
 ​ ​ ​ ​

Scenic Walk
Minimum experience: Grades 3+, 1st year using Scratch, 2nd quarter or later

At a Glance

Overview and Purpose

Coders create a scenic walk where a sprite walks between backdrops to describe or introduce each scene. The purpose of this
project is to introduce the when backdrop switches to block to show and hide sprites on specific backdrops.

Objectives and Standards

Process objective(s): Product objective(s):

Statement:
●​ I will learn how to trigger algorithms when switching

to a specific backdrop.
Question:

●​ How can we trigger algorithms when switching to a
specific backdrop?

Statement:
●​ I will storyboard and create a project about a sprite

visiting different backdrops and describing the scene.
Question:

●​ How can we storyboard and create a project about a
sprite visiting different backdrops and describing the
scene?

Main standard(s): Reinforced standard(s):

1B-AP-10 Create programs that include sequences, events,
loops, and conditionals

●​ Control structures specify the order (sequence) in
which instructions are executed within a program and
can be combined to support the creation of more
complex programs. Events allow portions of a
program to run based on a specific action. For
example, students could write a program to explain
the water cycle and when a specific component is
clicked (event), the program would show information
about that part of the water cycle. Conditionals allow
for the execution of a portion of code in a program
when a certain condition is true. For example,
students could write a math game that asks
multiplication fact questions and then uses a
conditional to check whether or not the answer that
was entered is correct. Loops allow for the repetition
of a sequence of code multiple times. For example, in
a program that produces an animation about a
famous historical character, students could use a loop
to have the character walk across the screen as they
introduce themselves. (source)

1B-AP-11 Decompose (break down) problems into smaller,
manageable subproblems to facilitate the program
development process.

●​ Decomposition is the act of breaking down tasks into
simpler tasks. For example, students could create an
animation by separating a story into different scenes.
For each scene, they would select a background, place
characters, and program actions. (source)

1B-AP-12 Modify, remix, or incorporate portions of an existing
program into one's own work, to develop something new or
add more advanced features.

●​ Programs can be broken down into smaller parts, which
can be incorporated into new or existing programs. For
example, students could modify prewritten code from a
single-player game to create a two-player game with
slightly different rules, remix and add another scene to
an animated story, use code to make a ball bounce from
another program in a new basketball game, or modify
an image created by another student. (source)

1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended.

https://bootuppd.org/
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards

1B-AP-13 Use an iterative process to plan the development of
a program by including others' perspectives and considering
user preferences.

●​ Planning is an important part of the iterative process
of program development. Students outline key
features, time and resource constraints, and user
expectations. Students should document the plan as,
for example, a storyboard, flowchart, pseudocode, or
story map. (source)

●​ As students develop programs they should continuously
test those programs to see that they do what was
expected and fix (debug), any errors. Students should
also be able to successfully debug simple errors in
programs created by others. (source)

1B-AP-17 Describe choices made during program development
using code comments, presentations, and demonstrations.

●​ People communicate about their code to help others
understand and use their programs. Another purpose of
communicating one's design choices is to show an
understanding of one's work. These explanations could
manifest themselves as in-line code comments for
collaborators and assessors, or as part of a summative
presentation, such as a code walk-through or coding
journal. (source)

Practices and Concepts
Source: K–12 Computer Science Framework. (2016). Retrieved from http://www.k12cs.org.

Main practice(s): Reinforced practice(s):

Practice 5: Creating computational artifacts
●​ "The process of developing computational artifacts

embraces both creative expression and the
exploration of ideas to create prototypes and solve
computational problems. Students create artifacts
that are personally relevant or beneficial to their
community and beyond. Computational artifacts can
be created by combining and modifying existing
artifacts or by developing new artifacts. Examples of
computational artifacts include programs,
simulations, visualizations, digital animations, robotic
systems, and apps." (p. 80)

●​ P5.2. Create a computational artifact for practical
intent, personal expression, or to address a societal
issue. (p. 80)

●​ P5.3. Modify an existing artifact to improve or
customize it. (p. 80)

Practice 6: Testing and refining computational artifacts
●​ "Testing and refinement is the deliberate and iterative

process of improving a computational artifact. This
process includes debugging (identifying and fixing
errors) and comparing actual outcomes to intended
outcomes. Students also respond to the changing needs
and expectations of end users and improve the
performance, reliability, usability, and accessibility of
artifacts." (p. 81)

●​ P6.1. Systematically test computational artifacts by
considering all scenarios and using test cases." (p. 81)

●​ P6.2. Identify and fix errors using a systematic process.
(p. 81)

Practice 7: Communicating about computing
●​ "Communication involves personal expression and

exchanging ideas with others. In computer science,
students communicate with diverse audiences about
the use and effects of computation and the
appropriateness of computational choices. Students
write clear comments, document their work, and
communicate their ideas through multiple forms of
media. Clear communication includes using precise
language and carefully considering possible audiences."
(p. 82)

●​ P7.2. Describe, justify, and document computational
processes and solutions using appropriate terminology
consistent with the intended audience and purpose. (p.
82)

Main concept(s): Reinforced concept(s):

Modularity
●​ "Modularity involves breaking down tasks into

simpler tasks and combining simple tasks to create

Algorithms
●​ "Algorithms are designed to be carried out by both

humans and computers. In early grades, students learn

http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.csteachers.org/page/standards
http://www.k12cs.org
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=90
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=91
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=92

something more complex. In early grades, students
learn that algorithms and programs can be designed
by breaking tasks into smaller parts and recombining
existing solutions. As they progress, students learn
about recognizing patterns to make use of general,
reusable solutions for commonly occurring scenarios
and clearly describing tasks in ways that are widely
usable." (p. 91)

●​ Grade 5 - "Programs can be broken down into smaller
parts to facilitate their design, implementation, and
review. Programs can also be created by
incorporating smaller portions of programs that have
already been created." (p. 104)

