
 Continuous Integration for HPC Facilities 
Requirements Document​

Exascale Computing Project ST/Facilities Technical Working Group on CI 

I. Motivation 
Web-hosted tools for Continuous Integration (CI) are ubiquitous in modern software development, and 
they allow tight integration between source code repositories and associated testing, code quality checks, 
and code review.  Developers can use continuous integration to ensure that their code is tested in many 
different software environments with many different configurations and options.  Cloud services like Travis 
CI, GitLab CI, Circle CI, AppVeyor, and Bitbucket pipelines are available at little cost or for free, and they 
allow public or private cloud-hosted repositories to be linked with on-demand continuous integration 
systems.  With these systems, Linux VMs and/or containers are spawned on demand in the cloud, 
sometimes in combinatorial configurations to ensure test coverage across a matrix of environments of 
interest.  CI tools are also available for use behind the firewall.  Tools like Jenkins and Bamboo and 
enterprise versions of GitLab, GitHub, and Bitbucket can launch runner processes (or agents) to run CI 
tasks on local resources in response to repository events. 
 
HPC developers need to deploy similar services but they have more stringent testing requirements.  HPC 
developers need to run on large-scale supercomputers and exotic testbed machines, and the hardware 
and software environments on these machines are often unique.  Leadership-class machines serve 
thousands of users, and each center sets up their machines differently.  It is therefore important that CI 
jobs run on the real hardware at each site, in that site’s environment to test for hard-to-find bugs related to 
the site’s deployment environment.  However, most HPC sites also have strict security requirements.  
Most use two-factor authentication, which makes it hard to launch automated tasks on an HPC machine 
from outside its facility.  Further, HPC users typically build, install, and run software as users on the host 
machine, and HPC users typically do not have root access to cluster nodes.  CI jobs therefore need to be 
run as specific users to comply with each center’s security model. 
 
Existing CI systems assume that developers can either set up their own hardware, or that their production 
environment can be duplicated in the cloud (e.g., in a VM or container).  Neither of these applies for most 
HPC systems: supercomputers are often unique resources, and HPC applications do not typically run in 
VMs.  While containers are rapidly becoming more popular at HPC centers, many applications still need 
to deploy on bare metal, and containers built on HPC machines may still not be portable outside their host 
facility.  HPC centers therefore do not typically provide CI as a general service for their users, and HPC 
testing cannot be automated easily.  The cost of this lack of automation is tremendous; each new 
machine and each new environment requires additional manual engineering effort to test and deploy 
software, and bugs on DOE production systems are only caught at the last minute or, worse, in production 
runs.  Future HPC environments will increase in diversity, and without automated testing and continuous 
integration, the HPC software ecosystem will cease to be sustainable. 



II. Request for Proposals 
The U.S. Exascale Computing Project’s (ECP’s) mission is to develop a comprehensive software stack for 
exascale machines.  The stack includes HPC applications, libraries, tools, and system software.  To test 
and deploy this stack, a comprehensive, secure, easy-to-use CI solution that can overcome the above 
limitations is needed for deployment at large-scale HPC facilities. 
 
ECP requests development proposals for CI systems that can satisfy the requirements described in 
Section III of this document.  We do not anticipate that vendors will need to implement a new CI system 
from scratch, rather that vendors will be able to develop enhancements to existing CI systems either as 
plug-ins or open source contributions to existing CI systems, or external services that interoperate with 
existing CI systems.  Responsive proposals will deliver a final product that will enable HPC facilities and 
the ECP project as a whole to deploy CI systems that meet the requirements in Section III. 

