Homeostasis: Exercise and Negative Feedback Mechanisms

Edwin Moses of the USA clears a hurdle en route to his victory in the men's 400m hurdles final at the 1984 Summer Olympic Games in Los Angeles, California. (David Cannon/Allsport)

•	Exercise can cause huge changes in	the body's
•	The	_ in the muscles that are working hard
•	Need	-
•	Need	_
•	Produce more	-
•	The body adjusts to meet these dem	ands and returns to normal through

The Effect of Exercise on the Respiratory System

<u>STIM</u> !	ULUS When exercising, the working muscles are producing more ${ m CO_2}$ than usual
SENSO •	ORon cells that are found in the
	detect the $\underline{increase}$ in concentration of CO_2 in the bloodstream
<u>CONT</u>	ROL
•	A rise in CO_2 during exercise causes these chemoreceptor sensory cells to
	send nerve impulses to the in the brain
<u>EFFE(</u>	<u>CTOR</u>
•	The respiratory centre in the brain sends a message to
	the to increase activity so
	that <u>breathing rate</u> increases
•	This results in an <u>increased breathing rate</u> ,
<u>STIM</u> !	$\ensuremath{\text{ULUS}}$ When exercise slows down or stops, there is a $\ensuremath{\text{decrease}}$ in the $\ensuremath{\text{CO}_2}$ produced
SENS(OR This is detected by the chemoreceptors in the arteries
CONT •	ROL A message is sent to the respiratory centre of the brain
EFFE(CTOR The respiratory centre sends a message to the respiratory muscles to

Exercise and Breathing Rate

Comparing Breathing Rates

A comparison between athletes and non-athletes breathing rates when undergoing exercise was conducted.

- 1. What is the initial breathing rate for athletes and non-athletes?
- 2. What is the highest breathing rate for both athletes and non-athletes?
- 3. Around what time did the breathing rate plateau for athletes?
- 4. After 10 min. what do you think is happening?

The Effect of Exercise on the Circulatory System

STIMULUS •	The working muscles have an <u>increased demand</u> for
	and
•	The narrow, increasing blood pressure so that the rate of blood flow <u>increases</u> to the muscles
SENSOR .	on cells that are found in the heart detect the increase in blood pressure
CONTROL •	A rise in blood pressure during exercise causes these baroreceptor sensory cells to send nerve impulses to the
	in the brain
EFFECTOR •	The cardiovascular centre in the brain sends a message to the heart to increase activity so that blood flow <u>increases</u>
•	This results in an <u>increased heart rate</u> , <u>carrying more oxygen and</u> <u>glucose</u> to the working muscles
STIMULUS •	When exercise slows down or stops, less oxygen and glucose are needed and blood pressure <u>decreases</u>
SENSOR .	This is detected by the baroreceptors in the heart
CONTROL •	A message is sent to the cardiovascular centre of the brain
EFFECTOR •	The cardiovascular centre sends a message to the heart to

Exercise and Heart Rate

Comparison of Pulse Rates

A comparison between athletes and non-athletes pules rates when undergoing exercise was conducted.

- 1. What is the initial pulse rate for athletes and non-athletes?
- 2. What is the highest pulse rate for both athletes and non athletes?
- 3. Around what time do you think they began exercising? Explain.
- 4. After 9 min. What do you think is happening?
- 5. Why do you think there is a difference between pulse rates of athletes and non-athletes?

The Endocrine System and Fight or Flight?

•	Sometimes we are in situations where we have to react to a threat or a perceived threat		
•	The in this case is something that can harm us		
•	The endocrine system produces specific that cause physiological changes in response to a threat		
	YOU CAN FIGHT ME UM FLIGHT!		
•	One of the main hormones that is produces is called adrenaline		
•	Adrenaline can cause many physiological changes that prepare an individual to confront (fight) or avoid (flight) the threat		
	Fight or Flight Response		
	Fight or Flight Response		
	Fight or Flight Response		
	₽		
	₽		
	 ♣ 		

What is the **Stimulus, Sensor, Control** and **Effector** in the fight or flight response?

Physiological changes during 'fight or flight' response to a threat

PHYSIOLOGICAL CHANGE	REASON
Increased heart rate	
Increased breathing rate	
Pupil dilation	
Sweat production	
Reduction of non-essential functions (eg. digestive system, urinary system)	