
OpenSpending
Functional Specification

Document Changes:

Date Author Changes

2011-07-15 stiivi Added information about ETL

Contents

OpenSpending
Contents
Proposals

Architectural changes
Data sources and storage changes

Architecture Proposal 1
OpenSpending Web Application
Online Analytical Processing (OLAP) Module

Data Storage

Proposals

Architectural changes
●​ legacy application package wdmmg and wdmmg-ext will be split into more logical and

functionally coupled packges:
○​ OpenSpending Web - web front-end application, with interface for pluggable

visualisations
○​ OpenSpending ETL - extraction, transformation and loading package
○​ OpenSpending OLAP - online analytical processing package

●​ main OpenSpending packages should focus on "core business" - that is providing
analytical insight into spending data, either through web based interface, search engine
or API.

●​ analytical dataset is read-only for web application
Changes required:

●​ remove non-web code from the wdmmg package. Reasons: cleaner packages, easier to
maintain

●​ separate raw/analytical data layer: well defined API to get analytical and raw data from
data backend – Reasons: more transparent architecture, easier to maintain and
track-back bugs (software or data); more architectural flexibility – easier to make
changes; easier to introduce new analytical functionality

●​ web application should not depend on data structures and physical data storage, all
queries should go through raw/analytical data API – Reasons: future changes require
less work, are less prone to errors; scalability is matter of backend not of application

●​ remove dataset specific code and all dataset specific extraction, transformation and
loading code should be delegated to third-parties. Reasons: keeps code clear;
separation forces to use encapsulated API oriented architecture, which is more
transparent and easier to maintain; encourages reusability of ETL code

Data sources and storage changes
New functionalities:

●​ master management will be introduced - process for creation, maintenance, update of
lists, enumerations, dimensions, classifications, mappings, etc.

●​ ETL process monitoring will be introduced – all ETL jobs should be auditable through
single place

Changes:
●​ split current application data store into multiple stores depending on data stage: source

mirror, staging area/operational data store, datamart area, application specific data
(described later). Reasons: transparent data processing process; modular architecture
wich is easier to maintain; provides basis for better data quality – data quality issues are
easier to track; open for scalability at any given level without need to rewrite the rest of
the OpenSpending system(s)

●​ each dataset in OpenSpending should have a corresponding CKAN package –
Reasons: transparency of data sources; availability to third parties; crowd-sourced
source data auditability; last but not least (non-openspending related) - encourages use
of CKAN and serves as use-case example of CKAN usage

●​ most of master data sources (classifications, lists, enumeration) should be available as
CKAN packages as well, mainly list of entities, classfications – Reasons: same as
reasons for dataset source being stored in CKAN; introduces better reusability of
classifications at source level – potential data providers can be pointed to open and
public existing classifications to make their data comply with OpenSpending
requirements.

Restrictions:
●​ no direct data change in database should be done manually, every change should be

introduced in ETL process, even small bug fixes – Reasons: transparency; better data
quality; data reconstructability

●​ whole data mart should be regenerated by running required ETL scripts – Reasons: in
case of data loss (database attack, hacking, manual changes), whole datamart can be
regenerated to the same state as it was before just using scripts

Architecture Proposal 1
Top-level modules from user's level down to data level:

●​ OpenSpending Web Application
●​ Online Analytical Processing
●​ ETL

External modules and dependencies:
●​ CKAN – not part of OpenSpending, but required as data source
●​ third-party ETL packages – created by "data wranglers"

The architecture is depicten in the following diagram:

OpenSpending Web Application
●​ provides web interface for visualising, browsing and searching OpenSpending datasets
●​ has notion of "reports" – description of how datasets are being visualised and analysed,

which dimensions, measures and post-computations are used
●​ might contain application data store for storing "transactional application data", such as

comments, taggings, customized reports
●​ web application accesses analytical data in read-only mode

Online Analytical Processing (OLAP) Module
●​ provides interface for querying analytical data: from facts to aggregates
●​ has well-known read-only interface which serves as the only way for accessing

open-spending datasets from the end-user web aplication
Interface should provide functionalites:

●​ retrieve detailed information about spending (fact/detail)
●​ retrieve metadata describing a dataset entries
●​ retrieve list of dimension entries (such as list of entities, list of classifications, ...)
●​ aggregate measures through dimensions

API responses should be in the most appropriate format:

●​ Python objects when called from python
●​ JSON when called using HTTP API
●​ CSV through HTTP where appropriate

There might be possible future analytical capabilities of the OLAP backend:

●​ pivot tables – cross-table structures with dimensions in rows and columns, possibly
paginated by another dimension; should be provided in the most appropriate form that
can be immediately used with result consumer without any major transformation (for
example: JSON reply should contain list of row and column titles and then table cells as
list of rows where row is list of column cells, already sorted according to pivoted
dimensions)

●​ histograms
●​ pre-computation of measure-based classification dimensions (for example:

low/medium/high expense)
●​ association mining (apriori/shopping basket) – example use from spending data: "what

combination of subjects of contracts is most common?"
●​ etc.

