
Shardeum Audit Report

Response and Update

Delivery: Apr 16, 2024

SHM-1: Not all ViolationTypes are implemented

Type: Critical
Files affected: server/src/tx/penalty/violation.ts

On line 32, ViolationType.DoubleVote does not have a penalty amount
implemented for it.

Impact: As it currently stands, a malicious validator won’t get penalized for double
voting in Shardeum.

Recommendation: Implement a penalty that is a proportion of the offending validator’s
staked SHM.

Accepted but reduced to medium severity because it does not result in direct loss of
funds. This is a mainnet blocker, but will be addressed after our Incentivized Testnet



launch.

SHM-2: Penalties are uniform across all ViolationTypes
Type: Critical
Files affected: server/src/tx/penalty/violation.ts

On line 25, the switch statement sets the penalty amount to be 20% of the stakeLock
regardless of what kind of violation type it is. This fails to distinguish between safety
violations and liveness violations. Safety violations, which are attributable in
Shardeum’s Proof of Quorum consensus protocol, can lead to loss of user funds
whereas liveness violations are not attributable in any protocol, and lead to a user not
being able to send a transaction. As such, treating both kinds of violations equally
might lead to network centralization and affect validators’ incentives.

Recommendation: Attributable safety violations such as double voting should have a
harsher penalty as these are typically intentional behaviors on the part of a malicious
validator. Non-attributable liveness violations should also be penalized, albeit, less
harshly as it is hard to detect whether a node is intentionally being malicious or some
external factor outside of their control is causing them to be down.

Accepted but reduced to informational severity. Our current plan is to have these
tunable and potentially be making changes to the penalty amounts through mainnet.
The initial values are suitable enough for mainnet launch.

SHM-3: SyncTooLong ViolationType might lead to
centralization among Shardeum validators

Type: Critical

The SyncTooLong violation type is meant to penalize a validator for taking too long
to sync to the network. However, there are several possible reasons outside of the
validator's behavior for causing long synching times.

Impact: Penalizing a validator for taking a while to sync to the network will affect who



will join the Shardeum network as a validator resulting in geographical centralization
over time due to: 1) needing a well-resourced machine and, 2) being geographically
close to all the other nodes in the network to maximize connectivity.

Recommendation: Instead of penalizing this behavior on the on-chain layer, consider
not labeling the node as active until it has successfully synced to the network.

Rejected. We would like to penalize nodes that take too long to sync because that will
naturally increase the performance of the average node on the network. If the node
takes too long to sync, then it likely will not be able to perform its validation duties
well either. We understand that this could limit the hardware/networks that can
participate in Shardeum but this is by design. We aim to keep the hardware and
network requirements generally low but this penalty provides a floor.

SHM-4: Malicious nodes can cause a discouragement attack to new
validator nodes leading to the loss of SHM

Type: Critical

It is possible for a malicious node to conduct a targeted discouragement attack on new
Shardeum validator nodes. It leverages the fact that taking too long to sync is a
penalizable offense in Shardeum (see SHM-3 for the explanation).

The attack assumes that the malicious archiver has a modified Shardeum archive client
that keeps on sending valid but redundant Shardeum states to the targeted node. The
targeted node does not know this is a priori until sync time. The other nodes in the
network are keeping track of how long the targeted node is taking to sync. Once the
timeout described in the Sync Timeout document is met, these nodes then update their
list of currently synching nodes and apply the penalty described in the Staking,
Rewards, Penalties v1 document and as explained in SHM-3. The targeted node loses
a large percentage of its deposited SHM and never becomes an active validator in the
Shardeum network.
Impact: New validators may risk losing a substantial portion of their stake prior to
commencing validation on the Shardeum network, potentially resulting in getting
kicked out of the network



Recommendation: See SHM-3.

Rejected. The node sync does not depend on the archiver. A malicious archiver could
not interfere with the sync finishing process on a node as the joining node gets all of its
information from other active nodes in the network. The information on the archiver is
only used to restore the network in the case of a complete shutdown

SHM-5: Archiver Node Eclipse Attack

Type: Critical
Files affected: archiver.ts, apoptosis.ts

An attacker creates a large number of nodes and connects them to an archiver node.
Once the maxNode limit is met as defined in config/server.ts, the attacker can then
intentionally make all of the connecting servers go down to initiate apoptosis in the
victim archiver node.

Impact: Since validator nodes in the Shardeum network need the archiver network to
have good uptime and be accessible, the attack can have an impact on how validator
nodes get access to the historical state and how RPC servers can serve the historical
state.

Rejected. Archive nodes do store historical state data but validator nodes do not
reach out to archivers in this way. Additionally, new validator nodes only interact with
the RPC server and active validator nodes. Archivers subscribe to validator nodes
rather than the other way around. Apoptosis cannot be triggered in this manner in the
archiver nodes. Please provide a proof of concept if you disagree.