Program Development
●​ "Programs are developed through a design process

that is often repeated until the programmer is
satisfied with the solution. In early grades, students
learn how and why people develop programs. As they
progress, students learn about the tradeoffs in
program design associated with complex decisions
involving user constraints, efficiency, ethics, and
testing." (p. 91)

●​ Grade 5 - "People develop programs using an
iterative process involving design, implementation,
and review. Design often involves reusing existing
code or remixing other programs within a
community. People continuously review whether
programs work as expected, and they fix, or debug,
parts that do not. Repeating these steps enables
people to refine and improve programs." (p. 104)

about age-appropriate algorithms from the real world.
As they progress, students learn about the
development, combination, and decomposition of
algorithms, as well as the evaluation of competing
algorithms." (p. 91)

●​ Grade 5 - "Different algorithms can achieve the same
result. Some algorithms are more appropriate for a
specific context than others." (p. 103)

Control
●​ "Control structures specify the order in which

instructions are executed within an algorithm or
program. In early grades, students learn about
sequential execution and simple control structures. As
they progress, students expand their understanding to
combinations of structures that support complex
execution." (p. 91)

●​ Grade 5 - "Control structures, including loops, event
handlers, and conditionals, are used to specify the flow
of execution. Conditionals selectively execute or skip
instructions under different conditions." (p. 103)

Scratch Blocks

Primary blocks Events

Supporting blocks Control, Looks, Motion, Sound

Vocabulary

Algorithm ●​ A step-by-step process to complete a task. (source)
●​ An algorithm is a formula or set of steps for solving a particular problem. To be an algorithm, a

set of rules must be unambiguous and have a clear stopping point. (source)

Backdrop ●​ One out of possibly many frames, or backgrounds, of the Stage. (source)

Debugging ●​ The process of finding and correcting errors (bugs) in programs. (source)
●​ To find and remove errors (bugs) from a software program. Bugs occur in programs when a line

of code or an instruction conflicts with other elements of the code. (source)

Event (trigger) ●​ An action or occurrence detected by a program. Events can be user actions, such as clicking a
mouse button or pressing a key, or system occurrences, such as running out of memory. Most
modern applications, particularly those that run in Macintosh and Windows environments, are
said to be event-driven,because they are designed to respond to events. (source)

●​ The computational concept of one thing causing another thing to happen. (source)

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=114
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=114
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=101
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=113
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/7dMJwwBnHpCe3L0aIoADxn/308459f813206d7aed7baa2d8bb5c4c9/Control.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/59IZeacJs1FBeLq2dJ13a8/0619c8a65768982c0563cf387a29de62/Motion.png
https://images.ctfassets.net/1devtjk7knks/385tNeMaefAu4i7yiXeUqC/578353cea86a0fcab3963afd6e1999d7/Sound.png
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=269
http://www.webopedia.com/TERM/A/algorithm.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139
http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=271
http://www.webopedia.com/TERM/D/debug.html
http://www.webopedia.com/TERM/E/event.html
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=139

●​ Any identifiable occurrence that has significance for system hardware or software.
User-generated events include keystrokes and mouse clicks; system-generated events include
program loading and errors. (source)

Scripts ●​ One or more Scratch blocks connected together to form a sequence. Scripts begin with an event
block that responds to input (e.g., mouse click, broadcast). When triggered, additional blocks
connected to the event block are executed one at a time. (source)

Sprite ●​ A media object that performs actions on the stage in a Scratch project. (source)

Storyboard ●​ Like comic strips for a program, storyboards tell a story of what a coding project will do and can
be used to plan a project before coding.

CSTA Glossary ●​ More vocabulary words and definitions created by the Computer Science Teachers Association

Connections

Integration Potential subjects: History, language arts, media arts, science, social studies

Example(s): This project could be modified to show a walk through a historical, contemporary, or
fictional environment in a specific time period or location. For example, a scenic walk in a fictional
world from the perspective of a character in a story. As another example, a scenic walk from the
perspective of a historical figure in a time period and culture coders are learning about. Click here for a
studio with similar projects.

Vocations Authors, marketers, and media artists are often asked to create a story to sell a product or create a
narrative. In this instance, we are creating stories based off of places or spaces, which is a practice
used in creative vocations such as writing, art, and music. Click here to visit a website dedicated to
exploring potential careers through coding.

Resources

●​ Example project
●​ Video walkthroughs
●​ Project files

Project Sequence

Preparation (20+ minutes)

Suggested preparation Resources for learning more

Customizing this project for your class (10+ minutes): Remix
the project example to include your own scenic walk. For
example, a scenic walk using pictures from your own school or
classroom. Coders could then remix a project you create that
has a variety of backdrops pictures from the local community.

(10+ minutes) Read through each part of this lesson plan and
decide which sections the coders you work with might be
interested in and capable of engaging with in the amount of

●​ BootUp Scratch Tips
○​ Videos and tips on Scratch from our YouTube

channel
●​ BootUp Facilitation Tips

○​ Videos and tips on facilitating coding classes
from our YouTube channel

●​ Scratch Starter Cards
○​ Printable cards with some sample starter code

designed for beginners
●​ ScratchEd

http://k12cs.org/wp-content/uploads/2016/09/K%E2%80%9312-Computer-Science-Framework.pdf#page=272
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=140
http://scratched.gse.harvard.edu/guide/files/CreativeComputing20141015.pdf#page=141
https://csteachers.org/k12standards/glossary/
https://scratch.mit.edu/studios/27603027/
https://careerswithstem.com.au/
https://scratch.mit.edu/projects/180211485/
https://www.youtube.com/playlist?list=PLV4zluvZAlMrupe8SEHQB503b8jDVvXEI
https://drive.google.com/drive/folders/0B342uiaCLSS3ZHprTi1pa3NWVm8?resourcekey=0-MMP1Br-qim80vFAEddt9GA&usp=sharing
https://scratch.mit.edu/projects/180211485/
https://www.youtube.com/playlist?list=PLV4zluvZAlMrBWUeo1WMmRE7IQpJ_nOJV
https://youtube.com/bootuppd
https://youtube.com/bootuppd
https://www.youtube.com/playlist?list=PLV4zluvZAlMpHQ0MbOkE52QC9f0SYNJVh
https://youtube.com/bootuppd
https://scratch.mit.edu/info/cards/
http://scratched.gse.harvard.edu/

time you have with them. If using projects with sound,
individual headphones are very helpful.