III. Requirements 
See the Intro to CI for HPC Centers presentation for background. 
 
These are requirements for a CI system that can be deployed securely for use by HPC facilities. 
Generally speaking, most requirements for HPC centers are met by existing CI systems, but HPC centers 
need new security features to serve thousands of users with with unique hardware and security 
requirements.  Responsive vendors will likely modify an existing, widely used CI system rather than 
inventing a completely new system.  We request the following capabilities: 
 

1.​ Permission requirements for all runners 
a.​ CI jobs can run automatically on a schedule (like cron) or in response to actions on 

source repositories, such as pushes, merges, configuration changes, etc. 
b.​ Runners run CI  jobs only in response to actions taken by authorized users.  In the web 

UI, users can be authorized to use particular runners. See below sections on Web UI for 
requirements on authentication/authorization. 

2.​ Setuid runners (Traditional CI launch/spawn) 
a.​ “Setuid” CI job runners can be launched as secure, persistent services on bare-metal 

HPC login or bare-metal HPC compute nodes. 
b.​ Setuid runners ensure 1(a-b) by receiving jobs from a trusted server, forking, and calling 

setuid to execute each CI job as a specific HPC user. 
c.​ Jobs launched as specific HPC users can run parallel batch jobs as those users normally 

would on the HPC system. 
3.​ Batch runners (i.e., CI job is spawned as batch job) 

a.​ The CI system can spawn job runners on demand, using the batch system at each HPC 
site. 

b.​ Batch runners can run anywhere the batch system can launch jobs (compute nodes, 
potentially login nodes, etc.) 

c.​ CI system ensures 1(a-b) by running as a trusted service and submitting runner jobs to 
the batch system as different HPC users. Jobs run as those users. 

d.​ Batch runners can be launched in parallel (multi-node) allocations if the user’s job 
requires MPI or other distributed parallel testing. 

https://drive.google.com/open?id=0ByIA-4NPhwMJVEhNYVRGYjEwWm8


e.​ Batch runners should not depend on any specific batch system, as HPC centers use 
many different batch systems.  i.e., runners should be easily extended to work with new 
batch systems through a public, well documented API. 

4.​ Intranet Web UI 
a.​ The CI web UI can be hosted behind an HPC facility’s firewall. 
b.​ There will be a mechanism in the web UI for project administrators to specify the user for 

runners launched on behalf of a project. 
c.​ There will be a mechanism in the web UI for users to authorize projects to run as them. 

Ideally, project administrators can request that their jobs run as a particular user, and the 
requested user will be prompted to authenticate to confirm the authorization. 

d.​ Authorizations can be granted with a user-specified expiration time. 
e.​ Administrators can opt to require authorizations to expire, and can set a maximum 

expiration window. 
f.​ The Web UI should support authentication of users via pre-existing credentials databases 

such as LDAP and Atlassian Crowd. 
g.​ Permission actions in the web UI (e.g., adding/removing access to specific runners) can 

also be executed via a web API (e.g., REST, json, etc.), so that facilities can script the 
solution to conform to site-specific requirements and account processes. 

5.​ Externally hosted Web UI 
a.​ The CI web UI can be hosted externally to the HPC facility, e.g., in Amazon Web Services 

(AWS). 
b.​ Accounts at HPC centers (i.e., runner users) can be associated with accounts in the web 

UI, either: 
i.​ On the server side, e.g., web UI user can authenticate using credentials for an 

HPC facility to associate their HPC account with the CI account; or  
ii.​ On the facility side, e.g., facilities maintain mappings from web users to local 

users that CI runners must enforce. 
c.​ HPC facility staff should be able to approve account associations, e.g., through the 

external web UI (as in 5.b.i) or locally (as in 5.b.ii). 
d.​ An external CI instance can securely run jobs on behalf of users at centers using their 

associated facility accounts. 
6.​ Permissions in the Web UI 

a.​ CI configuration in the web UI (e.g. projects, build plans, repository credentials, etc.) 
should be isolated in the UI and not world-readable by default. 

b.​ Users should be able to grant and revoke read/write access to their projects to other 
users in the web UI. 

7.​ Auditing 
a.​ HPC centers will be able to audit when runners were launched on particular hosts, and as 

what users. 
b.​ Web UI administrators will be able to see who logged into the web UI and when. 
c.​ Web UI administrators will be able to see audit logs of when and how users change 

permissions on their repositories in the Web UI.  

