Compute Pi using Distributed Memory
Blue Waters Institute 2017
Day 4 (Week 1, Thursday, June 1), 7:00pm-9:00pm
Lead Instructor: Colleen Heinemann

Interactive Job Request
gqsub -I -1 nodes=1:ppn=32:xe,walltime=02:00:00 <ENTER>

Note: the advres does not appear to be working this evening.

When you get on the MOM node, run screen<ENTER>

Keep track of the hostname of the MOM node, so if you lose connection to it, you can SSH to it
from an h2ologin node and run screen -x<ENTER>.

If you forget to keep track of the hostname of the MOM node, you can run qstat -u your
username, —-f<KENTER> and look for the hosthame near the bottom of the output.

If you are logged into a MOM node but not sure whether you got there through qsub or through
ssh, run env|grep JOBKENTER>. If it shows that the job ID is STDIN, it means you got there
through gsub; if it shows nothing, it means you got there through ssh. Keep in mind you need
to use aprun ONLY if you got there through qsub; DON’T use aprun if you got there through
ssh.

Goals
e Learn the concepts:
o Analyze a simple scientific algorithm
o Apply MPI and distributed memory concepts to the code
e Practice:
o Connecting to Blue Waters
o Transferring code to Blue Waters
o Compiling code on Blue Waters
o Writing MPI code

Introduction

The code that we will be analyzing and modifying computes pi by approximating the area
under the curve for f(x) = 4 / (1+x*x) between 0 and 1. To do such an integration
numerically, the interval from O to 1 is divided into a given number of subintervals, num_rect.
The area of the rectangles is then added together.

The larger the value of the num_rect, the more accurate the results will be.

The program asks the user to input a value for number of subintervals, computes the
approximation for pi, and compares it to a more accurate approximate value of pi in the
<math.h> library.

Activity
1. Download the serial code for calculating pi and copy it to Blue Waters.

wget https://shodor.org/media/content//petascale/materials/BW2017/compute_p1i.zip<ENTER>
2. Unzip the folder
unzip compute_pi.zip<ENTER>
3. Change locations into the directory containing the code
cd compute_pi<ENTER>
4. Compile the serialized version of the code:
cc compute_pi.c -0 compute_pi.exe<ENTER>
5. To run the serial version of the code, run the command
aprun -n 1 ./compute_pi.exe<ENTER>
6. Experiment with varying numbers of rectangles and take note of the runtimes for the
different tests
7. Once you are comfortable with the serialized code for computing pi, refer to the following
MPI commands and modify the code to run with MP1 in distributed memory
a. To compile your code with MPI, use the command
cc compute_pi.c -0 mpi_pi.exe
b. To run your code with MPI, use the command
aprun -n__ ./mpi_pi.exe

***Once your code runs with MPI, run tests on varying numbers of ranks with varying problem
sizes™**

NOTE: Some of the commands in the following list have not been discussed yet, but are given
as reference due to the fact that they can be very useful in this exercise

MPI_Init
USAGE: int MPI INIT (int *argc, char ***argv)
EXAMPLE: ierr = MPI Init (&argc, &argv);
MPI Init is required to initialize the MPI execution environment; it can be in your code
only once

MPI Finalize
USAGE: int MPI Finalize ()
EXAMPLE: MPI Finalize (void)
MPI Finalize terminates the MPI execution environment; it can only be in your code
once

MPI Comm_ rank
USAGE: int MPI Comm rank (MPI Comm comm, int *rank)
EXAMPLE: ierr = MPI Comm rank (MPI COMM WORLD, &processId);
MPI_Comm_rank returns the rank of the calling process in the communicator

MPI Comm size
USAGE: int MPI Comm size (MPI Comm comm, int *size)
EXAMPLE: ierr = MPI Comm size (MPI COMM WORLD, &numProcesses);
MPI_Comm_size determines the size of the group, or how many processes, are
associated with what you are doing

MPI_ Send
USAGE: int MPI Send(const void *buf, int count, MPI Datatype
datatype, int dest, int tag, MPI Comm comm)
EXAMPLE: ierr = MPI Send(&work, 0, MPI Int, rank, DIETAG,
MPI COMM WORLD) ;
MPI_Send performs a safe send. It may block until the message is received by the
destination process. The tag of the send call will need to match that of the receive call
PARAMETERS:
buf initial address of the send buffer
count number of elements in the send buffer; this must be a non-negative
integer
datatype datatype of each send buffer element
dest is the destination rank; usually rank O
tag message tag; generally a unique identifier
comm the communicator
MPI Recv
USAGE: int MPI Recv (void *buf, int count, MPI Datatype datatype,
int source, int tag, MPI Comm comm, MPI Status *status)
EXAMPLE: ierr = MPI Recv(&result, 1, MPI DOUBLE,
MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &status);
MPI_ Recv is a receive command that is necessary to receive a message
OUTPUT PARAMETERS:
buf initial address of the send buffer
status a status object showing whether or not everything is running
successfully
INPUT PARAMETERS:
count max number of elements in the receive buffer; this is a non-negative
integer
datatype datatype of each receive buffer element
source rank of the source destination
tag message tag; generally a unique identifier
comm the communicator
MPI_Wtime
USAGE: int MPI Wtime ()
EXAMPLE: MPI Wtime (void)
MPI Wtime provides the time in seconds since a given arbitrary time in the past
MPI_ Bcast
USAGE: int MPI Bcast (void *buf, int count, MPI Datatype
datatype, int root, MPI Comm comm)
EXAMPLE: ierr = MPI Bast (&send, 1, MPI INT, 0, &status)
MPI_Bcast broadcasts a message from the process with rank “root” to all other
processes
OUTPUT PARAMETERS:

buf starting address of the buffer
INPUT PARAMETERS:
count number of entries in buffer
datatype data type of buffer
root broadcast root’s rank
comm the communicator
MPI Reduce
USAGE: int MPI Reduce (const void *sendbuf, void *recvbuf, int
count, MPI Datatype datatype, MPI Op op, int root, MPI Comm
comm)
EXAMPLE: ierr = MPI Reduce (&send, &recv, 1, MPI INT, MPI SUM, O,
MPI COMM WORLD) ;
MPI_Reduce reduces all of the values on the processes to a single value
INPUT PARAMETERS:
sendbuf address of send buffer
count number of elements in send buffer
datatype data type of elements in the send buffer
op reduce operation, such as add, subtract, etc.
root the root process’s rank
comm the communicator
OUTPUT PARAMETERS:
recvbuf the address of the receive buffer
MPI_Scatter
USAGE: int MPI Scatter (const void *sendbuf, int sendcount,
MPI Datatype sendtype, void *recvbuf, int recvcount,
MPI Datatype recvtype, int root, MPI Comm comm)
EXAMPLE: ierr = MPI SCATTER (&send, 10, MPI INT, &recv, 50,
MPI INT, 0, MPI COMM WORLD) ;
INPUT PARAMETERS:
sendbuf address of send buffer
sendcount number of elements sent to each processes
sendtype data type of send buffer elements
recvcount number of elements in the receive buffer
root rank of sending processes
comm the communicator
OUTPUT PARAMETERS:
recvbuf address of receive buffer