Download the offline version of Scratch: Although hopefully
infrequent, your class might not be able to access Scratch due
to Scratch’s servers going down or your school losing internet
access. Events like these could completely derail your lesson
plans for the day; however, there is an offline version of
Scratch that coders could use when Scratch is inaccessible.
Click here to download the offline version of Scratch on to
each computer a coder uses and click here to learn more by
watching a short video.

○​ A Scratch community designed specifically for
educators interested in sharing resources and
discussing Scratch in education

●​ Scratch Help
○​ This includes examples of basic projects and

resources to get started
●​ Scratch Videos

○​ Introductory videos and tips designed by the
makers of Scratch

●​ Scratch Wiki
○​ This wiki includes a variety of explanations and

tutorials

Getting Started (12+ minutes)

Suggested sequence Resources, suggestions, and connections

1. Review and demonstration (2+ minutes):
Begin by asking coders to talk with a neighbor for 30 seconds
about something they learned last time; assess for general
understanding of the practices and concepts from the previous
project.

Explain that today we are going to make a scenic walk where a
sprite visits different backdrops and certain sprites show or
hide depending on what backdrop is showing. Display and
demonstrate the sample project (or your own remixed
version).

Practices reinforced:
●​ Communicating about computing

Video: Project Preview (1:54)
Video: Lesson pacing (1:48)

This can include a full class demonstration or guided
exploration in small groups or individually. For small group and
individual explorations, you can use the videos and quick
reference guides embedded within this lesson, and focus on
facilitating 1-on-1 throughout the process.

Example review discussion questions:

●​ What’s something new you learned last time you
coded?

○​ Is there a new block or word you learned?
●​ What’s something you want to know more about?
●​ What’s something you could add or change to your

previous project?
●​ What’s something that was easy/difficult about your

previous project?

2. Discussion and demonstration (10+ minutes):
3+ minute discussion
Have coders talk with each other about how they might create
a project like the one demonstrated. If coders are unsure, and
the discussion questions aren’t helping, you can model
thought processes: “I noticed the sprite moved around, so I
think they used a motion block. What motion block(s) might
be in the code? What else did you notice?”

7+ minute demonstration
Quickly review how to add in a few backdrops and a couple of
sprites for each backdrop. Explain we want all of the sprites to
hide on the first backdrop and then certain sprites appear on
different backdrops. Walk through using hide blocks with when
green flag clicked blocks to hide sprites as soon as the program
starts.

Practices reinforced:
●​ Communicating about computing

Concepts reinforced:
●​ Algorithms
●​ Modularity

Video: Using the “when backdrop switches to” block (4:13)
Quick reference guide:Click here

Note: Discussions might include full class or small groups, or
individual responses to discussion prompts. These discussions
which ask coders to predict how a project might work, or think
through how to create a project, are important aspects of
learning to code. Not only does this process help coders think
logically and creatively, but it does so without giving away the
answer.

https://scratch.mit.edu/download
https://youtu.be/M0MoF-OI48A
https://scratch.mit.edu/help/
https://scratch.mit.edu/help/videos/
https://wiki.scratch.mit.edu/wiki/Scratch_Wiki:Table_of_Contents
https://scratch.mit.edu/projects/180211485/
https://www.youtube.com/watch?v=ihxwp1DIaEo
https://youtu.be/B2sPAmQxiGc
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://youtu.be/9UUvUT8W3zw
https://docs.google.com/presentation/d/1tKEMSx3m0tK07aDbCInQ51htCnJ3MxTWNZW9Sd6jxGU/edit?usp=sharing

Demonstrate how to show sprites using the when backdrop
switches to block. Switch backdrops to demonstrate how
sprites appear on specific backdrops. You can use the resource
on the right for an example.

Intentionally create a bug where the sprite doesn’t hide when
finished running code at the end of a sequence, then ask the
class how to fix it (add a hide block before switching to the
next backdrop).

Example discussion questions:

●​ What would we need to know to make something like
this in Scratch?

●​ What kind of blocks might we use?
●​ What else could you add or change in a project like

this?
●​ What code from our previous projects might we use in

a project like this?
●​ What kind of backdrops might we use?

●​ What kind of sprites might we see in each
backdrop?

○​ What kind of code might they have?

Project Work (91-105+ minutes; 3+ classes)

Suggested sequence Resources, suggestions, and connections

3. Create a storyboard (10-15+ minutes):
Walk through the process of creating a storyboard by asking
the following questions, then giving coders time to document
their answers through physical or digital means:

1.​ Which backdrops will you use?
2.​ Can you describe what might occur on each backdrop?
3.​ What sprites will be on each backdrop?
4.​ What will each of these sprites do?

a.​ What algorithms can you create to do that?
5.​ Will users be able to interact with your scenic walk?

When coders are ready, have them show you their storyboard
and ask questions for clarification of their intent (which may
change once they start coding and get more ideas). If
approved, they may continue on to the next steps (logging in
and creating their scenic walk); otherwise they can continue to
think through and work on their storyboard.

If using a remix project with preloaded backdrops, make sure
you provide a link on your class website or Scratch classroom
so coders can quickly access your own remix project.

Theme examples:

●​ Use the Scratch backdrops
●​ Pictures of various parts of your classroom
●​ . . . the class’s homeroom
●​ . . . your school
●​ . . . your community
●​ . . . a vacation
●​ . . . a field trip
●​ Crowdsource pictures by using submissions from

various facilitators, parents, or community members,
etc.

