
Example bucket:

An ETL with AWS Firehose writes a Parquet file to S3 every 15 minutes since 2019-01-01

mybucket/myprefix/date=2019-01-01/file001.parquet

…

mybucket/myprefix/date=2019-01-01/file096.parquet

…

mybucket/myprefix/date=2021-08-27/file096.parquet

The bucket now (2021-08) contains ~100k files.

Parquet columns
0: timestamp
1: sales
2: customer_id
3: vendor_id

Query
We want to compute some statistics over the last month. For example:

SELECT SUM(sales)
FROM sales_table(uri=s3://mybucket/myprefix)
WHERE date>=2021-08-01 and customer_id=1

Pushdown

Thanks to predicated and projection pushdown datafusion calls:

ParquetExec::try_from_path(

​ “s3://mybucket/myprefix”,

​ Some(Vec![1,2]),

​ date>=2021-08-01 and customer_id=1,

​ x,

​ Y,

​ None,

)

Which means that the ObjectStore can be called with:

S3ObjectStore.list(“mybucket/myprefix”, &[date>=2021-08-01, customer_id=1]

The S3 object store first emits a delimiter query which returns:

date=2019-01-01/

…

date=2021-08-27/

By parsing these folder names, it can deduce that the data is partitioned by a partitioning
column called “date”. it takes the expression with “date” inside, namely date>=2021-08-01 and
ignores the other expressions. Note that to avoid deducing the partition pattern, we could
specify some metadata in the URI, e.g s3://mybucket/myprefix?partition=date.
​
It now knows that it only needs to list:

date=2021-08-01/

…

date=2021-08-27/

It can decide a strategy to do that for example:

-​ use prefix 2021-08-
-​ list [2021-08-01,...2021-08-27] one by one
-​ ...

Current issues
Currently, ParquetExec::try_from_path is called in ParquetTable::try_new without any
predicate, to get the statistics and the schema. This means that the pushdown described above
is efficient only if we use a table with known schema and we set collect_statistics=false.

	Example bucket:
	Parquet columns
	Query
	Pushdown
	Current issues

