
Resources

For more content referenced in this video, check out:

1.​ Generate an exec-level business case in < 30 seconds.​

2.​ Selling With: The art of selling with champions to shape internal

buying conversations & close enterprise deals.​

3.​ The Ultimate Guide to Writing in Enterprise Sales — How to Craft

Internal Narratives.​

4.​ Creating Enterprise Account Maps that Actually Win Deals.​

5.​ The 1-Page Business Case Framework.

Mark Zuckerberg’s Full Email

On Dec 9, 2013, at 12:45 PM, Mark Zuckerberg wrote:​

I've been thinking a lot about what a Messenger Platform might look like

and wrote up all of my thoughts on this. I wanted to be thorough, so this

https://www.fluint.io/post/18-sales-lessons-from-mark-zuckerbergs-leaked-4-262-word-email
https://www.fluint.io/video/fluint-demo-and-product-walkthrough
https://www.amazon.com/Selling-champions-internal-conversations-enterprise-ebook/dp/B0CJQXSNF2/
https://www.amazon.com/Selling-champions-internal-conversations-enterprise-ebook/dp/B0CJQXSNF2/
https://www.fluint.io/post/the-ultimate-guide-to-writing-in-enterprise-sales-how-to-craft-internal-narratives
https://www.fluint.io/post/the-ultimate-guide-to-writing-in-enterprise-sales-how-to-craft-internal-narratives
https://www.fluint.io/post/how-to-map-b2b-decision-makers-enterprise-account-maps-that-actually-help-win-deals
https://docs.google.com/document/d/1ctvfdHRoRxdH87W7GlfKqQWOn0PbtrMjToHvD0x7DQc/edit#

is very long. Hang in there.​

This work falls between two teams -- Messenger and Platform -- and as

such I'm worried that we're not thinking about it enough or prioritizing it

appropriately.​

Given how important messaging has become relative to News Feed

where our platform primarily focuses, it seems like there is a large

opportunity here, both to extend Messenger in a unique and

differentiated way compared to other messaging products and to extend

our development platform to another extremely important surface.​

For Messenger, I think differentiation is extremely important and

something we haven't focused on yet. We've spent the past 6-12 months

catching up to WhatsApp and competitors on table stakes like

performance, reliability, pushability, etc. This work isn't done and we will

continue to do it, including catching up in areas like groups.

But to get people to ditch WhatsApp and switch to Messenger, it will

never be sufficient to be 10% better than them or add fun gimmicks on

any existing attribute or feature. We will have to offer some new

fundamental use case that becomes important to people's daily lives.

The reason a platform is attractive to me is that it is completely new and

brings different kinds of utility and content into the Messenger

experience. Just like News Feed started out as friends content only but

eventually expanded to include more content that is now critical to

everyday engagement, I think there's an opportunity to do this with

Messenger as well. We will face some of the same criticisms like "this

experience should just be about my friends", but with the right defaults,

controls and separation between the different types of content, I think

we can make this a massively net positive addition without meaningfully

reducing signal to noise or making the app worse for messaging friends.

I will get into details below on the options for doing this.​

As a side note, just like with News Feed, I think expanding beyond just

friends content will eventually be the single key to turning Messenger

into a business. We're obviously not focused on this yet, but it's worth

considering because if this assumption is true, then it suggests others

will eventually evolve in this direction too. We have meaningful

advantages in infrastructure, SDK deployment and experience in

executing a platform direction now. But if we wait too long, those

advantages will go away.​

For Platform, the key reason to focus on this is opening up another

valuable surface beyond News Feed. This is important not only to

expand, but because News Feed and therefore our current platform may

actually be getting *less* valuable over time as more behavior moves to

more private mediums like messaging.​

Our current platform plan feels like we're going to invest a lot of energy

to improve the Platform / News Feed experience for little marginal gain.