●​ Or have coders bring in their own pictures on a USB
drive or by connecting their phone to a computer (this

Standards reinforced:
●​ 1B-AP-13 Use an iterative process to plan the

development of a program by including others'
perspectives and considering user preferences

Practices reinforced:
●​ Communicating about computing

Concepts reinforced:
●​ Program development
●​ Modularity

Resource: Example storyboard templates
Resource: Storyboard questions for displaying

Note: Some coders do really well with open projects, while
others thrive within constraints. It may make more sense to
suggest a range of sprites and backdrops so coders aren’t
overwhelmed with possibilities. This can also help with better
predicting how long it might take to create the story.

Storyboarding Tip: Coders can color their storyboard (or mark
with symbols) what they know, have questions about, and
don’t know. For example: mark something green if coders
know how to create the algorithm for that sprite/action; mark
yellow if a coder has questions; mark red if a coder is unsure
how to do something.

Suggestion: If coders need additional help, perhaps pair them
with someone who might help them with the storyboarding
process. Or, you could have coders meet with a peer to discuss
their storyboard before asking to share it with yourself. This
can be a great way to get academic feedback and ideas from a
peer.

Note: Coders may change their mind midway through a
project and wish to rethink through their original storyboard.
This is part of the design process and it is encouraged they

https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
http://creately.com/blog/examples/storyboard-templates-creately/
https://docs.google.com/document/d/1aevjTFCGpF7TCVAkJXtBbzbMroV6vmrfWD33hOQYrWw/edit?usp=sharing

would be the most time consuming to do and is only
recommended for older coders)

revise their storyboard to reflect their new ideas.

4. Log in (1-10+ minutes):
If not yet comfortable with logging in, review how to log into
Scratch and create a new project.

If coders continue to have difficulty with logging in, you can
create cards with a coder’s login information and store it in
your desk. This will allow coders to access their account
without displaying their login information to others.

Alternative login suggestion: Instead of logging in at the start
of class, another approach is to wait until the end of class to
log in so coders can immediately begin working on coding;
however, coders may need a reminder to save before leaving
or they will lose their work.

Why the variable length of time? It depends on comfort with
login usernames/passwords and how often coders have signed
into Scratch before. Although this process may take longer
than desired at the beginning, coders will eventually be able to
login within seconds rather than minutes.

What if some coders log in much faster than others? Set a
timer for how long everyone has to log in to their account
(e.g., 5 minutes). If anyone logs in faster than the time limit,
they can open up previous projects and add to them. Your role
during this time is to help out those who are having difficulty
logging in. Once the timer goes off, everyone stops their
process and prepares for the following chunk.

5. Code your scenic walk (80+ minutes, the majority of at
least two classes):
Leave your code from the demonstration on display so coders
have a visual reminder to use the when backdrop switches to
block. Give coders time to create their scenic walk and
encourage them to constantly refer back to their storyboard
when they’re stuck on what they should do next. Encourage
peer-to-peer assistance and facilitate 1-on-1 as needed.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences,

events, loops, and conditionals
Practices reinforced:

●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Facilitation Suggestion: Some coders may not thrive in inquiry
based approaches to learning, so we can encourage them to
use the Tutorials to get more ideas for their projects; however,
we may need to remind coders the suggestions provided by
Scratch are not specific to our projects, so it may create some
unwanted results unless the code is modified to match our
own intentions.

A note on using the “Coder Resources” with your class: Young
coders may need a demonstration (and semi-frequent friendly
reminders) for how to navigate a browser with multiple tabs.
The reason why is because kids will have at least three tabs
open while working on a project: 1) a tab for Scratch, 2) a tab
for the Coder Resources walkthrough, and 3) a tab for the
video/visual walkthrough for each step in the Coder Resources
document. Demonstrate how to navigate between these three
tabs and point out that coders will close the video/visual
walkthrough once they complete that particular step of a
project and open a new tab for the next step or extension.
Although this may seem obvious for many adults, we
recommend doing this demonstration the first time kids use
the Coder Resources and as friendly reminders when needed.

https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/7u6NLdHVQaloVJlTvUBnMH/916c33045c4822ed485a070c08d223e7/scratchBlockHelp.gif

6. Add in comments (the amount of time depends on typing
speed and amount of code):
1 minute demonstration
When the project is nearing completion, bring up some code
for the project and ask coders to explain to a neighbor how the
code is going to work. Review how we can use comments in
our program to add in explanations for code, so others can
understand how our programs work.

Quickly review how to add in comments.

Commenting time
Ask coders to add in comments explaining the code
throughout their project. Encourage coders to write clear and
concise comments, and ask for clarification or elaboration
when needed.

Standards reinforced:
●​ 1B-AP-17 Describe choices made during program

development using code comments, presentations,
and demonstrations

Practices reinforced:
●​ Communicating about computing

Concepts reinforced:
●​ Algorithms

Video: Add in comments (1:45)
Quick reference guide: Click here

Facilitation suggestion: One way to check for clarity of
comments is to have a coder read out loud their comment and
ask another coder to recreate their comment using code
blocks. This may be a fun challenge for those who type fast
while others are completing their comments.

Assessment

Standards reinforced:
●​ 1B-AP-17 Describe choices made during program development using code comments, presentations, and

demonstrations
Practices reinforced:

●​ Communicating about computing

Although opportunities for assessment in three different forms are embedded throughout each lesson, this page provides
resources for assessing both processes and products. If you would like some example questions for assessing this project, see
below:

Summative
Assessment of Learning

Formative
Assessment for Learning

Ipsative
Assessment as Learning

The debugging exercises, commenting
on code, and projects themselves can all
be forms of summative assessment if a
criteria is developed for each project or
there are “correct” ways of solving,
describing, or creating.

For example, ask the following after a
project:

●​ Can coders debug the
debugging exercises?

●​ Did coders create a project
similar to the project preview?

