

(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Department of Computer Science and Engineering

Academic Year	:	2025-2026	Course Name	:	Digital Design and Computer Organization
Semester	:	3 RD SEM	Course Code	:	BCS302
Scheme	:	2022	L: T:P: C	:	3:0:2:0
Total Contact hours	:	40 Hours Theory + 20 Hours Lab	CIE Marks	:	50
Course Plan Author	:	Mrs. Aruna R	SEE Marks	:	50
Date	:	12-08-2025	Total Marks	:	100

Course Prerequisites:

• BASIC ELECTRONICS AND PSP

Learning Objectives:

- To demonstrate the functionalities of binary logic system
- To explain the working of combinational and sequential logic system
- To realize the basic structure of computer system
- To illustrate the working of I/O operations and processing unit

Teaching-Learning Process (General Instructions)

These are sample Strategies; that teachers can use to accelerate the attainment of the various course outcomes. 1. Chalk and Talk 2. Live Demo with experiments 3. Power point presentation

Course Outcomes:

CO	A	t the end of the course, student should be able to	Blooms' Level
CO1		Apply the K-Map techniques to simplify various Boolean expressions.	L3
CO2		Design different types of combinational and sequential circuits along with Verilog programs	L3
CO3	••	Describe the fundamentals of machine instructions, addressing modes and Processor performance	L2
CO4		Explain the approaches involved in achieving communication between processor and I/O devices.	L2
CO5	:	Analyze internal Organization of Memory and Impact of cache/Pipelining on Processor Performance	L4

Blooms' Taxonomy:

L1	L2	L3	L4	L5	L6
----	----	----	----	----	----

(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Remembering	Understanding	Applying	Analyzing	Evaluating	Creating
		_			

Program Outcomes:

PO1	:	Engineering knowledge	PO7		Environment and sustainability
PO2	:	Problem analysis	PO8	••	Ethics
PO3		Design/development of solutions	PO9	:	Individual and team work
PO4	:	Conduct investigations of complex problems	PO10	••	Communication
PO5		Modern tool usage	PO11	••	Project management and finance
PO6	:	The engineer and society	PO12	••	Life-long learning

Program Specific Outcomes:

PSO1:	To understand and process the principles of mathematics in the field of information Science by applying different design principles.
PSO2:	To impart the knowledge by experimental methods in multidisciplinary domains.
PSO3:	To inculcate communication skills and teamwork in developing the sustainable software's by imparting professional and ethical values.

CO-PO-PSO Mapping:

СО	Program Outcomes													
	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 12	PSO 1	PSO 2	PSO 3
CO1	2	-	-	1	-	-	-	-	-	-	-	2	-	1
CO2	2	3	-	-	-	-	-	-	-	-	-	-	2	2
CO3	2	-	-	1	2	-	-	-	-	-	-	-	2	-
CO4	1	-	2	-	-	-	-	-	-	-	-	-	1	-
CO5	2	-	2	1	-	-	_	-	-	-	-	1	2	1
Target	2	3	2	1	2	-	-	-	-	-	-	1	2	1

Course Content (Syllabus):

Module 1	СН			
Introduction to Digital Design: Binary Logic, Basic Theorems And Properties Of Boolean Algebra, Boolean Functions, Digital Logic Gates, Introduction, The Map Method, Four-Variable Map, Don't-Care Conditions, NAND and NOR Implementation, Other Hardware Description Language – Verilog Model of a simple circuit. Text book 1: 1.9, 2.4, 2.5, 2.8, 3.1, 3.2, 3.3, 3.5, 3.6, 3.9	08			
Module 2				
Combinational Logic: Introduction, Combinational Circuits, Design Procedure, Binary Adder-Subtractor, Decoders, Encoders, Multiplexers. HDL Models of Combinational Circuits – Adder,				