Note: search engine might or might not be part of OLAP module, recommended is indexing
out-of OLAP module with references to OLAP objects (multidimensional aggregates, detailed
facts)

Data Storage
Implementation of data storage for OLAP should be the most appropriate with regard to:

available software, knowledge of developers, maintainability, auditability and ease of use for
analytical processing.
The OLAP data store should be abstracted and hidden from application – no direct access
should be allowed, analytical queries should be done only through analytical API. Abstraction
makes architecture cleaner, easier to maintain and more transparent, therefore more auditable.
Also is open for future changes, such as decision to change analytical store for scalability or
feature richness reasons.
There are two actual possibilities of data store backends:

●​ relational database (ROLAP)
●​ mongo-db

Preference is for ROLAP for following reasons:
●​ high availability of knowledge and best practices for ROLAP, well tuned schemas and

processes
●​ very easy to implement
●​ SQL is very good for ad-hoc queries – allows wide variety of fast ad-hoc reports on top

of structures created by ROLAP backend

References:

●​ ROLAP: http://en.wikipedia.org/wiki/ROLAP

Extraction, Transformation and Loading
Purpose of the ETL package is to provide functionality to perform source data extraction,
validation, transformations and final loading into the analytical store.

Changes
●​ ETL process is to be split into multiple steps, depending on data stage. Reason:

Auditable process
●​ ETL is encapsulated module with API, application will have no access to the internal

structures of ETL data, except operational data store
New features

●​ master data management process
●​ unified ETL logging

Terminology
●​ fact dataset – collection of records with financial transactions
●​ dimension dataset – collection of records with dimension information, such as

classification
●​ source file – partial

Reserved words (to avoid confusion):

●​ partition – PostgreSQL table partition
●​ slice (OLAP) – cell from multidimensional cube

Data Storage Areas
Data are being store in multiple forms in different areas, depending on processing stage. The
areas are:

●​ source mirror – exact copy of data resource with metadata
●​ operational data store – contains transformed, pre-processed data, can be used for

ad-hoc reporting
●​ analytical data store (OLAP) – data in analytical form for multidimensional aggregate

browsing

In addition to data storage areas, ETL process will require separate storage space (SQL
schema or mongo DB collection) to store control information.

Source Mirror

The source mirror contains exact copy of data resources accompanied by resource metadata
and data. Preferred way of storage is file system - most portable, immediately accessible,
auditable without special tools.
Granularity of the source mirror is dataset

Operational data store

Contents:

●​ assembled fact datasets from source files – each dataset collection contains all
transactions from a dataset

●​ lists – base for dimensions
●​ mappings – tables for key-based mapping to derive new fields

Preference for ODS backend is SQL, for the following reasons:

●​ more readable and maintainable transformations code
●​ faster mappings
●​ easier ad-hoc reporting

Disadvantages of SQL compared to noSQL:

●​ requires good and reliable metadata management
●​ difficult to handle frequently changing structures

Analytical Data Store
The data in store for OLAP will be stored in the form most appropriate for the aggregated
browsing. Data structure should be encapsulated and hidden from "outside world". Application
should access the analytical data only throught well defined API.

ETL Processes
Process Description Input Output

Update source
metadata

Load metadata about source
packages from CKAN and store
them locally.

List of CKAN
packages:
dataset name,
package name
(if not set, then
equal to
dataset name),
dataset type
(facts or
dimension)

JSON record
per package

Download
Source

Create local mirror of source files dataset source
package
information

Downloaded
source file (in
the Source
Area)

Validate Source
File

Validate source file whether it
matches metadata specification
and basic quality checks

dataset source
package
information,
source file

validation
report

Load dataset
file

Loads a dataset file into ODS. If
the file was already loaded, it will
be replaced.

dataset source
file

records in
dataset ODS
table

Transform
dataset

Performs field based
transformations on datsaets, for
example: derive measures,
consolidate currency, derive fields

ODS dataset ODS dataset

based on mappings, ... This stem
might contain dataset-specific
modules.

Update dataset
snowflake

Updates dataset snowflake by
mapping dimension datasets,
such as classifications or entities.
This step should be generic for
every dataset.

ODS dataset
source

ODS dataset
facts

Create/update
cube

Transforms dataset into
multidimensional analytical format.

ODS snowflake OLAP cube

Dataset lifecycle
While dataset processing, either fact or dimension, status information should be stored in ETL
control structures.
The dataset has multiple life-cycle stages, with one special "pre-natal" stage for source files,
which is handled separately.
Dataset stages:

●​ metadata – only dataset information is known, no structures are prepared
●​ structures – structures are prepared, no data is loaded
●​ source – source files are loaded and assembled into a dataset
●​ transformed – transformations passed
●​ mapped
●​ snowflake
●​ cube

Each dataset stage should have information:
●​ date created
●​ stage status – empty, ok, failed
●​ failure reason

Following image shows exaple of different dataset statuses:

	OpenSpending
	Contents
	
	
	Proposals
	Architectural changes
	Data sources and storage changes

	Architecture Proposal 1
	OpenSpending Web Application
	Online Analytical Processing (OLAP) Module
	Data Storage

	Extraction, Transformation and Loading
	Changes
	Terminology
	Data Storage Areas
	ETL Processes
	Dataset lifecycle