○​ Note: The project
preview and sample
projects are not
representative of what
all grade levels should
seek to emulate. They
are meant to generate
ideas, but expectations
should be scaled to

The 1-on-1 facilitating during each
project is a form of formative
assessment because the primary role of
the facilitator is to ask questions to
guide understanding; storyboarding can
be another form of formative
assessment.

For example, ask the following while
coders are working on a project:

●​ What are three different ways
you could change that sprite’s
algorithm?

●​ What happens if we change the
order of these blocks?

●​ What could you add or change
to this code and what do you
think would happen?

●​ How might you use code like
this in everyday life?

●​ See the suggested questions
throughout the lesson and the

The reflection and sharing section at the
end of each lesson can be a form of
ipsative assessment when coders are
encouraged to reflect on both current
and prior understandings of concepts
and practices.

For example, ask the following after a
project:

●​ How is this project similar or
different from previous
projects?

●​ What new code or tools were
you able to add to this project
that you haven’t used before?

●​ How can you use what you
learned today in future
projects?

●​ What questions do you have
about coding that you could
explore next time?

●​ See the reflection questions at

https://youtu.be/Fr7jvGfasFM
https://docs.google.com/presentation/d/1dvfo4ChhUWws6GklP8AkoWOwhsMpPqupRFf94XiS0h4/edit?usp=sharing
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk

match the experience
levels of the coders you
are working with.

●​ Did coders use a variety of block
types in their algorithms and
can they explain how they work
together for specific purposes?

●​ Did coders include descriptive
comments for each event in all
of their sprites?

●​ Can coders explain how their
project is similar to their
storyboard?

●​ Can coders explain what we
need to do to make sure sprites
only appear on certain
backdrops and not others?

●​ Did coders create at least ##
backdrops with different sprites
triggered by the when backdrop
switches to block?

○​ Choose a number
appropriate for the
coders you work with
and the amount of time
available.

assessment examples for more
questions.

the end for more suggestions.

Extended Learning

Project Extensions

Suggested extensions Resources, suggestions, and connections

Use the example project as a guide (as needed)
At some point, coders might get stuck or run out
of ideas. Rather than explaining to them how to
do something, ask them to open the example
project, read the comments inside the various
sprites and background, and then look at the code
to see if they can figure out how to solve their
problem. Although this is a very open-ended
approach, this models a common coding practice
that helps coders become independent learners.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
●​ 1B-AP-12 Modify, remix, or incorporate portions of an existing

program into one's own work, to develop something new or add
more advanced features

Practices reinforced:
●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Resource: Example project

Facilitation Suggestion: Some coders may not thrive in inquiry based
approaches to learning, so we can encourage them to use the Tutorials to
get more ideas for their projects; however, we may need to remind coders
the suggestions provided by Scratch are not specific to our projects, so it
may create some unwanted results unless the code is modified to match

https://drive.google.com/open?id=0B342uiaCLSS3dDZNeGczOWRtazg
https://drive.google.com/open?id=0B342uiaCLSS3dDZNeGczOWRtazg
https://drive.google.com/open?id=1C5X0AETVTCmx4YTaHHrVGYB2hNCDUmJEBJokTiiudEk#heading=h.h5oq13i5ouia
https://scratch.mit.edu/projects/180211485/
https://scratch.mit.edu/projects/180211485/
https://scratch.mit.edu/projects/180211485/
https://images.ctfassets.net/1devtjk7knks/7u6NLdHVQaloVJlTvUBnMH/916c33045c4822ed485a070c08d223e7/scratchBlockHelp.gif

our own intentions.

Note: The example project has a lot of code on Scratch Cat (one set of
blocks for each backdrop) and is probably more complicated than most
younger coders will be capable of creating on their own; however, the code
is relatively simple and comes with comments explaining each set of code.
It might help to have coders explore the other sprites before exploring
Scratch Cat so they aren’t overwhelmed immediately.

Add even more (30+ minutes, or at least one
class):
If time permits and coders are interested in this
project, encourage coders to explore what else
they can create in Scratch by trying out new
blocks and reviewing previous projects to get
ideas for this project. When changes are made,
encourage them to alter their comments to reflect
the changes (either in the moment or at the end
of class).

While facilitating this process, monitor to make
sure coders don’t stick with one feature for too
long. In particular, coders like to edit their
sprites/backgrounds by painting on them or
taking photos, or listen to the built-in sounds in
Scratch. It may help to set a timer for creation
processes outside of using blocks so coders focus
their efforts on coding.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
Practices reinforced:

●​ Testing and refining computational artifacts
●​ Creating computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control

Facilitation Suggestion: Some coders may not thrive in inquiry based
approaches to learning, so we can encourage them to use the Tutorials to
get more ideas for their projects; however, we may need to remind coders
the suggestions provided by Scratch are not specific to our projects, so it
may create some unwanted results unless the code is modified to match
our own intentions.

Suggested questions:

●​ What else can you do with Scratch?
●​ What do you think the other blocks do?

a.​ Can you make your project do ____?
●​ What other sprites can you add to your project?
●​ What have you learned in other projects that you could use in this

project?
●​ Can you add more user control than demonstrated?
●​ How else might you use the when backdrop switches to block in

your project?
●​ Could you make it so the user picks where we go next in the scenic

walk?
a.​ For example, make this a choose-your-own-adventure style

story?
●​ Could you turn this scenic walk into a game?

Similar projects:
Have coders explore the code of other peers in
their class, or on a project studio dedicated to this
project. Encourage coders to ask questions about
each other’s code. When changes are made,
encourage coders to alter their comments to
reflect the changes (either in the moment or at
the end of class).

Watch this video (3:20) if you are unsure how to
use a project studio.