(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Multiplexer, Encoder. Sequential Logic: Introduction, Sequential Circuits, Storage Elements: Latches, Flip-Flops.	
Text book 1: 4.1, 4.2, 4.4, 4.5, 4.9, 4.10, 4.11, 4.12, 5.1, 5.2, 5.3, 5.4.	
20.00 2 0 0 1. 2.2, 2.2, 2.0, 2.0, 2.2, 2.22, 2.2, 2.	
Module 3	
Basic Structure of Computers: Functional Units, Basic Operational Concepts, Bus structure, Performance – Processor Clock, Basic Performance Equation, Clock Rate, Performance Measurement.	
Machine Instructions and Programs: Memory Location and Addresses, Memory Operations, Instruction and Instruction sequencing, Addressing Modes.	08
Text book 2: 1.2, 1.3, 1.4, 1.6, 2.2, 2.3, 2.4, 2.5	
Module 4	
Input/output Organization: Accessing I/O Devices, Interrupts – Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Direct Memory Access: Bus Arbitration, Speed, size and Cost of memory systems. Cache Memories – Mapping Functions.	08
Text book 2: 4.1, 4.2.1, 4.2.2, 4.2.3, 4.4, 5.4, 5.5.1	
Module 5	
Basic Processing Unit: Some Fundamental Concepts: Register Transfers, Performing ALU operations, fetching a word from Memory, Storing a word in memory. Execution of a Complete Instruction. Pipelining: Basic concepts, Role of Cache memory, Pipeline Performance.	08
Text book 2: 7.1, 7.2, 8.1	

PRACTICAL COMPONENT OF IPCC

Sl.	Experiments
N O	Simulation packages preferred: Multisim, Modelsim, PSpice or any other relevant
1	Given a 4-variable logic expression, simplify it using appropriate technique and simulate the same using basic gates.
2	Design a 4 bit full adder and subtractor and simulate the same using basic gates.
3	Design Verilog HDL to implement simple circuits using structural, Data flow and Behavioral model.
4	Design Verilog HDL to implement Binary Adder-Subtractor – Half and Full Adder, Half and Full Subtractor.
5	Design Verilog HDL to implement Decimal adder.

(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

6	Design Verilog program to implement Different types of multiplexer like 2:1, 4:1 and 8:1.
7	Design Verilog program to implement types of De-Multiplexer.
8	Design Verilog program for implementing various types of Flip-Flops such as SR, JK and D.

Schedule of Instruction:

Class No		Topic	Date	RBT	СО	Mode
Mod	ule-1	Introduction to Digital Design				
1.	Introd	luction to subject		L1		PPT
2.	Binary	y Logic		L1		Chalk & Talk
3.	Basic '	Theorems and Properties of Boolean Algebra		L1		Chalk & Talk
4.	Boolea	an Functions		L1		Chalk & Talk
5.	Digita	l Logic Gates		L2		Chalk & Talk
6.	Introd	luction, The Map Method, Four-Variable Map		L2		Chalk & Talk
7.	Don't-	Care Conditions,		L2	Co1& Co2	Chalk & Talk
8.	NAN	D and NOR Implementation		L2	C02	Chalk & Talk
9.		Hardware Description Language – Verilog Model of a circuit		L2		PPT
10.	Revisi	ion of module1-				ONLINE QUIZ & Discussion
Mod	ule-2	Process Management				
11.	Introd	uction, Combinational Circuits		L2		PPT
12.	Design	n Procedure		L2		Chalk & Talk
13.	Binary	y Adder- Subtractor, Decoders		L2		Chalk & Talk
14.	Encod	ers, Multiplexers		L3	CO2,	Chalk & Talk
15.	HDL N	Models of Combinational Circuits – Adder		L3	CO3	Chalk & Talk
16.	Multip	olexer, Encoder.		L3		Chalk & Talk
17.	Sequential Logic: Introduction, Sequential Circuits			L3		PPT/Chalk & Talk
18.	Storage Elements: Latches, Flip-Flops			L3		Chalk & Talk
19.	Revisi	ion of module2				ONLINE QUIZ & Discussion
Mod	ule-3	Process Synchronization				
20.	Functional Units			L3		PPT/Chalk & Talk