IV. Use Cases 
This section provides detailed use cases that illustrate the need for the requirements in Section III.  The 
use cases are provided by DOE HPC facilities.  Facilities were asked to provide the current state of their 



CI implementation (if any), issues with their current setup, and a wish list for what they would like an HPC 
CI system to do.  Use cases here should not be interpreted as hard requirements; they are provided to 
help vendors understand the requirements in the context of real HPC centers. 

Lawrence Livermore National Laboratory (LLNL) 
Current state 
Livermore Computing (LC) currently runs Atlassian Bamboo on a central server inside their HPC center.  
All LC users can log into this server with their LC credentials. Within the application, user CI configuration 
is isolated at the build plan level, and users can grant/revoke permissions to their build plans.  Each build 
plan is associated with one or more dedicated runners, which run as HPC users on login nodes. Any user 
can deploy a dedicated runner for themselves using a custom web portlet developed by LC.  The portlet 
launches runners as users on login nodes, but administrators must ensure that each runner is dedicated 
to build plans owned by its same user.  We must thus manually ensure that runners are secure, and users 
cannot use the CI system to run as other users or to access their data. 
 
Issues 
LC has centralized the CI server, but the administrative overhead of managing the agent-to-plan mapping 
in Bamboo is growing. We do not believe it is scalable in the long run.  In our current configuration, each 
runner is usable only by a small number of build plans, whereas a system with setuid or batch runners 
would allow much more scheduling flexibility of plans among runners. 
 
Wish List 
We need a CI system with either batch or setuid runners in order to reduce manual configuration 
overhead and increase utilization.  Batch integration is particularly desirable as it would allow us to control 
the amount of compute resource dedicated to CI in the same way we already manage HPC jobs.  Either 
type of runner would allow LC to deploy runners once and eliminate per-user/per-runner deployment 
overhead. 

Oak Ridge National Laboratory (ORNL) 
Current state 
The Oak Ridge Leadership Computing Facility (OLCF) and Oak Ridge National Lab (ORNL) each host 
Gitlab services accessible to our users through their OLCF and ORNL credentials respectively. These 
Gitlab instances are configured to support Gitlab CI. The CI runner instances must currently be started by 
individual users and staff members directly in specific-runner-mode on OLCF resource login nodes. Use 
of CI the runner instances is restricted to members of the projects to which it is associated. It is currently 
the responsibility of the user who registers a runner to configure the it such that it cannot be used by other 
unauthorized projects. 
 
Issues 
Jobs from all associated projects are run in shell-executor mode as the user who started the runner 
process. Restarting runners after system reboots is the responsibility of the user. The jobs performed are 
entirely in control of the project members through configuration stored in the associated repositories. 
However, CI actions are only feasible when the code is hosted on the OLCF or ORNL Gitlab servers. 
 
Wish list 



The OLCF is interested in a CI system where runners can be started by a setuid daemon process as 
specific authorized users on resource login nodes or to the batch queue to allow the OLCF to maintain 
resource utilization balance. The runners should be able to accept and run jobs only from specific 
authorized projects that may be hosted on either our internal VCS services or external services.  Runners 
should only be employed by CI tasks triggered by a specific OLCF user by default. Any changes to the 
permissions that would allow jobs to be launched by persons other than an authorized OLCF user must 
require an authorized OLCF user to delegate that permission after validating their OLCF credentials. The 
ability to spawn delegated runners should require regular re-authorization by the user under whom the 
jobs will run.  

National Energy Research Scientific Computing Center (NERSC) 
Current state 
NERSC has a jenkins installation maintained for one group, the JGI (Joint Genome Institute).  Other 
communities have expressed interest in CI, but aren’t as advanced yet.  In addition to the local Jenkins 
install, NERSC is using the cloud-hosted gitlab.com site and  deploying gitlab runners internally on SPIN 
(SPIN is the NERSC-internal cloud infrastructure). 
 