Standards reinforced:
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
●​ 1B-AP-12 Modify, remix, or incorporate portions of an existing

program into one's own work, to develop something new or add
more advanced features

Practices reinforced:
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms

Note: Coders may need a gentle reminder we are looking at other projects
to get ideas for our own project, not to simply play around. For example,

https://images.ctfassets.net/1devtjk7knks/eaKZdfO6IifvE3q57x0ou/d09fb0710644e9cdc3c9ae9850e37c4e/Scratch_Cat.png
https://images.ctfassets.net/1devtjk7knks/eaKZdfO6IifvE3q57x0ou/d09fb0710644e9cdc3c9ae9850e37c4e/Scratch_Cat.png
https://images.ctfassets.net/1devtjk7knks/7u6NLdHVQaloVJlTvUBnMH/916c33045c4822ed485a070c08d223e7/scratchBlockHelp.gif
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://youtu.be/hudasCRlwLI

“look for five minutes,” “look at no more than five other projects,” “find
three projects that each do one thing you would like to add to your
project,” or “find X number of projects that are similar to the project we
are creating.”

Generic questions:

●​ What are some ways you can expand this project beyond what it
can already do?

●​ How is this project similar (or different) to something you worked
on today?

●​ What blocks did they use that you didn’t use?
a.​ What do you think those blocks do?

●​ What’s something you like about their project that you could add
to your project?

●​ How might we add the when backdrop switches to block to this
project?

●​ What other backdrops and sprites might we add to make this
project different?

micro:bit extensions:
Note: the micro:bit requires installation of Scratch
Link and a HEX file before it will work with a
computer. Watch this video (2:22) and use this
guide to learn how to get started with a micro:bit
before encouraging coders to use the micro:bit
blocks.

Much like the generic Scratch Tips folder linked in
each Coder Resources document, the micro:bit
Tips folder contains video and visual walkthroughs
for project extensions applicable to a wide range
of projects. Although not required, the micro:bit
Tips folder uses numbers to indicate a suggested
order for learning about using a micro:bit in
Scratch; however, coders who are comfortable
with experimentation can skip around to topics
relevant to their project.

Standards reinforced:
●​ 1B-AP-09 Create programs that use variables to store and modify

data
●​ 1B-AP-10 Create programs that include sequences, events, loops,

and conditionals
●​ 1B-AP-11 Decompose (break down) problems into smaller,

manageable subproblems to facilitate the program development
process

●​ 1B-AP-15 Test and debug (identify and fix errors) a program or
algorithm to ensure it runs as intended

Practices reinforced:
●​ Recognizing and defining computational problems
●​ Creating computational artifacts
●​ Developing and using abstractions
●​ Fostering an inclusive computing culture
●​ Testing and refining computational artifacts

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity
●​ Program Development
●​ Variables

Folder with all micro:bit quick reference guides: Click here
Additional Resources:

●​ Printable micro:bit cards
○​ Cards made by micro:bit
○​ Cards made by Scratch

●​ Micro:bit’s Scratch account with example projects

Generic questions:

●​ How can you use a micro:bit to add news forms of user
interaction?

●​ What do the different micro:bit event blocks do and how could you
use them in a project?

●​ How could you use the LED display for your project?

https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://youtu.be/LO6m6bBmxW8
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4
https://drive.google.com/open?id=1UPZ9xby2jS-V9X-w8n6CQzw3_g4fn_XZueppOdZPbB4
https://images.ctfassets.net/1devtjk7knks/5aB0lVS7s5k0Cfxeu8wMqR/b48d23d5c2ea437783aa8550dd3861e8/Micro_Bit.png
https://images.ctfassets.net/1devtjk7knks/5aB0lVS7s5k0Cfxeu8wMqR/b48d23d5c2ea437783aa8550dd3861e8/Micro_Bit.png
https://drive.google.com/open?id=0B342uiaCLSS3X0JZNHVSOEJVR1E
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://drive.google.com/open?id=13ueoN-lzyq88PFA9olbLsN6T_WAgvWqX
https://microbit.org/scratch/
http://bit.ly/scratchmicrobitcards
https://scratch.mit.edu/users/microbit_edu/
https://images.ctfassets.net/1devtjk7knks/5aB0lVS7s5k0Cfxeu8wMqR/b48d23d5c2ea437783aa8550dd3861e8/Micro_Bit.png

●​ What do the tilt blocks do and how could you use them in your
project?

●​ How could you use the buttons to add user/player controls?
●​ How might you use a micro:bit to make your project more

accessible?

Differentiation

Less experienced coders More experienced coders

Demonstrate the example remix project or your own version,
and walk through how to experiment changing various
parameters or blocks to see what they do. Give some time for
them to change the blocks around. When it appears a coder
might need some guidance or has completed an idea,
encourage them to add more to the project or begin following
the steps for creating the project on their own (or with BootUp
resources). Continue to facilitate one-on-one using
questioning techniques to encourage tinkering and trying new
combinations of code.

If you are working with other coders and want to get less
experienced coders started with remixing, have those who are
interested in remixing a project watch this video (2:42) to learn
how to remix a project.

Demonstrate the project without showing the code used to
create the project. Challenge coders to figure out how to
recreate a similar project without looking at the code of the
original project. If coders get stuck reverse engineering, use
guiding questions to encourage them to uncover various
pieces of the project. Alternatively, if you are unable to work
with someone one-on-one at a time of need, they can access
the quick reference guides and video walkthroughs above to
learn how each part of this project works.

If you are working with other coders and want to get more
experienced coders started with reverse engineering, have
those who are interested watch this video (2:30) to learn how
to reverse engineer a project.

Debugging Exercises (1-5+ minutes each)

Debugging exercises Resources and suggestions

Why does our backdrop switch to The End and
keep all the sprites on the stage?

●​ We need to use the "and wait" version of
the block so it runs all of the code for that
backdrop before switching to the next one

Why doesn't the dragon appear at the castle?

●​ We need to have our sprite show when we
switch to that backdrop

Why does our basketball float away after being
dunked?

