
Checking Pointers Using your TEI ODD
Customization

Syd would like to see TCW32 published (as TCUxx, or just Uxx?) in October, if
possible. Reviewers (which should include you, James, as you are assigned to this
ticket) should:

● Read the prose, make any obvious changes necessary, check right back into
master branch.

● Read the prose, inform Syd or post any controversial suggested changes.
Use a new branch and PR if you make extensive changes.

● Try out the examples, make sure they do what they say they will do. Since
there are 17 of them, and some are quite complex, and in most cases you will
have to make a test file, it might be nicer to divvy them up among several
people.

Here is a list of the 19 snippets of ODD in TCW32 that need to be tested. If folks
reading this could each grab one or two at random and test, that would be lovely.

P.S. If you want to generate HTML to read, one way is to use the TEI Stylesheets, in
which case you probably want to set the $numberBackFigures parameter to “true”.

https://github.com/TEIC/Documentation/blob/master/TCW/tcw32.xml
https://github.com/TEIC/TEI/issues/1675
https://github.com/TEIC/TEI/issues/1675

Example Initials Comments

#eg01: PureODD to limit
attribute to one URI

MDH This doesn’t seem to work as shown. I get this in my schema
under <element name="s">:
<optional>
<attribute name="corresp">
<a:documentation

xmlns:a="http://relaxng.org/ns/compatibility/annotations
/1.0">(corresponds) points to elements that correspond
to the current element in some way.</a:documentation>

<data type="anyURI"/>
</attribute>

</optional>

but when I validate this:
<s corresp="tei:thing tei:thing2">thing</s>

I don’t get an error. I must be missing something obvious.

SB: MDH is on to a bigger kettle of fish, here. See ticket 2185.
The fix, I think, is to the Guidelines, not here.

#eg02: Ensure ref of g is a
shorthand pointer

HBS It works as expected. No suggestions.

#eg03: Ensure ref of g is a
shorthand pointer, PureODD

MS It works as described.
The remark of the element spec could possibly be changed to
“This attribute must be a single shorthand pointer to an
element in the same XML file, i.e. must look like”
SB: Wording change made, not checked in yet.

#eg04: Check that ref of g
points to something

HBS Tested in combination with #eg02. It works as expected. No
suggestions.

#eg05: Check that ref of g
points to a char or a glyph

HBS Tested in combination with #eg02 and #eg04. It works as
expected. The documentation of this examples says that it
should be used in combination with something like #eg02 or
#eg03, but #eg04 is not mentioned. If the constraint of #eg04 is
not explicitly recommended in the documentation, I wonder if
the error message of #eg05 shouldn‘t include a condition like
the one used in #eg14 so we get the word “nothing” if the
pointer does not point to an existing element. If the constraint
of #eg05 is used with the one in #eg04, it wouldn’t be
necessary, because, if the pointer does not exist, we will get
the error message of #eg04. However, without the constraint of
#eg04, the error message of #eg05 would look “weird”.

SB: Good point. Two possible solutions. Given that the
structure of the document is to try to organize the examples
from easier to more complex, I think I lean towards solution #2.

1. Fix the error message by changing points to a
'<sch:value-of select="local-name(id($ref)
)"/>' to points to <sch:value-of select="if (
id($ref)) then concat('a ‘', local-name(
id($ref)),'’ element') else 'nothing'"/>'.

https://github.com/TEIC/TEI/issues/

2. Add a sentence or paragraph of prose “We also
presume that the <att>ref</att> of <gi>g</gi> actually
points to <emph>something</emph> in the current
document. Thus this constraint should be used in
conjunction with something like <ptr target="#eg04"/>”.

HBS: I also prefer solution #2 (and the change in the prose is
consistent with the mentions to previous constraints)

SB: OK, prose changed (although not exactly like above; I
combined the 2 sentences into one). Fixed in 3c8c46d.

#eg06: Require the url of
moduleRef to refer to a
particular file

MS Works.

#eg07: Check that url of
moduleRef refers to an RNG
file in the same directory

MS Tested. This also works when the referenced RNG file is not in
the same directory as the ODD file.

#eg08: Ensure file is
readable XML

LB Tested. As noted by MDH below, if the filename supplied uses
a relative path, it is understood to be relative to the location of
the schema file. Maybe supplying the path explicitly in the
error message would help: like this: “No valid XML content was
found at the supplied URL (out/wibble.xml)”

SB: Oy vey. Thanks for catching the same boo-boo I made in
#eg12 (and #eg09). Sigh. Fixed (the same way, adding
resolve-uri()) in cf6e9d5.

