle Edit Miew Terminal Tabs Help
[root@Localhost ~]# cc trianglel.c E]
[root@localhost ~1# ./a.out

Enter three sides of the triangle
5
5
5

Equilateral triangle
[root@localhost ~]# cc trianglel.c
[root@localhost ~1# ./a.out

Enter three sides of the triangle
2
2
3

Isosceles triangle
[root@Llocalhost ~]# cc trianglel.c
[root@localhost ~1# ./a.out

Enter three sides of the triangle
2
3
2

Isosceles triangle
[root@localhost ~1# |§

3. Output screen for Scalene Triangle

root@localhost:~

Hle Edit View Terminal Tabs Help
[root@localhost ~]# cc trianglel.c |
[root@localhost ~1# ./a.out

Enter three sides of the triangle
3
2
2

Isosceles triangle
[root@localhost ~]# cc trianglel.c
[root@localhost ~1# ./a.out

Enter three sides of the triangle
3
4
5

Scalene triangle
[root@localhost —1# []

7.7. REFERENCES:

1. Requirement Specification

2. Assumption.

8. Design, develop, code and run the program in any suitable language to solve the

Department of ISE Page 80

Software Testing Laboratory

commission problem. Analyze it from the perspective of decision table-based
testing, derive different test cases, execute these test cases and discuss the test
results.

8.1 REQUIREMENT SPECIFICATION:

R1: The system should read the number of Locks, Stocks and Barrels sold in a
month.

(i.e 1< Locks< 70) (i.e

1 < Stocks <80) (i.e 1

< Barrels <90).
R2: If R1 is satisfied the system should compute the salesperson’s commission
depending on the total number of Locks, Stocks & Barrels sold else it should display
suitable error message. Following is the percentage of commission for the sales
done:

10% on sales up to (and including) $1000

15% on next $800
20% on any sales in excess of $1800

Also the system should compute the total dollar sales. The system should
output salespersons total dollar sales, and his commission.

8.2 DESIGN:

Form the given requirements we can draw the following conditions:

Cl: 1<locks<70? Locks = -1? (occurs if locks = -1 is used to control input
iteration).
C2: 1<stocks<80? Here C1 can be expanded as:
Cla: 1<locks
C3: 1<barrels<90? Cl1b: locks<70

C4: sales>1800?
C5: sales>10007?
C6: sales<1000?

Algorithm:

Department of ISE Page 81

Software Testing Laboratory

Step 1: Input 3 integer numbers which represents number of Locks, Stocks and
Barrels sold.
Step 2: compute the total sales =
(Number of Locks sold *45) + (Number of Stocks sold *30) + (Number of
Barrels sold *25)
Step 3: if a totals sale in dollars is less than or equal to $1000
then commission = 0.10* total Sales do Step 6
Step 4: else if total sale is less than $1800
then commissionl = 0.10* 1000
commission = commissionl + (0.15 * (total sales — 1000))
do Step 6
Step 5: else commissionl = 0.10* 1000
commission2 = commissionl + (0.15 * 800))
commission = commission2 + (0.20 * (total sales — 1800)) do
Step 6
Step 6: Print commission.
Step 7: Stop.

8.3 PROGRAM CODE:
#include<stdio.h>
#include<conio.h>
int main()
{
int locks, stocks, barrels, t sales, flag = 0;
float commission;
clrscr();
printf("Enter the total number of locks");
scanf("%d",&locks);
if ((locks <= 0) || (Ilocks > 70))
{
flag =1;
h
printf("Enter the total number of stocks");
scanf("%d",&stocks);

Department of ISE Page 82

Software Testing Laboratory

if ((stocks <= 0) || (stocks > 80))
{
flag =1;
h
printf("Enter the total number of stocks");
scanf("%d",&stocks);
if ((stocks <= 0) || (stocks > 80))
{
flag=1;
b
printf("Enter the total number of barrelss");
scanf("%d",&barrels);
if ((barrels <= 0) || (barrels > 90))

{
flag =1;
§
if (flag==1)
{
printf("invalid input");
getch();
exit(0);
h

t sales = (locks * 45) + (stocks * 30) + (barrels * 25);
if (t_sales <= 1000)

{
commission = 0.10 * t_sales;
h
else if (t_sales < 1800)
{
commission = 0.10 * 1000;
commission = commission + (0.15 * (t_sales - 1000));
j

Department of ISE Page 83

Software Testing Laboratory

else

commission = (0.10 * 1000;
commission = commission + (0.15 * 800);
commission = commission + (0.20 * (t_sales - 1800));

h

printf("The total sales is %d \n The commission is %f",t sales,
commission);

getch();
return;

}

8.4 TESTING

Technique Used: Decision Table Approach

The decision table is given below

Conditions Condition Entries (Rules)
C1: 1<locks<70? F|T|T| T|T)|T
C2: 1<stocks<80? -|F| T T| T| T
C3: 1<barrels<90? - -l F|T| T]|T
C4: sales>1800? - -—-| - T| F|F
C5: sales>1000? - -] - - T|F
C6: sales<1000? -~ - - -1 -1T
Actions Action Entries

al: coml = 0.10*Sales X
a2: com?2

coml1+0.15*(sales-1000)
a3: com3

com2+0.20*(sales-1800)
a4: Out of Range. X| X| X

Department of ISE Page 84

Software Testing Laboratory

Using the decision table we get 6 functional test cases: 3 cases out of range, 1 case
cach for sales greater than $1800, sales greater than $1000, sales less than or equal

to $1000.