●​ We need to change y by -1, not by 1
(positive y numbers move up and negative
y numbers move down)

micro:bit required I want to make it so it won't
switch scenes until I press a button on the
micro:bit; however, the code only works for the
first scene. How can I fix this bug so I have to press
a button before it switches to the next scene?

●​ A quick fix is to move the “wait until any
button pressed” blocks inside of the
“repeat 6” block (and above the “switch

Standards reinforced:
●​ 1B-AP-15 Test and debug (identify and fix errors) a program or

algorithm to ensure it runs as intended
Practices reinforced:

●​ Testing and refining computational artifacts
Concepts reinforced:

●​ Algorithms
●​ Control

Suggested guiding questions:

●​ What should have happened but didn’t?
●​ Which sprite(s) do you think the problem is located in?
●​ What code is working and what code has the bug?
●​ Can you walk me through the algorithm (steps) and point out

where it’s not working?
●​ Are there any blocks missing or out of place?
●​ How would you code this if you were coding this algorithm from

Scratch?
●​ Another approach would be to read the question out loud and

give hints as to what types of blocks (e.g., motion, looks, event,
etc.) might be missing.

Reflective questions when solved:

●​ What was wrong with this code and how did you fix it?

https://images.ctfassets.net/1devtjk7knks/5aB0lVS7s5k0Cfxeu8wMqR/b48d23d5c2ea437783aa8550dd3861e8/Micro_Bit.png
https://scratch.mit.edu/projects/180211485/
https://youtu.be/_NY8SOengc0
https://youtu.be/jjrFkZo0T20
https://scratch.mit.edu/projects/180574556/#player
https://scratch.mit.edu/projects/180574556/#player
https://images.ctfassets.net/1devtjk7knks/63weVlmJhVqXvAgeX4iPRs/1ba61d958e2d314a10ebd79fda1e41b2/Scenic_Walk_-_Debugging_1.png
https://images.ctfassets.net/1devtjk7knks/63weVlmJhVqXvAgeX4iPRs/1ba61d958e2d314a10ebd79fda1e41b2/Scenic_Walk_-_Debugging_1.png
https://images.ctfassets.net/1devtjk7knks/63weVlmJhVqXvAgeX4iPRs/1ba61d958e2d314a10ebd79fda1e41b2/Scenic_Walk_-_Debugging_1.png
https://scratch.mit.edu/projects/180574561/#player
https://images.ctfassets.net/1devtjk7knks/3NzybY5TxWJebvw1W9Uu2I/30e0e6b258db08f12151ef36d0cec434/Scenic_Walk_-_Debugging_2.png
https://images.ctfassets.net/1devtjk7knks/3NzybY5TxWJebvw1W9Uu2I/30e0e6b258db08f12151ef36d0cec434/Scenic_Walk_-_Debugging_2.png
https://scratch.mit.edu/projects/180574566/#player
https://scratch.mit.edu/projects/180574566/#player
https://images.ctfassets.net/1devtjk7knks/21pToJAT5Zag3k5KyfhIqT/74b1a0076722b30137be41f0e1444e69/Scenic_Walk_-_Debugging_3.png
https://images.ctfassets.net/1devtjk7knks/21pToJAT5Zag3k5KyfhIqT/74b1a0076722b30137be41f0e1444e69/Scenic_Walk_-_Debugging_3.png
https://images.ctfassets.net/1devtjk7knks/21pToJAT5Zag3k5KyfhIqT/74b1a0076722b30137be41f0e1444e69/Scenic_Walk_-_Debugging_3.png
https://scratch.mit.edu/projects/309293330/
https://scratch.mit.edu/projects/309293330/
https://scratch.mit.edu/projects/309293330/
https://scratch.mit.edu/projects/309293330/
https://scratch.mit.edu/projects/309293330/
https://images.ctfassets.net/1devtjk7knks/64jLDhqoD7RbF8JCGnb0du/10792cdd42fb4c9778dd0b3ba61fb117/Scenic_Walk_-_microbit_Debugging.png
https://images.ctfassets.net/1devtjk7knks/64jLDhqoD7RbF8JCGnb0du/10792cdd42fb4c9778dd0b3ba61fb117/Scenic_Walk_-_microbit_Debugging.png
https://images.ctfassets.net/1devtjk7knks/64jLDhqoD7RbF8JCGnb0du/10792cdd42fb4c9778dd0b3ba61fb117/Scenic_Walk_-_microbit_Debugging.png
https://images.ctfassets.net/1devtjk7knks/59IZeacJs1FBeLq2dJ13a8/0619c8a65768982c0563cf387a29de62/Motion.png
https://images.ctfassets.net/1devtjk7knks/7XRnKlva55S44sIyAbFHk/417b6856689ef176b9fa1434c5d4cf81/Looks.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png

backdrop to next backdrop and wait”
block)

●​ Another option is to use the micro:bit
buttons to switch between each backdrop;
however, we would need to add code to
each sprite to make it so they hide if it
switches to a previous backdrop

Even more debugging exercises

●​ Is there another way to fix this bug using different code or tools?
●​ If this is not the first time they’ve coded: How was this exercise

similar or different from other times you’ve debugged code in
your own projects or in other exercises?

Unplugged Lessons and Resources

Although each project lesson includes suggestions for the amount of class time to spend on a project, BootUp encourages
coding facilitators to supplement our project lessons with resources created by others. In particular, reinforcing a variety of
standards, practices, and concepts through the use of unplugged lessons. Unplugged lessons are coding lessons that teach
core computational concepts without computers or tablets. You could start a lesson with a short, unplugged lesson relevant to
a project, or use unplugged lessons when coders appear to be struggling with a concept or practice.