#eg09: Ensure file is
readable RELAX NG
grammar

MS Tested. This does not work for me. Error message: Module
./out/tester.rng is not readable, well-formed XML. I wonder if
this has something to do with the Schematron preferences in
Oxygen (b/c #eg08 doesn’t work for me either).

SB & MS played a bit, and it seems that (at least in MS’s
oXygen setup) the schema is being looked for at the URL
relative to the schema, not the instance, despite the use of
resolve-uri().

#eg10: Require persName
to refer to a person in the
local personography

EBB There's an outright error in defining the sch:variable $file, since
it's pointing to the substring-after(., '#'). SB: I do not understand
what is going on here, EBB, but in both the version that is
checked into GitHub (line 786) and the one on my local repo
(line 792) $file is defined as substring-before(.,'#'). [Note: I
have since pushed my prose changes in, so it is now line 792
in the repo, too, but that link is a permalink to the previous
version]. But the $file variable isn't easy to correct, because
later there is this:
 <sch:let name="element_found" value="doc($file)//id($ID)"/>

doc($file) simply doesn't work if $file is defined as a filename or
filepath. Evidently we need to define $file as the whole doc()
function like so:
<sch:let name="file" value="doc('../persons.xml')"/>

https://github.com/TEIC/Documentation/blob/b1b51498b0b285e8e9623f1ba659483cf5e833b4/TCW/tcw32.xml#L786

Then you can define $element_found thus:
<sch:let name="element_found" value="$file//id($ID)"/>

NOTE: (as I think MS and SB found earlier), if people generate
RNG in an out/ directory, below the ODD, the file being
validated, and person.xml, the path to person.xml must be
doc('../person.xml') not doc('person.xml'). SB: Sigh. Will have
to look into this more thoroughly.

After redefining these variables, all works as expected.

However, I think we can do better: What if we have multiple
space separated values of @ref?
SB: This example is in the section “Direct reference by single
value”. There are examples of how to handle multiple values in
the section “Direct access by multiple values”. (I just noticed
now those two headings are not parallel — which is better?)

SUGGESTED REVISION:

<sch:let name="IDs" value="for $i in tokenize(@ref, '\s+') return
substring-after($i,'#') "/>

Then test those tokens like you do in eg15, maybe something
like this:

<sch:let name="IDs_pt_to_person" value="for $id in $IDs
return exists($file//person[@xml:id = $id]"/>

<sch:report test="$IDs_pt_to_person = false()">
At least one of the values of @ref in

"<sch:value-of select="normalize-space(.)"/>" does not end
up pointing to a 'person' element.

</sch:report>

CAUTION: I have not tested this construction, but I have
something similar running in the Digital Mitford ODD to test
multiple space-separated @ref values.

Suggestion 2: Since it seems you've arranged these examples
from easier to more complex, how about we create two
versions of eg10, one to test singleton values of `@ref` and
one to test a sequence of `@ref` values?

#eg11: Ensure uri of equiv is
present and refers to an item
on a particular page

RV Tested. It works and only allows NMTOKEN after # (if I
understand the regex correctly). So this is considered valid:
http://www.wwp.neu.edu/markup_taxonomy.xhtml#_asd
But this is not:
http://www.wwp.neu.edu/markup_taxonomy.xhtml#1asd
It *may* refer to an item on a particular page, but it doesn’t
stop the user from referring to a non-existing id.

http://www.wwp.neu.edu/markup_taxonomy.xhtml#_asd
http://www.wwp.neu.edu/markup_taxonomy.xhtml#1asd

SB: I think I understand your concerns, here: 1) The regex
requires that the shorthand reference be an xs:Name, and 2)
the test only checks that we are pointing to an item on a
particular web page, but does not check that the item exists.
1) Right. The target is XHTML, so “1asd” is not a valid
identifier. The prose in the introduction is quite clear that
TCW32 only discusses XML documents (including XHTML),
not HTML or JPEG documents.
2) Absolutely true, by design — it is only supposed to check
the syntax. But a) the prose does not explain that well, and b)
there probably should be an example that shows how to check
that there is something retrievable there. So I think there is
some work for me to do here re-writing the prose around #11
and adding a new example.