DERIVING TEST CASES USING Decision Table Approach:

Test Cases

Test
Case
Description

o=a-

Loc
ks

Stock

Barrel
S

Expected
Output

Actual
Output

Status

Testing

1 for

Requirement 1
Condition 1 (C1)

40

45

Out of Range

Testing

2 for

Requirement 1
Condition 1 (C1)

90

40

45

Out of Range

Testing

3 for

Requirement 1
Condition 2 (C2)

35

45

Out of Range

Testing

4 for

Requirement 1
Condition 2 (C2)

35

100

45

Out of Range

Testing

5 for

Requirement 1
Condition 3 (C3)

35

40

-10

Out of Range

Testing

6 for

Requirement 1
Condition 3 (C3)

35

40

150

Out of Range

Testing
for
Requirement 2

500 | al:50

Testing
for
Requirement 2

15

15

15

150 a2:
0 175

Department of ISE

Page 85

Software Testing Laboratory

Testing
9 25 25 25 250 | a3:

for 0 | 360
Requirement 2

8.5 EXECUTION & RESULT DISCUSION:

Execute the program against the designed test cases and complete the table
for Actual output column and status column.
TEST REPORT:

1. No of TC’s Executed:
2. No of Defects Raised:
3. No of TC’s Pass:

4. No of TC’s Failed:
The commission problem is not well served by a decision table analysis
because it has very little decisional. Because the variables in the equivalence
classes are truly independent, no impossible rules will occur in a decision table in
which condition correspond to the equivalence classes.

8.6 SNAPSHOTS:
1. Snapshot for Total sales and commission when total sales are within 1000 and
1800

o] root@localhost:~

File Edit ¥iew Terminal Tabs Help

[root@localhost ~]1# cc commission7.c
[root@localhost ~1# ./a.out

Enter the total number of locks
5

Enter the total number of stocks
5

Enter the total number of barrelss
5

The total sales is 500

The commission is 50.000000
[root@localhost ~1# cc commission7.c
[root@localhost ~1# ./a.out

Enter the total number of locks
15

Enter the total number of stocks
15

Enter the total number of barrelss
15

DEp@rtheént of f3ES is 1500 Page 86
The commission is 175.000000 ~

Software Testing Laboratory

2. Snapshot when the inputs all are 25.

root@localhost:~

File Edit View Terminal Tabs Help

[root@localhost ~]1# cc commission?.c
[root@localhost ~1# ./a.out

Enter the total number of locks
25

Enter the total number of stocks
25

Enter the total number of barrelss
25

The total sales is 2500
The commission is 360.000000
[root@localhost ~1# |}

8.7 REFERENCES:
1. Requirement Specification

2. Assumptions

Department of ISE Page 87

Software Testing Laboratory

9. Design, develop, code and run the program in any suitable language to solve the
commission problem. Analyze it from the perspective of dataflow testing, derive
different test cases, execute these test cases and discuss the test results.

9.1 REQUIREMENT SPECIFICATION

Problem Definition: The Commission Problem includes a salesperson in the
former Arizona Territory sold rifle locks, stocks and barrels made by a
gunsmith in Missouri. Cost includes

Locks- $45
Stocks- $30
Barrels- $25

The salesperson had to sell at least one complete rifle per month and
production limits were such that the most the salesperson could sell in a month
was 70 locks, 80 stocks and 90 barrels.

After each town visit, the sales person sent a telegram to the Missouri
gunsmith with the number of locks, stocks and barrels sold in the town. At the
end of the month, the salesperson sent a very short telegram showing -

-1 lock sold. The gunsmith then knew the sales for the month were complete
and computed the salesperson’s commission as follows:

On sales up to(and including) $1000=10% On

Department of ISE Page 88

Software Testing Laboratory

the sales up to(and includes) $1800= 15% On the

sales in excess of $1800=20%

The commission program produces a monthly sales report that gave the total
number of locks, stocks and barrels sold, the salesperson’s total dollar sales and
finally the commission

9.2 DESIGN
Algorithm:
Step 1: Define lockPrice=45.0, stockPrice=30.0, barrelPrice=25.0
Step2: Input locks
Step3: while(locks!=-1) ‘input device uses -1 to indicate end of data goto
Step 12
Step 4:input (stocks, barrels)
Step 5: compute lockSales, stockSales, barrelSales and sales
Step 6: output(“Total sales:” sales)
Step 7: if (sales > 1800.0) goto Step 8 else goto Step 9
Step 8: commission=0.10*1000.0; commission=commission+0.15 * 800.0;
commission = commission + 0.20 * (sales-1800.0)
Step 9: if (sales > 1000.0) goto Step 10 else goto Step 11
Step10: commission=0.10* 1000.0; commission=commission + 0.15 *
(sales-1000.0)
Step 11: Output(“Commission is $”, commission)
Step12: exit

9.3 PROGRAM CODE:

#include<stdio.h>

#include<conio.h>

int main()

{
int locks, stocks, barrels, t sales, flag = 0;
float commission;
clrser();
printf("Enter the total number of locks");
scanf("%d",&locks);

