SRM University – AP, Andhra Pradesh

Neerukonda, Mangalagiri Mandal Guntur District, Mangalagiri, Andhra Pradesh 522240

Computer Networks

Course Code	CSE 301	Course Category	Core Course (CC)	L-T-P-C	3	0	1	4
Pre-Requisite Course(s)		Co-Requisite Course(s)		Progressive Course(s)				
Course Offering Department	CSE	Professional / Licensing Standards						

Course Objectives / Course Learning Rationales (CLRs)

Objective 1: Understand the computer networking fundamentals with data communication system, TCP/IP and OSI reference mode.

Objective 2: Analyse the requirements for a given organizational structure and selection of appropriate network architecture and topology.

Objective 3: Specify and identify working limitation in existing protocols of networking layers and try to formulate new and better protocols.

Objective 4: Gain knowledge of services and design issues of Transport layer. Also compare and contrast TCP and UDP protocol.

Course Outcomes / Course Learning Outcomes (CLOs)

	At the end of the course the learner will be able to	Bloom's Level	Expected Proficiency Percentage	Expected Attainment Percentage
Outcome 1	Describe computer networking fundamentals based on data communication system, TCP/IP and OSI reference model	2	70 %	65%
Outcome 2	Demonstrate error control and flow control techniques at data link layer	3	70 %	65%

Outcome 3	Select the routing protocols for wired and wireless networks	3	70 %	65%
Outcome 4	Implement ECN congestion and flow control transport layer protocols	3	70 %	65%
Outcome 5	Compare and Contrast application layer protocols -FTP, HTTP, SMTP	4	70 %	65%

Course Unitization Plan - Theory

Unit No.	Unit Name	Require d Contact Hours	CLOs Addresse d	References Used
1	<u>Introduction</u>	9		
	Basic Computer Network concepts, Protocol, Layering Scenario.	1	1	1,2
	Layer Architecture: OSI Model, TCP/IP model.	1	1	1
	Internet history standards and administration; Comparison of the OSI and TCP/IP reference model.	1	1	1,2
	Guided transmission media, wireless transmission media.	1	1	1
	Different LAN topologies: BUS, RING and STAR topology.	1	1	1
	Data Link layer design issues: Error detection techniques.	1	1	1
	Error Correction Techniques, Flow control.	1	1	1,2
	Sliding Window protocols. Go back N and selective Repeat protocols.	1	1	1,2

	Difference between single bit sliding window and n-bit sliding window protocols.	1	1	1,2
2	Medium Access Control	9		
	Static and Dynamic channel Allocations.	1	2	1,2
	Shared channel Access: Pure ALOHA and slotted ALOHA.	1	2	1,2
	Persistent CSMA protocols: 1,P and Non-persistent CSMA protocols.	1	2	1,2
	CSMA with collision detection. Comparison of different CSMA protocols.	1	2	1,2
	Collision free protocols: Bit-map protocol, Token Ring and Binary Count down protocols.	1	2	1,2
	Limited Contention protocols: Adaptive tree walk protocol.	1	2	1,2
	Shared medium for wireless networks: CSMA/CA or MACA.	1	2	1,2
	Interconnecting LANs: HUBS, Repeaters and Switches and bridges.	1	2	1,2
	Spanning tree algorithm for bridges.	1	2	1,2
3	Network Layer	9		
	Overview: Connection oriented and connection less services.	1	3	1,2
	Comparison of packet switched, and circuit switched networks.	1	3	1,2
	Routing: proactive routing and reactive routing protocols, static and dynamic routing protocols.	1	3	1,2
	Dijkstra Algorithm, Distance vector routing and Link state routing protocols.	1	3	1,2
	Routing in wireless networks: AODV and DSR routing protocols.	1	3	1,2