The surface feels mature to me already. We're focused on quality

because we think the issue is that the cost of using our platform is too

high, when the bigger issue is that the value is too low compared to

emerging alternatives. We do have real quality work to do, but we must

also acknowledge that no amount of quality fixes will increase the

potential value of using our platform.​

Focusing now on opening up a new surface seems like a much better

strategy. Perhaps the biggest reason we're not considering it as much as

we should be is that organizationally the Platform and Messenger teams

are very disconnected, so it is not within the Platform team's scope to

unilaterally decide to do this. This is an unfortunate reason not to

explore this.​

The other major reason we haven't considered it sufficiently is because

fear of spam. This is a completely reasonable fear given the experience

with our existing platform when we rolled it out. That said, we have since

gotten platform to a place where it is not spammy and it is a small part

of our overall signal to noise complaints, while still building it into a $1

billion business.

This proves to me that it is possible to build something extremely

valuable that is not spammy. In fact, if we had gotten the quality balance

right from the beginning and not repeatedly thrashed our ecosystem, our

platform business and engagement from it would almost certainly be

much larger than even the $1 billion it is today.​

So not only do I think it's possible to learn from our mistakes and do this

well, but I also think this is probably a much bigger opportunity than we

intuitively estimate if we can pull this off.​

Below, I'm going to outline four basic Messenger Platform ideas. They go

from smallest and simplest to biggest and most complex. They are not

mutually exclusive, so we can and probably should do multiple of them.​

1. Send a message API / button​

Many apps have Like and Share buttons, encourage you to write on

friends' timelines and use other broad social distribution tools. However,

sharing is becoming increasingly private and many more people would

use these to if you could just send a message to the right people

privately with the content instead. If something like this was widely

deployed, people would probably share a lot more content from apps.

Surprisingly, there is no easy way to do this.​

This is the simplest and easiest thing we can do. It would probably be

meaningfully positive for developers, somewhat positive for

differentiating the Messenger brand as more of a app-wide utility,

positive as a feature for people when they need it, and it would not

meaningfully change message volume. Still, this is low risk and positive

for all constituents, so it seems like we should push further on this.

Historically, we might have had to worry about apps incentivizing people

to send spammy messages to their friends, but now we effectively

enforce our policies and can limit any behavior we don't want. Because

of this, I don't think spam is a meaningful risk.​

One nice feature of this is it's quite defensible and uses our installed

developer base.​

The closest thing that some apps do is import contacts and encourage

you to SMS, but that's very heavyweight if the app has no other reason to

import your contacts. By contrast, most apps have the Facebook SDK

and if the person signs in then the app can get this capability for free.

SMS will not get meaningfully simpler over time because it is

decentralized and nobody has an incentive to improve it. In some

countries it also costs money, which is a fundamental disadvantage.