Department of ISE Page 89

Software Testing Laboratory

if ((locks <= 0) || (Iocks > 70))
{
flag =1;
}
printf("Enter the total number of stocks");
scanf("%d",&stocks);
if ((stocks <= 0) || (stocks > 80))
{
flag =1;
)
printf("Enter the total number of barrelss");
scanf("%d",&barrels);
if ((barrels <= 0) || (barrels > 90))

{
flag=1;
b
if (flag==1)
{
printf("invalid input");
getch();
exit(0);
b

t sales = (locks * 45) + (stocks * 30) + (barrels * 25);
if (t_sales <= 1000)

{
commission = 0.10 * t_sales;
b
else if (t_sales < 1800)
{

commission = 0.10 * 1000;

commission = commission + (0.15 * (t_sales - 1000));

Department of ISE Page 90

Software Testing Laboratory

b
else
{
commission = 0.10 * 1000;
commission = commission + (0.15 * 800);
commission = commission + (0.20 * (t_sales - 1800));
}
printf("The total sales is %d \n The commission is %f",t sales,
commission);

getch(); return; }
9.4 TESTING TECHNIQUE: DATAFLOW TESTING

A structural testing technique

* Aims to execute sub-paths from points where each variable is defined to points
where it is referenced. These sub-paths are called definition-use pairs, or du-pairs
(du-paths, du-chains) Data flow testing is centred on variables (data) Data flow
testing follows the sequences of events related to a given data item with the
objective to detect incorrect sequences It explores the effect of using the value
produced by every and each computation.

Variable definition

Occurrences of a variable where a variable is given a new value (assignment,
input by the user, input from a file, etc.) Variable DECLARATION is NOT its
definition !!!

Variable uses

Occurences of a variable where a variable is not given a new value (variable
DECLARATION is NOT its use)

p-uses (predicate uses)
Occur in the predicate portion of a decision statement such as if-then-else,
while-do etc.

c-uses (computation uses)
All others, including variable occurrences in the right hand side of an
assignment statement, or an output statement

du-path: A sub-path from a variable definition to its use.

Department of ISE Page 91

Software Testing Laboratory

Test case definitions based on four groups of coverage
— All definitions.

— All c-uses.
— All p-uses.

— All du-paths.

DATA FLOW TESTING: KEY Steps

Given a code (program or pseudo-code).

1. Number the lines.

2. List the variables.

3. List occurrences & assign a category to each variable.
4. Identify du-pairs and their use (p- or c-).

5. Define test cases, depending on the required coverage.

line catogar
y
Definition c-us p-us
e e
1
2
3
4
5
6
7
8
9 locks, stocks, barrels
1 locks, stocks, barrels

Department of ISE Page 92

Software Testing Laboratory

Flag

flag

N —| NN =B~ =W =N == =

O M= |00 =

t sales

locks, stocks,
barrels

t sales

commission

W NN N —= DO DN

t sales

Department of ISE

Page 93

Software Testing Laboratory

t sales

commission

commission commission, t sales
commission

commission commission
commission commission, t_sales

commission

O W00 WD WY Wl WD WIW WD Wl WO WO N0 NI NN DL DA~ D

Table: list occurrences & assign a category to each variable

Department of ISE

Page 94

Software Testing Laboratory

definition - use pair variables()
start line — end line c-us p-us
e e
9—1 loc
0 ks
9—1 stock
0 S
9—1 barrel
0 S
9—-2 lock
0 S
9—2 stock
0 S
9—2 barrel
0 S
12—1 fla
4 g
20—2 t sal
1 es
20—2 t sal
3 es
202 t sal
5 es
20—-2 t sal
8 es
20—3 t sal

Department of ISE Page 95

Software Testing Laboratory

4 es

233 commission
6

27—2 commission
8

28—3 commission
6

32—-3 commission
3

3353 commission
4

343 commission
6

Table: Define test cases

TEST CASES BASED ON ALL DEFINITION

To achieve 100% All-definitions data flow coverage at least one sub-path from
each variable definition to some use of that definition (either c- or p- use) must be
executed.

Input Expected output
S
Variable(s) d su locks | stock barrels | t sale | commis
u- b- s s s ion
pa pat
ir h
lock 9—20 9,10,20 1 1 1 1000
S, 0 0 0
stock
S,
barrel
S
locks, 9—10 9—10 5 - 2 Invalid Input
stock 1 2

Department of ISE Page 96

Software Testing Laboratory

S,
barrel
S
Fl 12—1 12—14 - 4 4 Invalid Input
ag 4 1 0 5
t sales 20—2 20,21 5 5 5 500
1
t sales 20—2 20,21,2 1 1 1 1500
5 5 5 5 5
COmMmissio 2353 23—36 5 5 5 5
n 6 0
commissio 27—3 27,28,3 1 1 1 175
n 6 6 5 5 5
commissio 3253 32,333 2 2 2 360
n 6 4, 5 5 5
3
6
9.5 EXECUTION

Execute the program and test the test cases in above Tables against

program and complete the table with for Actual output column
Status column.