Issues 
The JGI Jenkins installation is viewed as flaky and expert-intensive.  JGI is investigating GitLab because 
of its ease of use and runner deployment options. 
Gitlab runners on SPIN currently run internally but can’t access global filesystems or to access batch 
queues, due to security concerns.  Specifically, Gitlab-triggered builds can’t trigger builds for specific 
NERSC identities, so security can’t be guaranteed end-to-end from gitlab.com to NERSC.  Further, 
storing credentials is difficult and insecure.  The biggest security risk faced with shared runners like this is 
that they frequently point at very open GitHub/GitLab projects, and anyone with commit access on the 
remote site can commit a new YAML file, or simply commit to the project, and essentially run things on the 
supercomputers.  The problem of running unsanitized code isn’t really unique to CI; users pull in other 
people’s OSS all the time, but unsecure CI exposes a more obvious attack vector.  There is a need to 
educate users on how best to lock down public repositories. 
 
Wish list 
In addition to the SPIN runners, NERSC would like to have gitlab runners on the login nodes of their 
clusters, with a full Cray environment.  That environment is not easy to replicate in a container, and there 
is little desire to try to do so. 
 
NERSC is interested in using containers for CI builds, particularly to monitor for malicious activity. 

Argonne National Laboratory (ANL) 
Current state 
At the time of the working group, ANL was working on deploying a Jenkins-based solution.  The idea was 
to use 2 dedicated nodes with GPFS and lustre mounts for the build agents, and to run a Jenkins master 
in a VMware environment.  To ensure security on runners, ANL would either deploy a runner per project 
(each running as a dedicated project user) or would develop a Jenkins plugin to fork and setuid to 
dedicated project users.  A plugin would have provided isolation and flexibility, reducing the number of 
agents that would need to be running at any one time. 
 



Since the working group concluded, ANL has scrapped their Jenkins plans and decided to go with GitLab. 
 
ANL is still working on setting policies about how users can use CI.  These will likely be fleshed out once 
‘friendly users’ are on the system, e.g.: 

-​ How often can they build? 
-​ Minimum number of builds per day? 
-​ How running test jobs affect their allocations? 
-​ Should all project users be able to kick-off a build or test suite? 

 
Issues 
Cryptocard authentication, ability of runners to setuid to particular users. 
 
Wish list 
As mentioned above, setuid runners are the major wish list item. 

Los Alamos National Laboratory (LANL) 
Current state 
LANL currently deploys CI in two environments: 

1.​ Next-generation Computing (NGC) 
2.​ Production codes 

The NGC environment uses a GItLab instance with a special cluster where containers can be used.  On 
this cluster, the teams run open and ASC code tests at scales of ~100 MPI ranks in docker and on the 
bare metal.  The production environments rely on Jenkins; one Jenkins instance per team, and these CI 
servers can run tests on production systems. 
 
Issues 
From experience: Jenkins is an order of magnitude more complicated than GitLab for a team to set up; 
GitLab enables more users to get CI.  With GitLab, multi-OS testing with containers is easy and PR 
integration with the web UI is easier than with Jenkins. 
 
Wish list 
Setuid runners are the major request for the GitLab instance, so that users could potentially share an 
internal GitLab instance on production machines.  It is unclear how soon production teams would move 
away from Jenkins, as each team customizes Jenkins for their project, and the teams already know 
Jenkins (despite the complexity). 

Sandia National Laboratories (SNL) 

Current state​
A few Jenkins servers are deployed at Sandia which run as entity account users.  Credentials are 
configured for each account to connect through ssh to the HPC cluster machine login nodes.  The entity 
accounts are then allowed to submit batch jobs on the clusters.  One of the Jenkins servers is locally 
modified to run the slave process with setuid to an entity account attached to the given Jenkins Project. 

  



Issues​
The local modification increases the cost of managing and maintaining the Jenkins installation.  
Furthermore, a side effect is that the machine resources cannot be load balanced across Jenkins Projects 
(machines must be partitioned). For the stock Jenkins server that runs as a single "jenkins" entity 
account, all jobs are submitted to the HPCs as that entity account.  This means no per-project accounting 
can be done for utilization of the HPC machines. 

