The following are notes referencing Henri Picciotto's <u>Geometry Labs</u>, sorted numerically. This is not an exhaustive list. | Resource | One-sentence summary | Topics | |-----------------------|--|---| | Labs 1.2 and 1.3 | Measurement, protractor, and angles in clocks | AnglesMeasurementRatiosCircle (introduction) | | Lab 1.7 | Teaching triangle vocabulary inside a circle, using circle geoboard. Has deductive solving of angles also. | Triangle basicsDeductionCircle theorems | | Labs 1.8 and 1.9 | Inscribed angles theorem. Has deductive solving also. | Circle theoremsDeduction | | Lab 1.10 | Really cool soccer exploration. Puts inscribed angles theorem to use in context of shooting angles. | Circle theorems | | Lab 2.4 | Use Tangrams to create polygons that play with symmetry | SymmetryPolygons | | Lab 3.1 | Construction of triangles using tools; introduces triangle inequality | Construction toolsTriangle Inequality | | Labs 3.3,
3.5, 3.8 | "Walking polygons" introduction of exterior and interior angles. | Exterior anglesInterior anglesRegular polygonsPolygon angles sum | | Labs 5.1 -
5.3 | Playing with symmetry using capital letters of the alphabet and words, triangles and quadrilaterals, | Line symmetryRotational symmetry | | Lab 5.4 | Playing with multiple mirrors - this looks interesting as enrichment, but I need to try it with mirrors to know what's entailed? | | | Lab 6.1 | Asking kids to construct two <i>different</i> triangles with given information – is it possible? | Triangle congruence theorems | | Lab 6.3 | Building quadrilaterals "inside-out" starting from diagonals descriptions. Very cool! | Quadrilateral properties | | Lab 8.4 | Calculating areas in the Geoboard | Area calculation | | Lab 8.5 | Rotated squares in Geoboard - "How do you know it's a square?" | SlopeArea calculationDistance calculation | |-----------------------|---|--| | Lab 9.1 | Taxicab v. Euclidean Geometry in the Geoboard | Distance formulaTaxicab math | | Labs 9.2 and 9.3 | Pythagorean proof and radicals in the Geoboard | Simplifying square rootsPythagorean Theorem proof | | Lab 9.4 | Observing patterns about radical distances radiating from the origin | SymmetrySlopeDistance formula | | Lab 9.6 | Hard! problems involving taxicab math. Good for math club? | | | Lab 10.1 | Creating scaled triangles in the Geoboard using midpoints | Similarity of triangles Slopes of parallel lines Scaled area v. scaled lengths Triangle Midpoint Theorem | | Lab 10.2 | Comparing similar and non-similar rectangles in Quadrant I, with one vertex at the origin. Tie in to algebra! | SlopeSimilarity of rectangles | | Labs 10.3
and 10.5 | Making and testing hypotheses about scaled polyominos; using interlocking cubes to explore volume and surface area | Similarity of irregular polygon Scaling 3D solids Scaled lengths v. scaled areas v. scaled volumes Volume Surface Area | | Lab 10.6 | Filling out tangram side lengths and perimeters, given one starting value. | Combining like termsPerimeterAreaSimilarity | | Lab 10.7 | By completing a table and answering questions, students discover special right triangles, then apply them to other shapes. | Special right trianglesPythagorean Theorem | | Lab 11.7 | Mixed practice of various skills in the context of analyzing triangles and quadrilaterals inside a circle geoboard. A bit challenging but great problems! | Ratio Circle Trigonometry Area Perimeter Inscribed angles Theorem |