9.6 SNAPSHOTS:

1. Snapshot for Total sales and commission when total sales are within 1000

and Invalid input

and

Department of ISE

Page 97

Software Testing Laboratory

root@localhost:~

Fle Edit View Terminal Tabs Help
[root@localhost ~]# cc cfinal.c =z

[root@localhost

Enter the total
10

Enter the total
10

Enter the total
10

The total sales
The commission
[root@localhost
[root@localhost

Enter the total
5

Enter the total
-1

Enter the total
22

invalid input
[root@localhost

~]1# ./a.out

number of locks
number of stocks
number of barrelss

is 1000

is 100.000000
~1# cc cfinal.c
~]# ./a.out

number of locks

number of stocks

number of barrelss

~]#!

2. Invalid Input and Total sales and commission when total sales are within

1000

Department of ISE

Page 98

Software Testing Laboratory

[root@localhost
[root@localhost

Enter the total
-1

Enter the total
40

Enter the total
45

invalid input
[root@localhost
[root@localhost

Enter the total
5

Enter the total
5

Enter the total
5

The total sales
The commission
[root@localhost

root@localhost:~

Fle Edit View Terminal Tabs Help

~]# cc cfinal.c
~1# ./a.out
number of locks

number of stocks

number of barrelss

~]# cc cfinal.c
~1# ./a.out

number of locks
number of stocks

number of barrelss

is 500
is 50.000000

~1# l

3. Snapshot for for Total sales and commission when total sales are within
1800 and to find out the total commission 360

root@localhost:~

[root@localhost
[root@localhost

|[Enter the total
15

|[Enter the total
15

[Enter the total
15

The total sales
The commission
[root@localhost
[root@localhost

JEnter the total
25

l[Enter the total
25

l[Enter the total
25

The total sales
The commission

File Edit WVWiew Terminal Tabs Help

~]1# cc cfinal.c
~1# ./a.out

number of locks

number of stocks

number of barrelss

is 1500

is 175.000000
~]# cc cfinal.c
~]# ./a.out

number of locks

number of stocks

number of barrelss

is 2500
is 360.000000

4. Snapshot for total sales and commission

Department of ISE

Page 99

Software Testing Laboratory

root@localhost:~

[root@localhost

Enter the total
15

Enter the total
15

Enter the total
15

The total sales
The commission
[root@localhost
[root@localhost

Enter the total
5

Enter the total
5

Enter the total
5

The total sales
The commission
[root@localhost

File Edit View Terminal Tabs Help

~]1# ./a.out

number of locks
number of stocks
number of barrelss

is 1500

is 175.000000
~]# cc cfinal.c
~1# ./a.out

number of locks
number of stocks

number of barrelss

is 500
is 50.000000

~1# !

9.7 REFERENCES
1. Requirement Specification.

2. Assumptions.

10. Design, develop, code and run the program in any suitable language to

Department of ISE Page 100

Software Testing Laboratory

implement the binary search algorithm. Determine the basis paths and using them
derive different test cases, execute these test cases and discuss the test results.

10.1 REQUIREMENTS SPECIFICATION

R1: The system should accept ‘n’ number of elements and key element that is to be
searched among ‘n’ elements..

R2: Check if the key element is present in the array and display the position if
present otherwise print unsuccessful search.

10.2 DESIGN

We use integer array as a data structure to store ‘n’ number of elements. Iterative
programming technique is used.

Algorithm:
Step 1: Input value of ‘n’. Enter ‘n’ integer numbers in array int mid;
Step 2: Initialize low = 0, high =n -1
Step 3: until (low <= high) do mid
= (low + high) / 2 if (
a[mid] == key)
then do Step 5
else if (a[mid] > key)
then do
high=mid - 1

Department of ISE Page 101

Software Testing Laboratory

else low=mid+1
Step 4: Print unsuccessful search do Step 6.

Step 5: Print Successful search. Element found at position mid+1.
Step 6: Stop.

10.3 PROGRAM CODE:

1 #include<stdio.h>

2 #include<conio.h>
3 int main()
4 |

5 Int a[20],n,low,high,mid,key.I;
6 int flag=0;

7 clrscr();
8 printf("Enter the value of n:\n");
9 scanf("%d",&n);

10 if(n>0)

11 {

12 printf("Enter %d elements in ASCENDING order\n",n);
13 for(i=0;i1<n;i++)

14 {

15 scanf("%d",&al1]);

16 }

17 printf("Enter the key element to be searched\n");
18 scanf("%d",&key);

19 low-=0;

20 high=n-1;

21 while(low<=high)
Department of ISE Page 102

Software Testing Laboratory

22 {
23 mid=(low-+high)/2;
24 if(a[mid]==key)
25 {
26 flag=1;
27 break;
28 }
29 else if(a[mid]<key)
30 {
31 low=mid+1;
32 }
33 else
34 {
35 high=mid-1;
36 }
37 }
38 if(flag==1)
39 printf("Successful search\n Element found at Location
%d\n",mid+1);
40 else
41 printf(“Key element is not found”);
42 }
43 else
44 printf("Wrong input");
45 getch();
46 return 0;
47 }

Department of ISE Page 103

Software Testing Laboratory

10.4 TESTING
Technique Used: Basis Path Testing

Basis path testing isa form of Structural testing (White Box testing).

The method devised by McCabe to carry out basis path testing has four Steps.
These are:

1. Compute the program graph.

2. Calculate the cyclomatic complexity.
3. Select a basis set of paths.

4. Generate test cases for each of these paths.

Department of ISE Page 104

Software Testing Laboratory

Below is the program graph of binary search code.