Wish list​
A couple of additional impediments that have not been mentioned yet are: (1) requirement for very 
fast/efficient CI build environments. In order for CI to be effective it must have fast turnaround time. This 
means the build environment for applications to be rebuilt for CI has to be very efficient and fast. In has 
been our experience that the number and configuration of HPC login nodes is often inadequate to support 
this. Supported cross-compile environments would also be helpful here. Fast filesystems for builds is also 
necessary. And, (2) Depending upon the maturity level of the application, the application's test suite may 
be quite large which can stress the HPC systems scheduler and resource manager. These layers need to 
better support high throughput computing (HTC) for CI. 

Kitware 
Current state 
Kitware does not deploy CI, but works with HPC facilities on ECP projects that need it. 
 
Issues 
Kitware echoes NERSC’s security concern about anyone who can make a merge request having 
permission to run jobs on the machine, and about the dangers of shared build runners.  For example, 
NERSC has in the past configured buildbot to allow particular users to trigger tests by commenting on a 
remote site. 
To support all of its projects, Kitware needs the ability to run CI jobs at completely different site from 
where code is hosted. A central server with runners at different ECP sites could accomplish this.  An 
example is the ADIOS ECP code, which is hosted on GitHub, but CI for this project needs to run at the 
facilities in order for it to be robust and well tested for users. 
 
Wish list 
Kitware and its projects need to be able to trigger builds at multiple DOE sites from a single 
repository/project.  A central server with runners at the various ECP sites would satisfy Kitware’s use 
case. 

HDF5 - The HDF Group (THG) 
Current state 
The HDF Group (THG) uses Buildbot to run HDF5 CI testing. Results of the testing are published on 
CDash and email notifications are sent to the HDF5  developers.. There are no automatic testing on HPC 
systems. All components needed to test on HPC systems are in place, but submission and results 
retrieval will depend on the system.  
 
One of the possible solutions will be running Buildbot “slave” on the HPC system. The slave will be in 
communication with the Buildbot Master that runs at The HDF Group dedicated hardware and execute 



commands to run HDF5 testing configurations. This may include scripts unique to HPC systems for 
running HDF5 regression test suite. 
 
The results of tests could be submitted to the CDash that is maintained by The HDF Group for external 
test submission and will be open to the interested parties.  
 
Issues/Assumptions 

1.​ Buildbot software is Python based and can be run on the HPC system 
2.​ Established connection between the HPC system and The HDF Group testing servers 
3.​ Dedicated developers to address code issues identified by testing 
4.​ Dedicated developers to maintain Buildbot setup at the HPC system and at The HDF Group. 

 
Wish list 

1.​ Access to >8K cores to run parallel HDF5 tests on large-scale systems 
2.​ Access to different file systems (e.g., GPFS, Lustre, SSD) 
3.​ Access to different compilers and versions of MPI I/O libraries 
4.​ Support of using Containers for CI builds, (similar to NERSC’s interest in using Containers) 

V. Implementation Platform 

GitLab 
We do not strictly require a solution proposed for this RFP to use any particular CI technology, but we 
have a strong preference for modifications to GitLab, based on responses from members of the CI 
working group.  GitLab is currently the most popular behind-the-firewall CI solution, and based on many 
labs’ experiences, it is also much more feature-rich and easier to use than competitors.  We also have a 
preference for GitLab because a) it is open source and HPC facilities will be able to customize any 
contributions made to it; and b) its runners are implemented in Go, a systems language that lends itself to 
the fork/setuid behavior likely needed to satisfy some of the requirements in Section III.  Labs have 
attempted to implement this themselves with Java-based CI tools, with limited success. 