SHM-6: DDoS attack against Archiver Node

Type: Critical

The network design of the archive network simplifies the process for any archiver node
to quickly determine the IP addresses of others. Since validators depend on the archive
network for onboarding onto the network, this implies that archiver nodes are public



knowledge. This design makes it easier for an attacker to mount an attack against the
archive network to intentionally prevent Shardeum validators from joining and syncing
to the network and from RPC servers from serving Shardeum state.

Impact: Validators seeking to join the network are effectively censored and RPC
servers cannot serve requests potentially affecting third-party applications relying on
RPC services.
Recommendation: We recommend that archiver nodes adopt a sentry node
architecture to minimize exposure of their IP addresses to the public.

Accepted, but reduced to High severity. We are looking into cloudflare and
similar options for masking the IP addresses of archivers. Work to
decentralize the archive servers is scheduled for post mainnet and this
finding will be less relevant. Infra of shardeum-run servers was beyond the
scope of this engagement.

SHM-7: New validators are vulnerable to long-range attacks

Type: Critical

In the Shardeum network, for new nodes to get onboarded, they need to connect to
archiver nodes. Archiver nodes contain all of the state of the Shardeum network, which
includes transactions and EVM state. However, a new validator being onboarded has
no means to verify whether the state being sent to them is on the valid Shardeum chain
with the currently available shards. This is because archiver nodes in the Shardeum
system appear to be trusted actors, and such a new validator requires a large amount
of social information to participate.

Impact: New validators can be sent a valid version of the Shardeum state by malicious
archiver nodes and essentially start validating on a non-canonical but valid version of
the Shardeum state.

Recommendation: We recommend that Shardeum adopt a weak subjectivity security
model in which a well-defined weak subjectivity period is used to set checkpoints.
These checkpoints allow new nodes to retrieve the most up-to-date consistent state
across validators in the network from archiver nodes.



Rejected. New nodes join by interacting with active nodes, not archivers. Additionally,
nodes do have mechanisms to resolve conflicts in data that they receive when
syncing from other nodes in the network. The archivers are not a part of this process.

Shardeum uses BFT PoS. We do not have competing chains and have absolute
finality. A new validator will not have to decide between competing chains and cannot
be tricked into adopting a malicious chain as only one chain exists. The node will
know immediately if its data is not in sync with the greater network and will not be
able to join the consensus process. See this:
https://ieeexplore.ieee.org/abstract/document/8653269

SHM-8: DoS attack against JSON RPC API Service
Type: Critical

As explained in config.ts, the JSON RPC API service has a publicly exposed IP
address to enable subscriptions. This makes it easy for an attacker to intentionally
bring down Shardeum JSON RPC API services and impact third-party services reliant
on them.

Impact: Shardeum JSON RPC API services are unable to promptly handle service
requests to third-party services.

Recommendation: See SHM-6

Accepted. Similar response to SHM-6. Outside the scope of this engagement and this
issue will be mitigated by multiple parties hosting RPC servers after mainnet launch.

SHM-9: Resolve all TODOs in the codebase

Type: Critical
Files affected: All files in the scope

In the codebases within the scope of this audit, numerous TODOs have been identified
related to critical functionalities associated with the Shardeum protocol.



Impact: Not all of the core functionality of Shardeum is implemented.

See this table of TODO status:

TODO Status/MR

No validation of active node list returned from
archiver with any consensor nodes

https://gitlab.com/shardus/archive/archive-server/-/merg
e_requests/179

Code optimization: exclude could be a Set of
node Ids that has linear time lookup

https://gitlab.com/shardus/archive/archive-server/-/merg
e_requests/176

the consensus radius needs to hold one more
node

https://gitlab.com/shardus/global/shardus-global-server/-
/commit/498fa45770e60596b7341ac1478d8cf8a247844
e#22dea9b570ae7803f0b8919babc33f9d4a0a4348

Gossip data to all connected archiver nodes
might create redundant network payload. Confirmed not a concern. SEC-100

State data validation with other nodes is crucial Not a concern. Code is deprecated. SEC-103

validate it with multiple randomly selected
active nodes In progress. SEC-158

Contract address must be provided in
transaction receipt

TODO is not relevant, removed here:
https://gitlab.com/shardus/relayer/collector/-/merge_req
uests/24

Cross-validation with multiple archivers and
active nodes for the list of active nodes is
required In progress. SEC-95

TODO comment and logic needs clarification
https://gitlab.com/shardeum/server/-/merge_requests/40
7

