Enduring Understandings	Learning Objectives	Essential Knowledge
(Students will understand that)	(Students will be able to)	(Students will know that)
EU 4.2: A function can be represented ban associated power series over the interval of convergence for the power series.	LO 4.2A: Construct and use Taylor polynomials.	EK 4.2A1: The coefficient of the <i>n</i> th-degree term in a Taylor polynomial centered at $x = a$ for the function f is $\frac{f^{(n)}(a)}{n!}$. EK 4.2A2: Taylor polynomials for a function f centered at $x = a$ can be used to approximate function values of f near $x = a$.
		EK 4.2A3: In many cases, as the degree of a Taylor polynomial increase, the nth-degree polynomial will converge to the original function over some

interval.

EK 4.2A4: The Lagrange error bound can be used

to bound the error of a Taylor polynomial

approximation to a function.