GitHub Integration 
Despite GitLab’s popularity for use on intranets, the majority of the ECP software stack is open source 
and hosted on GitHub.com, and we do not expect this to change in the near-term.  We would therefore 
like the proposed CI solution to interoperate with GitHub, regardless of the platform it is implemented on.  
For example, if pull requests are posted to a project’s main GitHub repository, or if commits are added to 
a repo on GitHub, the CI solution should be able to run CI jobs for these contributions at ECP facilities 
and update the status of the PR on GitHub.  This should be possible without significant effort on the part 
of the project team.  Currently, GitLab users can achieve this with a few configuration steps, but simpler, 
more tightly integrated solutions are under discussion (see https://gitlab.com/gitlab-org/gitlab-ce/issues/32052). 

Detailed Feedback 
Detailed feedback from WG members on the implementation platform: 
 

https://gitlab.com/gitlab-org/gitlab-ce/issues/32052


1.​ LLNL leans towards GitLab, even though it will be painful to switch from Bamboo/Bitbucket.  
GitLab makes it easy for new teams to get started with CI, and it is open source, so the facility 
can easily make customizations.  Further, GitLab’s runners are written in Go, which lends itself to 
integration with security in the underlying OS much better than Java-based solutions. 

2.​ ORNL leans towards GitLab. They have tried jenkins and other solutions; setup was far easier 
with GitLab, and ORNL’s current CI offering uses GitLab. 

3.​ NERSC leans towards GitLab, as they are already using gitlab.com.  NERSC says that requiring 
implementations for more than one major CI solution will take more time -- if other solutions are to 
be considered, prototyping with gitlab first will likely result in a usable product sooner. 

4.​ ANL sees nothing wrong with GitLab but will look at this exercise as a proof-of-concept before it 
goes all in.  ANL has started using GitLab internally since this working group ended. 

5.​ LANL leans towards GitLab long-term, and they prefer it over implementing a first 
proof-of-concept in Jenkins (similar to ANL and NERSC).  LANL wants to see a product that is 
open and maintained by a company.  LANL also notes that there is a GItHub plugin that allows 
GitHub CI to run on GitLab runners, so there is a possibility that this will also enable testing for 
GitHub-based projects.  While LANL does lean towards GitLab, it does have a large investment in 
Jenkins for production teams, which may continue to use Jenkins for some time before eventually 
migrating.  Jenkins is more “universal” and general in many ways but complexity is difficult. 

6.​ SNL has a substantial investment in Jenkins and utilizes both GitHub and GitLab. Either 
implementation would require some migration at SNL. We would like to see this effort produce a 
robust solution to help justify that migration. 

7.​ Kitware has a concern that GitLab CI is closely tied to the GitLab server, and integrating 
cross-site runners may be difficult.  Absent this issue, i.e., if on-site runners at different DOE sites 
can be made to work with a shared GitLab instance that tests at ANL, ORNL, and NERSC, then 
Kitware also leans towards GitLab over other solutions. 

VI. Open Source 
It is strongly preferred that any proposed solution be open source, and that it can be contributed back to 
the CI tool on which it is based.  The DOE laboratories have a long history of deploying open source 
software for HPC, and it has many advantages for HPC centers, including the ability to customize heavily 
for each site.  There may be some components, such as plugins for enterprise versions of, e.g., GitHub or 
GitLab, that cannot be OSS, but we prefer that the bulk of proposed solutions to be OSS, released under 
a permissive license. 


	 Continuous Integration for HPC Facilities 
	I. Motivation 
	II. Request for Proposals 
	III. Requirements 
	IV. Use Cases 
	Lawrence Livermore National Laboratory (LLNL) 
	Oak Ridge National Laboratory (ORNL) 
	National Energy Research Scientific Computing Center (NERSC) 
	Argonne National Laboratory (ANL) 
	Los Alamos National Laboratory (LANL) 
	Sandia National Laboratories (SNL) 
	Kitware 
	HDF5 - The HDF Group (THG) 

	V. Implementation Platform 
	GitLab 
	GitHub Integration 
	Detailed Feedback 

	VI. Open Source 