WhatsApp has no developer platform. I'd be surprised if they didn't

develop one over time, but our deployed base is a meaningful advantage

here.​

2. Content Platform in Messenger​

Stickers feel like a toy implementation of expression. They're valuable

and get at a fundamental need for lighter weight emotional expression

and engagement, but having single companies curate sets of stickers

seems very suboptimal.​

Over the long term, it seems like independent artists must be able to

submit and sell their work, and there must be some kind of store that

more effectively surfaces new content such that the best content can

win. This will increase the overall quality and breadth of the content and

make it a completely universal feature that everyone uses everyday. It

also seems thinking about this as just stickers is very limiting. This

should include other forms of expression and entertainment, including

memes, videos, games and other kinds of content that can be consumed

within a message thread. The long term state of these will be to have an

open market for them as well, rather than a list of content curated by

individual companies.​

It will be pretty easy to do this for stickers, memes and videos. For

stickers, this could be a real business for artists and many will also want

to distribute their work for free. For memes and videos, I assume they

will be free and people will distribute them for free for fun. This will likely

increase message sends and engagement on Messenger, perhaps

meaningfully, but I doubt it's fundamental enough to get people to switch

apps.​

Where this really gets interesting is with in-message games and apps. It

feels unreasonable today to expect people would play many games in

messages instead of switching to the game itself, but as messaging

becomes and increasingly central part of the mobile experience, this

inversion seems quite possible to me.​

I actually think it's a great aspirational goal to make messaging central a

lot of how people interact with content on their phones. The more

ambitious ideas below will focus on extending this theme, but for now

we'll focus on games.​

Intuitively, it's easy to imagine simple games like the rock-paper-scissors

prototype built in a hackathon to be played in messages. Sending

stickers back and forth often feels like a game, and this feels like

extendable behavior.​

We could probably build a simple game platform based on the idea of

people being able to send stickers (as "moves"). Whenever a sticker is

played, the app the sticker is associated with gets its server pinged so it

can update the game state, and then the app can send back an image or

video of the game state that gets embedded in the thread.​

This would be simple enough to make many fun games like

rock-paper-scissors, hangman / Words with Friends, all of the popular

quiz games and essentially any game with an interface that only requires

tapping on an item to play it.​

This would likely be pretty easy to build and would be very fun. Given

how popular these games are, I think there's a meaningful chance this

turns into a big growth driver for us.​

Keep in mind one key advantage this games platform has: you don't need

to install a game to play it. If someone sends you a sticker, you just get

the stickers you need to play immediately. Games will spread extremely

virally. Given how big these quiz apps and things like Words with Friends

have gotten, it's not out of the question that this could drive 100 million

more people to use Messenger.​

That said, there are a few big limitations that will make it harder to

expand beyond this in games:​

- Due to policy, we can't build a full executable environment within our

apps. This prevents apps with richer UIs from working in this way unless

we develop a workaround.​

- Lack of business model will make it less likely that the best developers

invest in this. This isn't hopeless and there are possible ideas to explore

like paid stickers with special powers similar to what you'd pay for in a

normal game. Even without this, indie developers will still be able to

make a lot of good simple games anyway.​

- Even if we solve these issues and enable more complex games, at

some point it will always just be better to play a more complex game in

its own app. So it's probably worth investing to move the line of what

people play in messages somewhat, but not a huge amount.​

Overall though, building the simple games platform described here

should be very easy and high leverage, so I think we should consider

doing this soon. I also think moving any content we offer -- including

stickers, memes and games -- into a better designed and more open

market that anyone can contribute to.​

3. App-to-person messages and agents​

Those are the basic ideas. Here's where I think it actually starts to get

really powerful.​

Beyond enabling person-to-person messages and interaction, another

obvious mode to consider is app-to-person or public figure-to-person

messages and interaction.​

Making this leap is somewhat analogous to News Feed transitioning

from being just about friends to then being about both friends and public

entities. This will fundamentally change the definition of what

Messenger is, and that will come with some tradeoffs, but ultimately I

think it will be overwhelmingly positive if we pull it off.​

I also think it is one of the only truly game changing ideas I've heard that

is a fundamental enough differentiator to make every single person need

to use Messenger in addition to SMS or WhatsApp if we can make this

work.​

Before getting into how this would work, I want to address the obvious

issues of spam and signal to noise.​

A key difference from our initial Platform launch is that now we have the

right tools and we've learned the right lessons to make this a much

better experience than our News Feed / notifications platform ever was

right out of the gate.​

To prevent spam, the biggest thing we can do is make it easy to turn off

(after you turn it on). We never got this quite right on desktop and even

iOS and Android struggle with this. But it should be easy in Messenger.

The first time you get a message from a public entity, we should give you

a prominent button to turn off receiving any more messages from that

entity. After that, we should just make it so that if you ever delete the

thread, we either kill the entity's ability to message you again or at the

very minimum ask you if you want to do that. That interaction is much

easier on Messenger than it ever was on desktop, so I expect people will

use it.​

Those controls -- plus only allowing apps and entities you've connected

with to send you a first message to begin with -- should be sufficient to

make sure people don't get messages they don't want.​

It's also worth noting again that we are much better at manually

enforcing policies than we used to be, so we can now set policies like

"no mass messages to all your users" if we want. I'm not sure we'd want

that rule specifically, but we now have the capacity to enforce this

effectively if we did.​

After spam, the next question is signal to noise. There are several

variables we can play with here including having a different push sound

for entity messages, not badging for entity messages, no push sound at

all for entity messages or theoretically even not pushing entity messages

at all and only having them be visible when you open the app. That last

option is not recommended long term if we want this to be viable, but it's

an example of the full spectrum of options.​

So that's a short version of why this doesn't have to be a bad experience.