List of unplugged lessons and resources

Incorporating unplugged lessons in the middle of a multi-day project situates understandings within an actual project;
however, unplugged lessons can occur before or after projects with the same concepts. An example for incorporating
unplugged lessons:

Lesson 1.​ Getting started sequence and beginning project work
Lesson 2.​ Continuing project work
Lesson 3.​ Debugging exercises and unplugged lesson that reinforces concepts from a project
Lesson 4.​ Project extensions and sharing

Reflection and Sharing

Reflection suggestions Sharing suggestions

Coders can either discuss some of the following prompts with
a neighbor, in a small group, as a class, or respond in a physical
or digital journal. If reflecting in smaller groups or individually,
walk around and ask questions to encourage deeper responses
and assess for understanding. Here is a sample of a digital
journal designed for Scratch (source) and here is an example of
a printable journal useful for younger coders.

Sample reflection questions or journal prompts:

●​ How did you use computational thinking when
creating your project?

●​ What’s something we learned while working on this
project today?

○​ What are you proud of in your project?
○​ How did you work through a bug or difficult

challenge today?
●​ What other projects could we do using the same

concepts/blocks we used today?
●​ What’s something you had to debug today, and what

strategy did you use to debug the error?

Standards reinforced:
●​ 1B-AP-17 Describe choices made during program

development using code comments, presentations,
and demonstrations

Practices reinforced:
●​ Communicating about computing
●​ Fostering an inclusive culture

Concepts reinforced:
●​ Algorithms
●​ Control
●​ Modularity
●​ Program development

Peer sharing and learning video: Click here (1:33)
At the end of class, coders can share with each other
something they learned today. Encourage coders to ask
questions about each other’s code or share their journals with
each other. When sharing code, encourage coders to discuss
something they like about their code as well as a suggestion
for something else they might add.

https://images.ctfassets.net/1devtjk7knks/64jLDhqoD7RbF8JCGnb0du/10792cdd42fb4c9778dd0b3ba61fb117/Scenic_Walk_-_microbit_Debugging.png
https://images.ctfassets.net/1devtjk7knks/64jLDhqoD7RbF8JCGnb0du/10792cdd42fb4c9778dd0b3ba61fb117/Scenic_Walk_-_microbit_Debugging.png
https://images.ctfassets.net/1devtjk7knks/4tVrycXlQkct5QSjbsSsbz/be434e3790e16c16c9871c8c1ab60127/Scenic_Walk_-_microbit_Debugging2.png
https://images.ctfassets.net/1devtjk7knks/4tVrycXlQkct5QSjbsSsbz/be434e3790e16c16c9871c8c1ab60127/Scenic_Walk_-_microbit_Debugging2.png
https://images.ctfassets.net/1devtjk7knks/4tVrycXlQkct5QSjbsSsbz/be434e3790e16c16c9871c8c1ab60127/Scenic_Walk_-_microbit_Debugging2.png
https://images.ctfassets.net/1devtjk7knks/4tVrycXlQkct5QSjbsSsbz/be434e3790e16c16c9871c8c1ab60127/Scenic_Walk_-_microbit_Debugging2.png
https://images.ctfassets.net/1devtjk7knks/4tVrycXlQkct5QSjbsSsbz/be434e3790e16c16c9871c8c1ab60127/Scenic_Walk_-_microbit_Debugging2.png
https://scratch.mit.edu/studios/4149066/
https://docs.google.com/spreadsheets/d/1GNJVESt7mLrv_-RNjdti1obHLo8awWEhKUQ1w0YXF2A/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
https://docs.google.com/presentation/d/1ZqFg_GjL9sIpK2NpDyFzuAX0dB6iAM3J4iOgV3guym4/edit?usp=sharing
http://scratched.gse.harvard.edu/ct/assessing.html
https://drive.google.com/file/d/1q2XYo7Y8XYOpRbqFFwj1fRS3Tmkvpiuz/view?usp=sharing
https://drive.google.com/file/d/1q2XYo7Y8XYOpRbqFFwj1fRS3Tmkvpiuz/view?usp=sharing
https://youtu.be/WC4qykY3OPI

●​ What mistakes did you make and how did you learn
from those mistakes?

●​ How did you help other coders with their projects?
○​ What did you learn from other coders today?

●​ What questions do you have about coding?
○​ What was challenging today?

●​ Why are comments helpful in our projects?
●​ How is this project similar to other projects you’ve

worked on?
○​ How is it different?

●​ How else might you use the when backdrop switches
to block?

●​ What backdrops do you feel are missing from your
project and what would happen on those backdrops?

●​ If you were to turn one of the backdrops into its own
story, what would occur in your story?

○​ What kind of code would you use for the
different sprites?

●​ More sample prompts

Publicly sharing Scratch projects: If coders would like to
publicly share their Scratch projects, they can follow these
steps:

1.​ Video: Share your project (2:22)
a.​ Quick reference guide

2.​ Video (Advanced): Create a thumbnail (4:17)
a.​ Quick reference guide

http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
https://images.ctfassets.net/1devtjk7knks/52RQv7FftYSzCiQPCrrfib/a1e259fce2f07d990c02df03590c044e/Events.png
http://scratched.gse.harvard.edu/ct/files/CT_Practices_Journal.pdf
https://youtu.be/hgaLsGbe2gA
https://docs.google.com/presentation/d/1nmV0T4i6DwsW3QWYSxOzhOTkskPVHW1Kb-RuTqMJoPg/edit?usp=sharing
https://youtu.be/ZSmeRyaWITc
https://docs.google.com/presentation/d/1Kl3a_Y_ahtOVNn-Wm4CgGC2L3ep6cdaM49KzC262tag/edit?usp=sharing

	 ​​​ ​
	Scenic Walk
	At a Glance
	Overview and Purpose
	Objectives and Standards
	Process objective(s):
	Practices and Concepts
	Scratch Blocks
	Vocabulary
	Connections
	Resources

	Project Sequence
	Preparation (20+ minutes)
	Getting Started (12+ minutes)
	Project Work (91-105+ minutes; 3+ classes)
	Assessment

	Extended Learning
	Project Extensions
	Differentiation
	Debugging Exercises (1-5+ minutes each)
	Unplugged Lessons and Resources
	Reflection and Sharing

	
	