(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Class No		Торіс	Date	RBT	СО	Mode
21.	Basic	Basic Operational Concepts, Bus structure, L3 CO3, CO4				PPT/Chalk & Talk
22.	Perfor	Performance – Processor Clock, L3				
23.	Basic	Performance Equation,		L3		PPT/Chalk & Talk
24.	Clock	Rate, Performance Measurement.		L3		PPT/Chalk & Talk
25.		ine Instructions and Programs: Memory Location ddresses, Memory Operations,		L3		PPT/Chalk & Talk
26.	Instruction and Instruction sequencing, L3					PPT/Chalk & Talk
27.	Addre	ssing Modes.				PPT/Chalk & Talk
28.	Revisi	on – Module 3				Test
Mod	ule-4	Memory Management				
29.	Inpu	t/output Organization: Accessing I/O Devices,		L3		PPT/Chalk & Talk
30.	Interru	ipts – Interrupt Hardware,		L3		PPT/Chalk & Talk
31.	Enabli	ng and Disabling		L3		PPT/Chalk & Talk
32.	Interr	upts,		L3	CO4	PPT/Chalk & Talk
33.	Handl	ing Multiple Devices,		L3		PPT/Chalk & Talk
34.	Direct	Memory Access: Bus Arbitration,		L3		PPT/Chalk & Talk
35.	Speed	, size and Cost of memory systems.		L3		PPT/Chalk & Talk
36.	Cache Memories – Mapping Functions.			L3		PPT/Chalk & Talk
27	D					Role Play
37.		ion of module4				Test
Mod	uie-5	File System, Implementation of File System				-
38.	Basic	Processing Unit: Some Fundamental Concepts:		L1		PPT/Chalk & Talk
39.	Register Transfers,			L1		PPT/Chalk & Talk
40.	Performing ALU operations, L2			PPT/Chalk & Talk		
41.	fetching a word from Memory, Storing a word in memory			L2	CO5	PPT/Chalk & Talk

(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Class No	Topic	Date	RBT	CO	Mode
42.	Execution of a Complete Instruction.		L2		PPT/Chalk & Talk
43.	Pipelining: Basic concepts,		L2		Role Play /Chalk & Talk
44.	Role of Cache memory,		L1		Role Play /Chalk & Talk
45.	Pipeline Performance.		L1		PPT/Chalk & Talk
46.	Revision of module5				Test

Practical Component of IPCC

Lab	Topic	Date	RBT	CO	Mode
1.	Given a 4-variable logic expression, simplify it using appropriate technique and simulate the same using basic gates.		L2	CO1	
2.	Design a 4 bit full adder and subtractor and simulate the same using basic gates.		L3	CO1	PPTs,
3.	Design Verilog HDL to implement simple circuits using structural, Data flow and Behavioral model.		L3	CO2	Chalk & Talk,
4.	Design Verilog HDL to implement Binary Adder-Subtractor - Half and Full Adder, Half and Full Subtractor.		L1	CO2	Practical Simulation
5.	Design Verilog HDL to implement Decimal adder.		L2	CO2	
6.	Design Verilog program to implement Different types of multiplexers like 2:1, 4:1 and 8:1.		L3	CO2	
7.	Design Verilog program to implement types of De-Multiplexer.		L3	CO2	
8.	Design Verilog program for implementing various types of Flip-Flops such as SR, JK and D.		L3	CO2	

Textbooks

(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

T1	M. Morris Mano & Michael D. Ciletti, Digital Design With an Introduction to Verilog Design, 5e, Pearson Education.					
T2	Carl Hamacher, ZvonkoVranesic, SafwatZaky, Computer Organization, 5 th Edition, Tata McGraw Hill.					
Web I	Web links and Video Lectures (e-Resources):					
	https://sites.google.com/skit.org.in/aruna-r/about-faculty					
	https://cse11-iiith.vlabs.ac.in/					

Assessment Details (both CIE and SEE) The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40% (40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation) and SEE (Semester End Examination) taken together.