Before getting into why I think this could be awesome long term, I want

to call out two competitive near term issues we face.​

The first is WhatsApp adding a feature like this for public figures. Line

and Kakao already have something like this for public figures, so this is

completely reasonable to expect and we've even heard they're working

on it. If the space is going to move in this direction, being the leader and

establishing the brand and network effects matters a lot. This alone

should encourage us to consider this soon.​

Another anecdote is from Twitter. One day I was in a restaurant and

heard one guy tell his friend that he just got a text from Jay Z. He hadn't.

He got a tweet and was subscribed such that he got notified about it.

The reason this is interesting to me is that we have this religion around

thinking about these channels as completely separate things and most

people do not.​

There is no rule that public figures go in feed and private messages go in

Messenger. Over the long term, I think public figures and apps will go in

Messenger just like friend messages, and private photos from friends

will go in News Feed as well.​

When the world shifts like this, being first is how you build a brand and

network effect. We have an opportunity to do this at scale, but that

opportunity won't last forever. I doubt we even have a year before

WhatsApp starts moving in this direction.​

Now, I'd like to finally get to what I think this could be.​

In its most basic form, this is just another notification channel or where

for apps and public entities to reach people. This is not why this is

exciting to me, but it's worth calling this out because it is extremely

powerful. This alone, even with many limits and controls, would add a lot

of meaningful content to Messenger and would make every single app

and many public figures want to integrate with Facebook much more.

Like I said above, I think we have the controls and experience to make

this a good experience. An app or page would only get the ability to send

you a first message when you connect to it, so there will be no viral

spam. And it will be easy to turn off inline, so there shouldn't be direct

spam either. This is simple but powerful and we shouldn't overlook this.

What's more exciting is not just using this as a one way push channel,

but making it so you can interact with apps through Messenger.

Going back to the games case from above, it is conceivable that

messaging will become the backbone of all of your activity on your

phone and that apps will start to become a feature of messaging rather

than messages being a feature of apps. This has happened with many

important services that were once believed to be small features. People

thought search was a small feature of websites but now most things are

features of search. People thought social networks and communities

were features of sites, but now most types of content are features of

Facebook. It's conceivable that as messaging grows in importance,

many apps will become features of messaging.​

The simplest possible Ul for this is that you send a message to an app

and it does something and sends a message back. This could work for

pages and places too.​

For example, I could send a restaurant a message asking for a

reservation and it could just reply with whether I got the reservation and

when. From a user experience perspective, this is a great Ul. I don't want

to have to call a restaurant and the apps to do this are terrible. Also, the

natural language processing to do this works with modern techniques so

this isn't a huge technology challenge either.​

I could see this working for ordering food, getting movie tickets and so

on. Nobody wants to talk to people for these tasks, but the most efficient

Ul by far is language.​

I could also see this working for having limited interaction with public

figures. There are probably certain basic things that people want to ask

public figures, and those could easily be programmed in to facilitate a

more personal two way interaction.​

With a mature version of this system, there would probably be lots of

new use cases that don't exist yet.