RV: good idea making this more clear in the prose.
SB: Prose in subsection “remote pointers” updated.

RV: Not sure we need an example that shows how to check
that there is something retrievable there: I think that’s out of
scope of schematron and I’m not sure we should make a
recommendation on which tools to use to retrieve, parse, and
check the target document.
SB: I disagree in that I think we do need an example that
shows how to check there is something retrievable there (it is
in scope of Schematron, IMHO, and part of point of this
document is to demonstrate how to do so); I agree in that I no
longer think we need another example. I am thinking now that
#eg11 is sufficient (since it does retrieve the document) with an
added note that points this out.

#eg12: Require a filter on
equiv that points to an XSLT
program

MDH Tested this one, and although it works, there is one caveat: a
relative path to the XSLT file must be relative to the schema,
not to the XML instance file.
SB: Good catch! I also forgot normalize-space(). Fixed in
72dcf89.

#eg13: rendition points to 1
or 2 renditions

RV Tested, all assertions work.

#eg14: Check that each
pointer in wit points to
witness

HBS Tested and I couldn’t find any issues. The error message is
very detailed and it is extremely helpful how it handles
multivalued cases. The first time I read the error message,
though, I wondered for a second if the pronoun “they” referred
to all the pointers or only to the ones that were incorrect. My
suggestion to make it less ambiguous is a bit longer than the
original:
One (or more) of the pointers of this @wit
does (do) not point to a 'witness' element;
they. The pointers in this @wit point to the
following items, in the order specified:

SB: Sounds reasonable (if verbose) to
me. Updated at 0734820.

#eg15: Required ref of
persName eventually refers
to person

EBB

#eg16: Required ref of
persName eventually refers
to person using abstract
patterns

LB Tested. The simple case (value of who points to a person)
works. But more complex ones did not. E.g. it accepted the
following as valid
<body><p><persName ref="#who"></persName></p><p><alt
xml:id="who" type="person" target="#smith
#jones"/></p></body>
(when smith and jones are not defined). But maybe this is tag
abuse of <alt>?

SB: Doesn’t seem to be tag abuse of <alt> to me, at least not
when smith and jones are properly defined. But you have
definitely caught an erroneous case, here. Code seems to
work fine if smith and jones are mis-defined (i.e., are <place>
or <emph> elements), but fails if they are simply pointers to
nowhere. Sigh. Working on it.
Fixed in e5af56a.

#eg17: Resolve prefixDef for
references to people

MS

#eg18: XIncluded yet? —
one size fits all

HBS I am confident it works as expected, but I am not sure how to
play with this one to make it fire: the editors I use perform the
XInclude processing very, very quickly. I tried looking into the
settings of Oxygen to see if I could disable the XInclude
processing, but I only saw it as an XSL option.

SB: Not sure what is going on here, HBS. In oXygen 24.0 this
is controlled by the “Enable XInclude Processing” checkbox in
the Options > Preferences > XML > XML Parser pane. Can be
found by searching for either “XInclude”, or more precisely
“fix-up” in the preferences search box.

HBS: Found it! I have an older version, but the location of that
checkbox was the same. So indeed now I can confirm that if
you disable that option, the error fires.

#eg19: XIncluded yet? —
per-test reporting

HBS All the rules worked. However, the expected syntax of @target
does not seem to be compliant with the URI generic syntax
(fragments should begin with ‘#’, right?). If in this case @target
should only include one URI (for some reason), then I think
that the variable $target should be defined as:

<sch:let name="target" value="normalize-space(@target) =>
substring-after('#')"/>

However, if the example supposes that @target can contain
more than one URI, then the definition should be something
similar to this:
<sch:let name="target" value="for $x in tokenize(@target, '\s+')
return substring-after($x, '#')"/>

SB: Good catch! Right you are about the missing #. We know
this example is for only 1 pointer because the caption
paragraph immediately below the example says “the @target
of <catRef> is a single shorthand pointer”.

Will fix shortly. (Although I am going to use the XSLT 2 syntax,
substring-after(normalize-space(@target),’#’), as some
Schematron processors still don’t do XSLT 3 binding.)
Fixed at 759623d.

MS: line 162: and then cases where the an item is being referred to indirectly
SB: Fixed, 2021-11-10, checked in at 535953ed…404a8016, I think.