(O —(o)r—D—C)

1

3

4

CXPNEED
20 G G
G

ing the program graph w ri Deci
U.S g the program grap e derive (Dec Program Graph Nodes | DD — Path Name
Binary search program First 5

Department of ISE Page 105

Software Testing Laboratory

6,7,8,9,10

11

12,13,14

15,16,17

18

19,20

37

21

il ool Kol Recl Resl Awl H@Y Nt o

22,23,24,25,26,2
7

28

29.30,31

32,33,34,35

38

40

o|lz|z|c|=|~

41

E

i

o

The cyclomatic complexity of a
connected graph is provided by the
formula V(G) = e - n + 2p. The number
of edges is represented by e, the
number of nodes by n and the number
of connected regions by p. If we apply
this formula to the graph given below,
the number of linearly independent
circuits is:

Number of edges = 21
Number of nodes = 15

Number of connected regions =
1

21-15+2(1) = 4.

Department of ISE

Page 106

Software Testing Laboratory

Here we are dealing code level
dependencies, which are absolutely
incompatible with the latent
assumption, that basis path are
independent. McCabe’'s procedure
successfully identifies basis path that are
topologically independent, but when
these contradict semantic dependencies,
topologically possible paths are seen to
be logically infeasible. One solution to
this problem is to always require that
flipping a decision result in a
semantically feasible path. For this
problem we identify some of the rules:

If node C not traversed, then node M
should be traversed.

If node E and node G is traversed,
then node M should be traversed.
If node I is traversed, then node N
should be traversed.
Taking into consideration the above
rules, next step is to find the basis paths.
According to cyclomatic complexity 4
feasible basis path exists:

P1:A,B,D,E, G N, O

if n value is 0.

P2: A B, C B D, E E H |

key element found.

G M O

P3:A,B,CB,D,E,FH,J,KEEH]KEGN,O

key element not found.

P4:A,B,CB,D,EEH,J,LEEH],LEGN,O

key element not found.

Department of ISE

Page 107

Software Testing Laboratory

DERIVING TEST CASES USING BASIS
PATH TESTING

The last step is to devise test cases for
the basis paths.

TEST CASES

Testing
6 | for 5
requirement
2

Path
P3+P2-P1

4,5,7,8,9

Test
Case

Val
ue

array
elemen

Description of

[y §

o= 0=

Testing
1 | for 0 -
requirement 1
Path P1

Testing

2 | for 4
requirement
2

Path P2

2,3,5,6,7

Testing

3 | for 3 1,2,5
requirement
2

Path P3

Testing
4 | for 3 1,2,5
requirement
2

Path P4

Testing
5 | for 5
requirement
2

Path
P4+P2-P1

1,2,4,6,7

ts 10.5 EXECUTION & RESULT DISCUSION:

Execute the program against the
designed test cases and complete the
table for

Actual output column and status
column.

Test Report:
1. No of TC’s Executed: 06
2. No of Defects Raised:
3. No of TC’s Pass:
4. No of TC’s Failed:

Department of ISE

Page 108

Software Testing Laboratory

10.6 SNAPSHOTS: 2. Assumptions

1. Snapshot to check successful search
and not found key element.

root@localhost:~

File Edit WView Terminal Tabs Help
[root@Llocalhost ~1# cc binary.c
[root@localhost ~1# ./a.out
Enter the wvalue of n:

4
Enter 4 elements in ASCENDING order
2

Enter the key element to be searched

Successful search

Element found at Location 3
[root@localhost ~]# cc binary.c
[root@localhost ~1# ./ a.out

Enter the walue of n:

3

Enter 3 elements in ASCENDING order
1

2
5
Enter the key element to be searched

Key Element not fTound
[root@localhost ~1# W

2. Snapshot to check successful search
and not found key element.

File Edit Wiew Terminal Tabs Help
[root@localhost ~1# ./a.out

Enter the wvalue of n:

5

Enter 5 elements in ASCENDING order

—~o s Ne

Enter the key element to be searched

M

SuccessTul search

Element found at Location 2
[root@localhost —~]# cc binary.c
[root@localhost ~1# ./a.out

Enter the wvalue of n:

5

Enter 5 elements in ASCENDING order

Lo~ U s

Enter the key element to be searched

=]

Successful search
Element found at Location 4
[root@localhost ~1# [}

10.7 REFERENCES:
1. Requirement Specification

Department of ISE Page 109

Software Testing Laboratory

[y

11. Design, develop, code and run the
program in any suitable language to
implement the quicksort algorithm.
Determine the basis paths and using
them derive different test cases, execute
these test cases and discuss the test
results. discuss the test results.

111
REQUIREMENTS
SPECIFICATION

MUCOZPROORTW:"

R1: The system should accept ‘n’ number

of elements and key element thatistobe // Ap

searched among ‘n’ elements. Iterati
ve
R2: Check if the key element is present imple
in the array and display the position if m.ent
ation
present otherwise print unsuccessful of
search. quick
sort
i 1 #include <stdio.h>
2 // A utility function to swap two elements
D 2 void swap (int*a, int*b)
c {
S
I 3 intt=*3a;
G 4 *a=*b;
N 5 *b=t
6 }

We use integer array as a data structure

to store ‘n’ number of elements. Iterative /* This function is same in both iterative
and recursive*/

7 intpartition (int arr[], int], int h)
8 |

programming technique is used.