That said, one significant limiting factor of this system is that you'd have

to know about an entity before you could message it. So if you wanted to

get a cab, you'd need to know to message Uber. And by that point, for

apps with good UIs like Uber, you might as well just use their app and not

learn a new messaging behavior. I will address this problem in the final

and most ambitious idea below.​

Overall though, there are several powerful ideas in app-to-person

messaging that are simple and valuable. Basic push messaging with

good controls is an important feature and may soon become a point of

competition. An API for apps and pages to reply to messages would also

be simple to build and could unlock some interesting use cases.​

4. Messenger Agent Platform​

The ideal agent would not require you to message a different thread for

each type of task you want to complete. Instead, the ideal agent would

be able to take any natural language input string and do what you

intended.​

One reason I believe in this so much is because I find I'd much rather

communicate with Andrea via Messenger than use different apps to

complete tasks myself. Natural language is a great common Ul for any

task you can imagine, and having an agent that can handle new kinds of

tasks -- including ones you've never dealt with before and don't have an

app for -- is extremely valuable. If Messenger came with an Andrea for

everyone, that would clearly be amazing for the world.​

This is more of a Platform / Utility challenge than a messaging one, but if

we could enable this it would definitely drive adoption and engagement

with Messenger.​

This agent problem is similar to building Siri or Google Now, except I

think it's an ideal problem to use a platform approach to solve, which is

very different from what Google and Apple are doing.

Google approaches the problem from the perspective of search. Their

default is to show you links where you might find your answer.

Sometimes they give you an answer to a question directly, but they don't

carry out commands for you. They're building conversational search to

fit more into this agent-like use pattern, but they view that as a layer on

top of search rather than the core product.​

Apple approaches the problem as a closed system, which is typical for

them. I actually think they are doing some things very well, especially in

designing Siri to execute commands in addition to returning information.

However, they're very limited by a couple of things, including not

supporting text (only voice) and only supporting services they integrate

themselves (closed approach).​

I think there's an opportunity to use a platform approach to build a

superior execution-oriented agent.​

The way it would work is that developers could register their own agents

with us that could handle certain types of requests. When we get a

request, we'd figure out which developers' agents might be able to

handle that request and we'd send it to them. They'd each return whether

they needed more information or were in fact able to handle the request,

their suggested response and maybe a confidence score for how likely

they think they are right. We'd then pick the one we think is best

(calibrated by people's feedback) and then we'd ask the person to

confirm. After confirmation, we'd execute the plan using that developer's

agent.​

For example, you might say "get me two tickets to see Hunger Games at

9pm". We'd parse the input enough to understand it's a movie ticket

request and then pass it off to Fandango and others. Fandango might

require a theater to be specified but another agent might just use your

location and has a good history of positive results, so we'd go with that

one and reply with a message like "I can get you two tickets at Shoreline

at 9:10pm. Is this right?" After that, you just hit the Like button and we'd

pass your credit card number off to the service to complete the

transaction and maybe send you another message with a link to the

record of the transaction.​

This idea is clearly the most ambitious and riskiest of the ones I've

mentioned, but I think this approach could work well and be quite

leveraged. With a relatively small team at Facebook, we can build a

system that leverages a lot of work outside. We can build a developer

community that builds agents for virtually any task you can imagine,

ranging from running errands to looking up shuttle times or other

information.​

-----​

To recap, the four ideas discussed above are:​

1. Send a message API / button

- Enabling devs to promote person-to-person messaging in their apps

​

2. Content Platform in Messenger

- Turning stickers into an open market

- Adding memes and videos to the market

- Building a simple in-message games platform​

3. App-to-person messages and agents

- Enabling apps and pages to send messages, with strict controls to

ensure quality

- Enabling people to send messages to apps and pages and get replies

​

4. Messenger Agent Platform

- Building a meta-agent and a platform to let agents register to take on

tasks​

If we want to develop some of these ideas, we would need to determine

which teams will be building which pieces. I imagine that the Platform

team would do most of the work for (1) and (4), but the Messenger team

would perhaps do most of the work for (2) and (3). All of these will likely

require some work and full support from both teams though, so a good

next step is to figure out which of these we are excited about building

now.​

I know this was very long, so I appreciate that you've read all the way

down to here and are taking the time to consider this carefully. If it

makes you feel better about having to read all of this, just think about

how long it took me to write on my phone! Please take the time to think

through this, because I wouldn't have spent hours writing it up if I didn't

seriously believe there was something important here to consider now.

BIG thanks to techemails.com for publishing this text.