	Overview of IP header and IP addressing.	1	3	1,2
	Classful IP addressing: Class A, B,C,D and E.	1	3	1,2
	Limitations of classful Addressing, Introduction to Subnet.	1	3	1,2
	Overview of Congestion: Warning Bit, Choke packets, Load Shedding, RED (Random Early Detection)	1	3	1,2
4	Internetworking and Transport layer	7		
	IP Encapsulation and Tunnelling.	1	4	1
	IP packet fragmentation, ICMP, ARP.	1	4	1
	ICMP, DHCP, Introduction to Transport layer.	1	4	1
	Different end-to-end transport layer protocols: TCP and UDP.	1	4	1
	Brief explanation of TCP protocol.	1	4	1
	Brief explanation of UDP protocol.	1	4	1
	Packet formats for TCP and UDP protocol.	1	4	1
5	Transport and Application protocols	11		
	TCP Connection Management Modelling.	1	5	1
	TCP Sliding Window.	1	5	1
	TCP congestion control.	1	5	1
	Introduction to application layer paradigms.	1	5	1
	Client Server model.	1	5	1
	Introduction and overview of HTTP protocol.	1	5	1
	Overview of FTP protocol.	1	5	1
	Operation of Electronic Mail.	1	5	1
	Introduction to peer-to-peer communication models.	1	5	1
	Introduction and overview of TELNET.	1	5	1

Importance of Secu	rity in computer Networks.	1	5	1
Total Contact Hours		45		

Objective: The objective of computer networks is to create an interconnected environment where resources and information can be shared efficiently, securely, and reliably, thereby enhancing communication, collaboration, and overall productivity.

Course Unitization Plan - Lab

Exp No.	Experiment Name	Require d Contact Hours	CLOs Addresse d	Reference s Used
	Lab Experiment 1: Using Wireshark, for sniffing network traffic in real-time and analyse the packet contentstraffic analysis.	2	3	2
	Lab Experiment 2: Simulate error detection technique using CRC Algorithm.	2	3	2
	Lab Experiment 3: Write a program to implement error correction technique using Hamming code.	2	3	2
	Lab Experiment 4: Write a program to implement 1-bit Stop and Wait Protocol at data link layer.	2	3	2
	Lab Experiment 5: Simulate N-bit Sliding Window protocol, at data link layer.	2	3	2

Lab Experiment 6: Write a program to implement Dijkstra Shortest path routing protocol	2	3	2
Lab Experiment 7: Write a program to implement Distance Vector Routing.	2	3	2
Lab Experiment 8: Demonstrate TCP Client Server paradigm through simulation	2	3	2
Lab Experiment 9: Demonstrate UDP Client Server paradigm through simulation.	2	3	2
Lab Experiment 10: Write a program to implement echo command in client server socket programming.	2	3	2
Lab Experiment 11: Write a program to simulate Trace-route command.	2	3	2
Lab Experiment 12: Demonstrate the implementation of Ping command	2	3	2
Lab Experiment 13: Write a code to display the class of IP address, network mask and generate the subnet IP address based on the subnet bits entered from the keyboard	2	3	2
Lab Experiment 14: Write a code to implement sliding window protocol at the transport layer	2	3	2
Lab Experiment 15: Simulate transfer file operation using TCP	2	3	2
Total Contact Hours		30	

Recommended Resources

- 1. Tanenbaum, A. S. (2011). Computer Networks, 5th Edition, Pearson Education.
- 2. Forouzan, B. A. (2013). Data Communications and Networking, 5th Edition TMH.

Other Resources

1. Kurose, J. K., & Ross, K. W. (2017). Computer Networking: A Top-Down Approach Featuring the Internet, 7th Edition, Pearson Education.

2. Shay, W. A. (2003). Understanding communications and Networks, 3rd Edition, Cengage Learning

Learning Assessment (Theory)

Bloom's Level of Cognitive Task		Continuo	End Semester			
		CLA-1 (10%)	Mid-1 (10%)	CLA-2 (5%)	CLA-3 (5%)	Exam (30%)
Level 1	Remember	70%	60%	30%	30%	60%
ECVCII	Understand	, 5,0				
Level 2	Apply	30%	40%	70%	70%	40%
	Analyse					
Level 3	Evaluate					
	Create					
Total		100%	100%	100%	100%	100%

Learning Assessment (Lab)

Bloom's Level of Cognitive Task		Continuous Le	earning Assessments (20%)	End Semester Exam (20%)
		Lab Record (5%)	Lab Performance (15%)	
Level 1	Remember Level 1 50% 50%		50%	50%
	Understand			
Level 2	Apply	50%	50%	50%
	Analyse	30/0	23/4	
Level 3	Evaluate			

Create			
Total	100%	100%	100%