1

Department of ISE Page 110

Software Testing Laboratory

9 intx=arr[h];inti=(1-1),;

Department of ISE Page 111

Software Testing Laboratory

11 for j=1;j <=h-1;j++) i
12 { a
13 if (arr[j] <=x) r
14 { y
15 i++; 2
16 swap (&arr([i], &arr[j]); 4
17 } !
18) n
19 swap (&arr[i + 1], &arr[h]); t
20 return (i + 1); X
21) ¢
a
C
/* A[] --> Array to be sorted, 1 --> k
Starting index, h --> Ending index */ [
1
22 void quickSortlterative (int 0
arr[], intl, int h)]
23 {)
p
/ ’
/
C /
r /
e 1
a n
t i
e t
a i
n a
a 1
u i
X v/
i e
] t

Department of ISE Page 112

Software Testing Laboratory

0 S
p 0
0 f
f 1
2 a
5 n
i d
n h
t t
t 0]
0 2
p 6
= S
- t
1 a
; C

k

S
/ t
/

a
p

C
u

k
S
h [
_ +
i

+
n
. t
i
¢ 0
i p
a !
| =

1
V .
a)
l 27 stack[++top] =h;
u
e // Keep popping from stack while is not empty

Department of ISE Page 113

Software Testing Laboratory

28 while (top>=0)
29 {

// Pophand]l
30 h=stack[top-- |;
31 1=stack][top--];

Department of ISE Page 114

Software Testing Laboratory

// Set pivot Dri
element at its ver
correct position in pro
sorted array gra

32 p = partition(m

arr, 1, h); to
test
abo

// If there are elements on left side

of pivot, then push left ve
// side to stack fu.n
33 if(p-1>1) ctio
34 { .ns
Int
35 stack[++top] =1;
36 stack[++top]=p-1; mal
pl=p-1; n()
37 } {

int arr[20],n,i;
// If there are elements on right side clrscr();

of pivot, then push right printf("Enter the size of the array");
/ scanf("%d",&n);

/ printf("Enter %d elements",n);

S

for(i=0;i<n;i++)
scanf("%d",&arr[i]);
quickSortlterative(arr, 0,n-1);

printf("Elements of the array
are;");

©C &+ o a =

38 stackif (p+1<h)

39 {

40 stack[++top | =p + 1;
41 stack[++top | = h;
42 '}

43 }

44 }

/!

Department of ISE Page 115

Software Testing Laboratory

- o I /™o

— o+ 4 =S

printf("%d",arr[i]);
getch();
return O;

}

11.4 TESTING
Program Graph for partition:

Department of ISE Page 116

Software Testing Laboratory

DD Path Graph:

@ U1l »

B n
+
C 2
6-5+2 =3
No. of predicate nodes +1 (i.e., node B
and node C)
2+1=3
Using program graph we derive DD path No. of region + 1
graph for partition() R1 and R2 are two regions
2+1=3

DD

Path | Program
Nam Graph

es
A 50,51,52,53
B 54
C 56
D 57,58,59,60,61,6
2

E 64,65,66,67,68

Cyclomatic complixity
No. of edges =6
N

(0]

O QO O 5 ™ O ¢

Department of ISE Page 117

Software Testing Laboratory

According to cyclomatic complexity 3
basis path exists. They are,

P1: A, B, E
P
2

Deriving
test cases
using
basis

path
testing:
Test
Cases
Expected output
Test Arra
TC Value of
D Case y Arra .
Descripti | eleme y 1
on nts
1 Testing 5 5 0
for
path P1
2 Testing 5,4, 6, 5,4,6, 4
for 2, 2,
path P2 7 7
3 Testing 5,4,6, 5,4,6, 0
for 7, 7,
path P3 5 5

Department of ISE

Page 118

Software Testing Laboratory

Department of ISE Page 119

Software Testing Laboratory

ngram hrapn mr Q“lCK M Program Lrapn 1or QuUicK sSortp)

()

bo
0000002050

00

Page 120

Software Testing Laboratory

DD Path Graph

SR N+ B

N + !

S

No. of predicate nodes + 1
3+1=4 (i.e., node
Fo| R (B,D &F)

No. of regions+1
@ 3+1=4 (i.e, Region R1, R & R3)

-
¢ According to cyclomatic complexity 4
basis path exists. They are

P

1
CYCLOMATIC COMPLEXITY A
No. of nodes =8 B
N ,
0 C
o) D
f)
n E
O)
d F
e)
S G
1 B
0)
e H

Department of ISE Page 121

Software Testing Laboratory

P3:A,B,C,D,FEG,B,H
P4:A,B,C, D,EB,H

Department of ISE Page 122

Software Testing Laboratory

Deriving test cases using basis path
. File Edit Wiew Terminal Tabs Help
testlng [root@localhost ~]# cc qgi.c
. [root@localhost ~]1# ./a.out
TeSt cases: Enter the size of the array
6
Enter 6 elements
5
Test Case Array E |,
T Description elemen :
C ts 3
I IElements of the array are:
1
D 2
1 Testing for 57, 4,2, 2, |s
path 1, 7, |a
1 3 4 |
2 Testing for 5,4,8, 2, 5 |,
path 7 38 [root@localhost ~1# |}
2
3 Testing for 54,6,7, 3,
path 3 5
3

11.5 EXECUTION

Compile the program and en
inputs Test above table array elements fc
cases.

