
Compute Pi using Distributed Memory
Blue Waters Institute 2017

Day 4 (Week 1, Thursday, June 1), 7:00pm-9:00pm
Lead Instructor: Colleen Heinemann

Interactive Job Request
qsub -I -l nodes=1:ppn=32:xe,walltime=02:00:00,advres=bajy<ENTER>

Note: the advres does not appear to be working this evening.

When you get on the MOM node, run screen<ENTER>
Keep track of the hostname of the MOM node, so if you lose connection to it, you can SSH to it
from an h2ologin node and run screen -x<ENTER>.
If you forget to keep track of the hostname of the MOM node, you can run qstat -u your
username -f<ENTER> and look for the hostname near the bottom of the output.
If you are logged into a MOM node but not sure whether you got there through qsub or through
ssh, run env|grep JOB<ENTER>. If it shows that the job ID is STDIN, it means you got there
through qsub; if it shows nothing, it means you got there through ssh. Keep in mind you need
to use aprun ONLY if you got there through qsub; DON’T use aprun if you got there through
ssh.

Goals

●​ Learn the concepts:
○​ Analyze a simple scientific algorithm
○​ Apply MPI and distributed memory concepts to the code

●​ Practice:
○​ Connecting to Blue Waters
○​ Transferring code to Blue Waters
○​ Compiling code on Blue Waters
○​ Writing MPI code

Introduction

The code that we will be analyzing and modifying computes pi by approximating the area
under the curve for f(x) = 4 / (1+x*x) between 0 and 1. To do such an integration
numerically, the interval from 0 to 1 is divided into a given number of subintervals, num_rect.
The area of the rectangles is then added together.

The larger the value of the num_rect, the more accurate the results will be.
The program asks the user to input a value for number of subintervals, computes the

approximation for pi, and compares it to a more accurate approximate value of pi in the
<math.h> library.

Activity

1.​ Download the serial code for calculating pi and copy it to Blue Waters.

​ wget https://shodor.org/media/content//petascale/materials/BW2017/compute_pi.zip<ENTER>

2.​ Unzip the folder
​ unzip compute_pi.zip<ENTER>

3.​ Change locations into the directory containing the code
​ cd compute_pi<ENTER>

4.​ Compile the serialized version of the code:
​ cc compute_pi.c -o compute_pi.exe<ENTER>

5.​ To run the serial version of the code, run the command
​ aprun -n 1 ./compute_pi.exe<ENTER>

6.​ Experiment with varying numbers of rectangles and take note of the runtimes for the
different tests

7.​ Once you are comfortable with the serialized code for computing pi, refer to the following
MPI commands and modify the code to run with MPI in distributed memory

a.​ To compile your code with MPI, use the command
​ cc compute_pi.c -o mpi_pi.exe

b.​ To run your code with MPI, use the command
​ aprun -n ./mpi_pi.exe

***Once your code runs with MPI, run tests on varying numbers of ranks with varying problem
sizes***

NOTE: Some of the commands in the following list have not been discussed yet, but are given
as reference due to the fact that they can be very useful in this exercise

MPI_Init
​ USAGE: int MPI_INIT(int *argc, char ***argv)
​ EXAMPLE: ierr = MPI_Init(&argc, &argv);

MPI_Init is required to initialize the MPI execution environment; it can be in your code
only once

MPI_Finalize
​ USAGE: int MPI_Finalize()
​ EXAMPLE: MPI_Finalize(void)

MPI_Finalize terminates the MPI execution environment; it can only be in your code
once

MPI_Comm_rank
​ USAGE: int MPI_Comm_rank(MPI_Comm comm, int *rank)
​ EXAMPLE: ierr = MPI_Comm_rank(MPI_COMM_WORLD, &processId);
​ MPI_Comm_rank returns the rank of the calling process in the communicator
MPI_Comm_size
​ USAGE: int MPI_Comm_size(MPI_Comm comm, int *size)
​ EXAMPLE: ierr = MPI_Comm_size(MPI_COMM_WORLD, &numProcesses);

MPI_Comm_size determines the size of the group, or how many processes, are
associated with what you are doing

MPI_Send
USAGE: int MPI_Send(const void *buf, int count, MPI_Datatype
datatype, int dest, int tag, MPI_Comm comm)
EXAMPLE: ierr = MPI_Send(&work, 0, MPI_Int, rank, DIETAG,
MPI_COMM_WORLD);
MPI_Send performs a safe send. It may block until the message is received by the
destination process. The tag of the send call will need to match that of the receive call
PARAMETERS:
​ buf initial address of the send buffer

count number of elements in the send buffer; this must be a non-negative
integer

datatype datatype of each send buffer element
dest is the destination rank; usually rank 0
tag message tag; generally a unique identifier
comm the communicator

MPI_Recv
USAGE: int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
int source, int tag, MPI_Comm comm, MPI_Status *status)
EXAMPLE: ierr = MPI_Recv(&result, 1, MPI_DOUBLE,
MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &status);

​ MPI_Recv is a receive command that is necessary to receive a message
​ OUTPUT PARAMETERS:
​ ​ buf initial address of the send buffer

status a status object showing whether or not everything is running
successfully

​ INPUT PARAMETERS:
count max number of elements in the receive buffer; this is a non-negative
integer
datatype datatype of each receive buffer element
source rank of the source destination
tag message tag; generally a unique identifier
comm the communicator

MPI_Wtime
​ USAGE: int MPI_Wtime()
​ EXAMPLE: MPI_Wtime(void)
​ MPI_Wtime provides the time in seconds since a given arbitrary time in the past
MPI_Bcast

USAGE: int MPI_Bcast(void *buf, int count, MPI_Datatype
datatype, int root, MPI_Comm comm)
EXAMPLE: ierr = MPI_Bast(&send, 1, MPI_INT, 0, &status)
MPI_Bcast broadcasts a message from the process with rank “root” to all other
processes
OUTPUT PARAMETERS:

​ ​ buf starting address of the buffer
​ INPUT PARAMETERS:
​ ​ count number of entries in buffer
​ ​ datatype data type of buffer
​ ​ root broadcast root’s rank
​ ​ comm the communicator
MPI_Reduce

USAGE: int MPI_Reduce(const void *sendbuf, void *recvbuf, int
count, MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm
comm)
EXAMPLE: ierr = MPI_Reduce(&send, &recv, 1, MPI_INT, MPI_SUM, 0,
MPI_COMM_WORLD);
MPI_Reduce reduces all of the values on the processes to a single value
INPUT PARAMETERS:
​ sendbuf address of send buffer
​ count number of elements in send buffer
​ datatype data type of elements in the send buffer
​ op reduce operation, such as add, subtract, etc.
​ root the root process’s rank
​ comm the communicator
OUTPUT PARAMETERS:
​ recvbuf the address of the receive buffer

MPI_Scatter
USAGE: int MPI_Scatter(const void *sendbuf, int sendcount,
MPI_Datatype sendtype, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int root, MPI_Comm comm)
EXAMPLE: ierr = MPI_SCATTER(&send, 10, MPI_INT, &recv, 50,
MPI_INT, 0, MPI_COMM_WORLD);
INPUT PARAMETERS:
​ sendbuf address of send buffer
​ sendcount number of elements sent to each processes
​ sendtype data type of send buffer elements
​ recvcount number of elements in the receive buffer
​ root rank of sending processes
​ comm the communicator
OUTPUT PARAMETERS:
​ recvbuf address of receive buffer