CIE for the theory component of the IPCC (maximum marks 50)

- IPCC means practical portion integrated with the theory of the course.
- CIE marks for the theory component are 25 marks and that for the practical component is 25 marks.
- 25 marks for the theory component are split into 15 marks for two Internal Assessment Tests (Two Tests, each of 15 Marks with 01-hour duration, are to be conducted) and 10 marks for other 14.09.2023 15.09.2023 Annexure-III 14.09.2023 MKV-TEMPLATE for IPCC (26.04.2022) assessment methods mentioned in 22OB4.2. The first test at the end of 40-50% coverage of the syllabus and the second test after covering 85-90% of the syllabus.
- Scaled-down marks of the sum of two tests and other assessment methods will be CIE marks for the theory component of IPCC (that is for 25 marks).
- The student has to secure 40% of 25 marks to qualify in the CIE of the theory component of IPCC. CIE for the practical component of the IPCC
- 15 marks for the conduction of the experiment and preparation of laboratory record, and 10 marks for the test to be conducted after the completion of all the laboratory sessions.
- On completion of every experiment/program in the laboratory, the students shall be evaluated including viva-voce and marks shall be awarded on the same day.
- The CIE marks awarded in the case of the Practical component shall be based on the continuous evaluation of the laboratory report. Each experiment report can be evaluated for 10 marks. Marks of all experiments' write-ups are added and scaled down to 15 marks.
- The laboratory test (duration 02/03 hours) after completion of all the experiments shall be conducted for 50 marks and scaled down to 10 marks.
- Scaled-down marks of write-up evaluations and tests added will be CIE marks for the laboratory component of IPCC for 25 marks.
- The student has to secure 40% of 25 marks to qualify in the CIE of the practical component of the IPCC. SEE for IPCC Theory SEE will be conducted by University as per the scheduled timetable, with common question papers for the course (duration 03 hours) 1. The question paper will have ten questions. Each question is set for 20 marks. 2. There will be 2 questions from each module. Each of the two questions under a module (with a

(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

maximum of 3 sub-questions), should have a mix of topics under that module. 3. The students have to answer 5 full questions, selecting one full question from each module. 4. Marks scored by the student shall be proportionally scaled down to 50 Marks The theory portion of the IPCC shall be for both CIE and SEE, whereas the practical portion will have a CIE component only. Questions mentioned in the SEE paper may include questions from the practical component.

Assessment Schedule:							
Sl.No.	Assessment type	Contents	СО	Duration In Hours	Mark s	Date & Time	
1	CIE Test 1	M1, M2	CO1, CO2, CO3	1.5	30		
2	CIE Test 2	M3, M4	CO3, CO4, CO5	1.5	30		
3	Assignment 1	M1, M2	CO1, CO2		10		
4	CLASS TEST	M3, M4, M5	CO3, CO4, CO5		10		
6	Lab assessment Marks	M1, M2, M3, M4, M5	CO1-CO5	-	15		
7	Lab assessment -Lab Internal	M1, M2, M3, M4, M5	CO1-CO5	2	10		
8	Semester End Examination	M1, M2, M3, M4, M5	CO1-CO5	3	50		

^{**}The sum of three tests, two assignments, and practical sessions will be out of 100 marks and will be scaled down to 50 marks

RB – Text Book/Reference Book, *L – Lecture, V- Videos or any other mode, *RBT – Revised Blooms' Taxonomy, L: T: P: C – Theory/Lecture: Tutorial: Practical/Drawing: Credits, SEE: Semester End Examination, CIE: Continuous Internal Evaluation, Seminar: Group of 6-8 students, Module 1,2,3,4 & 5,

The weightage of Continuous Internal Evaluation (CIE) is 50% and for Semester End Exam (SEE) is 50%. The minimum passing mark for the CIE is 40% of the maximum marks (20 marks out of 50) and for the SEE minimum passing mark is 35% of the maximum marks (18 out of 50 marks). A student shall be deemed to have satisfied the academic requirements and earned the credits allotted to each subject/ course if the student secures a minimum of 40%(40 marks out of 100) in the sum total of the CIE (Continuous Internal Evaluation)and SEE (Semester End Examination) taken together.

(Accredited by NAAC Approved by A.I.C.T.E. New Delhi, Recognized by Govt. of Karnataka & Affiliated to V.T U., Belagavi) #29, Chimney Hills, Hesaraghatta Main Road, Chikkabanavara Post, Bengaluru- 560090

Faculty In charge Course Coordinator HOD