11.6 SNAPSHOTS:

1. Snapshot of quick sort sorted elements
are displayed, when the n=6

Department of ISE Page 123

Software Testing Laboratory

2. Snapshot of quick sort sorted elements
are displayed, when the n=5

= root@localhost

File Edit View Terminal Tabs Help
[root@localhost —~]# cc gi.c

[root@localhost ~]# ./ /a.out

Enter the size of the array

5

Enter 5 elements

wu

4
8
2
7
Elements of the array are:
2
a
5
7
8
[

root@localhost ~1# B

3. Snapshot of quick sort sorted elements
are displayed, when the n=5

=2 root@localhost:

File Edit View Terminal Tabs Help
[root@localhost ~]# cc gi.c
[root@localhost ~]# ./a.out
Enter the size of the array
5

Enter 5 elements

lements of the array are:

+ Wmw~-o kWU

6

7
[root@localhost ~1# |

11.7 REFERENCES:
1. Requirement Specification
2. Assumptions

Department of ISE

Page 124

Software Testing Laboratory

12. Design, develop, code and run the
program in any suitable language to
implement an absolute letter
grading procedure, making suitable
assumptions. Determine the basis paths
and using them derive different test
cases, execute these test cases and
discuss the test results.

12.1 REQUIREMENTS SPECIFICATION:
R1: The system should accept marks of 6
subjects, each marks in the range 1 to
100.

i.e., for example, 1<=marks<=100

1<=kannada<=1
00

1<=maths<=100
etc.

R2: If R1 is satisfied compute average of
marks scored and percentage of the
same and depending on percentage
display the grade.

12.2 DESIGN:

We use the total percentage of marks to
grade the student marks.

<35 &&
>0 of
percentag
e make it
as FAIL
avmar<=
40 &&
avmar>3
5 make it

as Grade
C
avmar<=
50 &&
avmar>4
0 make it
as Grade
C+
avmar<=
60 &&
avmar>5
0 make it
as Grade
B
avmar<=
70 &&
avmar>6
0 make it
as Grade
B+
avmar<=
80 &&
avmar>7
0 make it
as Grade
A
avmar<=
100 &&
avmar>8
0 make it
as Grade
A+

12.3 PROGRAM CODE:

Department of ISE

Page 125

Software Testing Laboratory

#include<stdio.h>

main()

1 A

2 float kan,enghindi,maths,science,
sst,avmar;

3

4 printf("SSLC Marks Grading\n");
5 printf("Enter the marks for 6 Kann:
6 scanf("%f",&kan);

Department of ISE Page 126

Software Testing Laboratory

7 printf("enter the marks for
English:");)

8 scanf("%f",&eng); ;
9 printf("enter the marks for Hindi:"); 21
10 scanf("%f",&hindi); elseif((avmar<=40)&&(avar>35))
11 printf("enter the marks for Maths"); 22 printf("Grade C");
12 scanf("%f",&maths); 23
13 printf("enter the marks for elseif((avmar<=50)&&(avma
Science:"); r>40))
14 scanf("%f",&science); 24 printf("Grade C+");
15 printf("enter the marks for 25
Social Science:"); elseif((avmar<=60)&&(a
16 scanf("%f",&sst); vmar>50))
17 26 printf("Grade B");
avmar=(kan+eng+hindi+maths+sc 27
ience+sst)/6.25; elseif((avmar<=70)&&(
18 printf("the average marks avmar>60))
are=%f\n",avmar); 28" printf("Grade
19 if((avmar<35)&&(avmar>0)) ZB;);
5 elseif((avmar<=80)&&(avmar>70))
0 30 printf("Grade A");
31
elseif((avmar<=100)&&(avmar>80))
IF" 32 printf("Grade A+");
i 33 else
n 34 printf(“Invalid”);
t 35 }
f
(
f
a
1
1

Department of ISE

Page 127

Software Testing Laboratory

12.4 TESTING
PROGRAM GRAPH:

0,0,0,0,0,0,0

Department of ISE Page 128

Software Testing Laboratory

Using the program graph derive DD
path graph

DD path

Names Program Graph Nodes

A 1,2,3,4,5,6,7,8...18

19

20, 21, 22

23

24

25

26

27

28

29

30

31

32

33

34

35

37

HOo|lw|lo|Z|IZ2(|R|I—|—|T|oTm|T|TC|o|=

36

Department of ISE

Page 129

Software Testing Laboratory

CYCLOMATIC COMPLEXITY
No. of nodes = 18

No. of edges = 24

e-n+2

24-18+2=8

No. of predicate nodes + 1
7+1=8 (i.e,B,DEH,]J L N)

No. of regions + 1
7 +1 =8 (i.e, Regions R1, R2, R3, R4,
R5, R6, R7)

According to
cyclomatic
complexity we can
derive 8 basis path.
P1: A, B,Rq
P2:A,B,C D,E, q
P3: A B, C, D,

E G, q

P4: A B, C, D,
FH1q

P5:

A B,

G D,

F H,

J, K

q

P6: A B, C,
D,EH,]J L,

M, q

P7:

