The following are notes referencing Henri Picciotto's <u>Geometry Labs</u>, sorted numerically. This is not an exhaustive list.

Resource	One-sentence summary	Topics
Labs 1.2 and 1.3	Measurement, protractor, and angles in clocks	AnglesMeasurementRatiosCircle (introduction)
Lab 1.7	Teaching triangle vocabulary inside a circle, using circle geoboard. Has deductive solving of angles also.	Triangle basicsDeductionCircle theorems
Labs 1.8 and 1.9	Inscribed angles theorem. Has deductive solving also.	Circle theoremsDeduction
Lab 1.10	Really cool soccer exploration. Puts inscribed angles theorem to use in context of shooting angles.	Circle theorems
Lab 2.4	Use Tangrams to create polygons that play with symmetry	SymmetryPolygons
Lab 3.1	Construction of triangles using tools; introduces triangle inequality	Construction toolsTriangle Inequality
Labs 3.3, 3.5, 3.8	"Walking polygons" introduction of exterior and interior angles.	Exterior anglesInterior anglesRegular polygonsPolygon angles sum
Labs 5.1 - 5.3	Playing with symmetry using capital letters of the alphabet and words, triangles and quadrilaterals,	Line symmetryRotational symmetry
Lab 5.4	Playing with multiple mirrors - this looks interesting as enrichment, but I need to try it with mirrors to know what's entailed?	
Lab 6.1	Asking kids to construct two <i>different</i> triangles with given information – is it possible?	Triangle congruence theorems
Lab 6.3	Building quadrilaterals "inside-out" starting from diagonals descriptions. Very cool!	Quadrilateral properties
Lab 8.4	Calculating areas in the Geoboard	Area calculation

Lab 8.5	Rotated squares in Geoboard - "How do you know it's a square?"	SlopeArea calculationDistance calculation
Lab 9.1	Taxicab v. Euclidean Geometry in the Geoboard	Distance formulaTaxicab math
Labs 9.2 and 9.3	Pythagorean proof and radicals in the Geoboard	Simplifying square rootsPythagorean Theorem proof
Lab 9.4	Observing patterns about radical distances radiating from the origin	SymmetrySlopeDistance formula
Lab 9.6	Hard! problems involving taxicab math. Good for math club?	
Lab 10.1	Creating scaled triangles in the Geoboard using midpoints	 Similarity of triangles Slopes of parallel lines Scaled area v. scaled lengths Triangle Midpoint Theorem
Lab 10.2	Comparing similar and non-similar rectangles in Quadrant I, with one vertex at the origin. Tie in to algebra!	SlopeSimilarity of rectangles
Labs 10.3 and 10.5	Making and testing hypotheses about scaled polyominos; using interlocking cubes to explore volume and surface area	 Similarity of irregular polygon Scaling 3D solids Scaled lengths v. scaled areas v. scaled volumes Volume Surface Area
Lab 10.6	Filling out tangram side lengths and perimeters, given one starting value.	Combining like termsPerimeterAreaSimilarity
Lab 10.7	By completing a table and answering questions, students discover special right triangles, then apply them to other shapes.	Special right trianglesPythagorean Theorem
Lab 11.7	Mixed practice of various skills in the context of analyzing triangles and quadrilaterals inside a circle geoboard. A bit challenging but great problems!	 Ratio Circle Trigonometry Area Perimeter Inscribed angles Theorem