Cycle Creator TODOs Blocked, waiting consult. SEC-154

SHM-10: Crypto.verifyObj does not verify if an object has a
sender field

Type: High
Files affected: archive-server/API.ts, archive-server/Crypto.ts

In API.ts, validateRequestData validates the request data from an API request. In

https://gitlab.com/shardus/archive/archive-server/-/merge_requests/179
https://gitlab.com/shardus/archive/archive-server/-/merge_requests/179
https://gitlab.com/shardus/archive/archive-server/-/merge_requests/176
https://gitlab.com/shardus/archive/archive-server/-/merge_requests/176
https://gitlab.com/shardus/global/shardus-global-server/-/commit/498fa45770e60596b7341ac1478d8cf8a247844e#22dea9b570ae7803f0b8919babc33f9d4a0a4348
https://gitlab.com/shardus/global/shardus-global-server/-/commit/498fa45770e60596b7341ac1478d8cf8a247844e#22dea9b570ae7803f0b8919babc33f9d4a0a4348
https://gitlab.com/shardus/global/shardus-global-server/-/commit/498fa45770e60596b7341ac1478d8cf8a247844e#22dea9b570ae7803f0b8919babc33f9d4a0a4348
https://gitlab.com/shardus/relayer/collector/-/merge_requests/24
https://gitlab.com/shardus/relayer/collector/-/merge_requests/24
https://gitlab.com/shardus/relayer/collector/-/merge_requests/24
https://gitlab.com/shardeum/server/-/merge_requests/407
https://gitlab.com/shardeum/server/-/merge_requests/407


particular, it checks that data has been properly signed by a valid public key pair
on line 1250 of API.ts, where data is of type unknown and {sender: string,
sign: Signature}. Crypto.verify then calls core.verifyObj where the core is
the shardus-crypto-utils library. In the verifyObj implementation, the passed
object (which is data in our case) simply checks if the object has a valid sign field
but does not check if it has a valid sender field.

Impact: A malicious requester can intentionally use two different public key pairs, one
in the sender field of data and the other in the validation process performed by
core.verifyObj. This can lead to the malicious requester getting access to
information that they should not be able to request.

Recommendation: Add a check to verifyObj to check that the sender field is
indeed the owner of the public key used to sign data.

Rejected. The specific location in code that is described in this issue looks good to us.
Maybe the location was incorrect?

SHM-11: Vulnerable NPM Dependencies

Type: Medium
Files affected: All of the codebases in the scope
Throughout the codebases that rely on Typescript, several npm modules are vulnerable
as per the NPM registry.

Impact: A vulnerable NPM package may cause unknown effects on the various
Shardeum codebases.

Recommendation: Run npm audit and either update or replace vulnerable modules

Accepted. We are in the process of migrating to GitHub. With this change we get
access to real-time alerts rather than our current passive process.

SHM-12: Hardcoded return values in JSON RPC Server

Type: Low



Files affected: json-rpc-server/api.ts

In api.ts, getCurrentBlock() returns a hardcoded result.

Impact: Any third-party service needing to query a block will get the same block
regardless of what the actual current block is.

Recommendation: Update getCurrentBlock() to return the most current
Shardeum block.

Accepted, informational. This doesn’t require a change as dynamic info is provided
when this function is used. However it could use a comment explaining what's going
on.

SHM-13: ShardusCoreMaxID, ShardeumMinID, ShardeumMaxID
are not ViolationTypes

Type: Informational
Files affected: server/shardeumTypes.ts

ShardusCoreMaxID, ShardeumMinID, and ShardeumMaxID appear to be node
identification indices for Shardus and Shardeum servers. However, these appear under
the ViolationType enum.

Recommendation: Create a new enum for these indices and remove them from the
ViolationType enum.

Rejected. This is a dev practice for signposting enums. Not a security issue but maybe
a comment is nice

SHM-14: No behavior when cycle_q1_start event is emitted in the
Join Protocol v2 init implementation

Type: Informational
Files affected: shardus-global-server/src/p2p/index.ts



In the init function for initializing the JOIN protocol v2, upon getting an event for
the Q1 cycle to begin, there is no corresponding behavior that is done.

Recommendation: It is unclear what the intended behavior should be based on the
available documentation available to us during the audit.

Rejected. This is not a security issue and is so low priority that it will probably not
get fixed.

SHM-15: Remove commented-out code completely

Type: Informational
Files affected: All files in the scope

Throughout the codebases in the scope, there are a lot of portions of code that are
commented out without any corresponding explanation or apparent use.

Impact: Affects the readability of the codebases.

Rejected. We intentionally leave a lot of commented code as a knowledgebase for
previous attempts at solving issues and old implementations. There are probably ways
for us to organize the commented out code better but unless there is some specific
security issue you can identify in a section of commented out code it is probably gonna
stay.