A,

B, C,
D, E
H,J,
L, N,
0,9
P8: A B, C,
D,EH,] L,
N,P q
Test Cases:
Test Description Expecte
TC Inpu d
ID t
Outpu
t
K=50
E=50
1 Testing for path P1 1\H4==55% nvalid
glorp S=50 Input
SST=15
0

Department of ISE

Page 130

Software Testing Laboratory

2 Testing for path P2

K=30
E=30
H=30
M=35
S=35
SST=3%

Avg=32 0 Testing for path P6

3 Testing for path P3

K=65
E=65
H=65
M=65
S=65
SST=65
Avg=65.0

Grade
B+

K=40
E=38
H=37
M=40
S=40
SST=3¢
Avg=3¢
83

4 Testing for path P4

K=45
E=47
H=48
M=46
S=49
SST=5C
Avg=47

5 Testing for path P5

K=55
E=58
H=60
M=56
S=57
SST=60
Avg=57.

Department of ISE

Page 131

Software Testing Laboratory

7 Testing for path P7

K=75
E=72
H=78
M=75
S=80
SST=80
Avg=76

8 Testing for path P8

K=85
E=90
H=80
M=95
=85
SST=85
Avg=86
66

12.5 EXECUTION

Compile the program and enter inputs fo

subject marks, then it will

display the Total percentage, depending
the percentage it will shows the Grade ar

test the test cases for above table.

12.6 SNAPSHOTS:

1. Snapshot to Show Fail and Grade C

=1 root@localhost:~

File Edit Wieww Terminal Tabs Help

Letter Grading

SS5LC Marks Grading

Enter the marks fTor Kannada:30

enter the marks for English:30

enter the marks for Hindi:30

enter the marks fTor Maths35

enter the marks fTor Science:35

enter the marks fTor Social Science:35
the average marks are=31.200001

fail
[root@Localhost ~1# cc grade.c
[root@localhost ~1# ./a.out

Letter Grading

SSLC Marks Grading

Enter the marks fTor Kannada:40
enter the marks Tor English:38
enter the marks Tor Hindi:37
enter the marks for Maths40
enter the marks fTor Science:40
enter the marks fTor Social Science:38
the average marks are=37.279999
Grade C

[root@localhost ~1# N

Department of ISE

Page 132

Software Testing Laboratory

2. Snapshot to show Grade B and Grade

C+

[& root@localhost]

File Edit Miew Terminal

[root@localhost
[root@localhost
Letter Grading
S5LC Marks Grading

|[Enter the
enter the
enter the
enter the
enter the
enter the

Grade C+

JEnter the
enter the
enter the
enter the
enter the
enter the

Grade B

marks
marks
marks
marks
marks
marks

[root@localhost
[root@localhost
Letter Grading
SSLC Marks Grading

marks
marks
marks
marks
marks
marks

~1#
~1#

for
for
for
for
for
for

~1#
~1#

for
for
for
for
for
for

Tabs Help

cc grade.c
.fa.out

Kannada:45
English:47
Hindi:48

Maths46
Science:49

Social Science:50

the average marks are=45,599998

cc grade.c
./a.out

Kannada:55
English:58
Hindi:&0

Maths56
Science:57

Social Science:60

the average marks are=55.360001

[root@localhost ~1# [}

3. Snapshot to show the Grade A and

Grade B+

[root@localhost

File Edit Yiew Terminal
[root@localhost
[root@localhost
Letter Grading
SSLC Marks Grading

Enter the
enter the
enter the
enter the
enter the
enter the

Grade B+

Enter the
enter the
enter the
enter the
enter the
enter the

Grade A

marks
marks
marks
marks
marks
marks

[root@localhost
[root@localhost
Letter Grading
SSLC Marks Grading

marks
marks
marks
marks
marks
marks

~1#
~1#

for
for
for
for
for
for

~1#
~1#

for
for
for
for
for
for

Tabs Help

cc grade.c
./a.out

Kannada:65
English:65
Hindi:65

Maths65
Science:65

Social Science:65

the average marks are=62.400002

cc grade.c
.fa.out

Kannada:75
English:72
Hindi:78

Maths75
Science:80

Social Science:80

the average marks are=73.599998

[root@localhost ~1# B

Department of ISE

Page 133

Software Testing Laboratory

4. Snapshot to show the Grade A+

= root@localhost

Fle Edit View Terminal
[root@localhost ~1#
[root@localhost ~1#
Letter Grading
SSLC Marks Grading

Enter the
enter the
enter the
enter the
enter the
enter the

Grade A+

marks
marks
marks
marks
marks
marks

for
for
for
for
for
for

Tabs Help

cc grade.c
.[fa.out

Kannada:85
English:9@
Hindi: 80

Maths95
Science:85

Social Science:85

the average marks are=83.199997

[root@localhost ~1# |}

12.7 REFERENCES:
1. Requirement Specification

2. Assumptions

Department of ISE

Page 134

Software Testing Laboratory

EXECUTION
STEPS IN
LINUX

1. Open Terminal
2. Then open VI -Editor using the

filename, following command
will shows that

[root@localhost ~]#
vi Triangle.c

3. Write the Suitable code for the
given program

4. Then compile and execute the
program using the command;

[root@localhost ~]#
cc triangle.c

5. Then execute the command;

[root@localhost ~]#
./a.out

6. Enter the suitable input for the
program.

7. Then will get the suitable output.

Department of ISE Page 135

