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This is an early-stage draft of a requirements specification for a Distributed Atom Space (DAS) 
considered as part of a future OpenCog version.  This document is a compilation of many 
discussions carried out amongst several people in the SingularityNET AI Team. 
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Introduction 

Project Overview 
In the next few years it is desirable that AtomSpace and the associated tools transition from 
being an R&D tool to a scalable, robust framework that can be used within a variety of 
demanding practical applications (as well as for research projects that involve intensive 
real-time interaction and/or huge amounts of data). This document gathers some requirements 
and ideas aimed at this transition.    

Business requirements 
The high-level long-term goals for this project are making AtomSpace roughly as fast and as 
scalable as competing no-SQL knowledge-stores (preferably more so), while retaining its basic 
flexibility and suitability as an AGI platform. And preferably we want to do this without messing 
up nice stuff like the OpenCog NLP pipeline and the PLN chainers, which utilize the AtomSpace 
API. So the following business requirements must be met. 
 

1.​ Provide effective management of AtomSpaces that are too big to fit in RAM of any one 
machine that is available. 

2.​ Decrease the overall processing time required to carry out AI operations to reduce cost 
per AI operation. 

3.​ Decrease memory footprint providing better overall throughput in comparing with current 
implementation to reduce cost per AI operation. 

4.​ Provide ability to use AtomSpace in the manner of hierarchical cache structure. In other 
words, provide a way to look for a specific Atom locally before start searching it among 
other components and fetching remotely. 

5.​ Provide ability to request for Atom(s) based on a given Atom's property. 
6.​ Provide ability to request for subgraphs based on patterns. 
7.​ To isolate application layer from source code modification keeping the AtomSpace API 

as-is or with minor changes. 

Assumptions and constraints 
 

1.​ We want to build an abstraction layer on top of the current AtomSpace API.  So we don't 
want to change AtomSpace API in any severe/radical way. Of course some minor 
adjustments or API changes may be required to accommodate the new layer.  

2.​ Changing the implementation underneath the Atomspace API may be OK, as nearly all 
existing OpenCog code accesses the Atomspace only via the API and is independent of 
the underlying data structures. 



3.​ We consider a distributed system composed of multiple components.  In a simple case 
the components may be servers in a network, but we may also want to consider other 
cases.  Each component will contain one or more AtomSpaces which are considered to 
be local to each other. 

4.​ Atoms have an Universally Unique ID (UUID) based in a hash function of its constituents 
(collisions are allowed but the hash function is such that collisions are rare). Because 
UUID is computed based in atom's constituents it is unique among all components 

5.​ If useful, it is OK for Atoms to also have a "handle" which is a locally unique id (unique in 
the scope of a single component). It's possible to use only UUID but in practice using 
local handles may be better because (a) they are smaller objects and their use causes a 
significative gain in memory usage and (b) they can be implemented efficiently to get 
atom data faster than via UUID (e.g. they can be implemented as C++ pointers). 

6.​ In addition to the information that defines an atom (type, name and outgoing set) atoms 
may carry additional information (e.g. attention values and truth values which are lists of 
numbers) 

7.​ Atoms tend not to be that large; a node may be a few dozen to a few hundred bytes. 
8.​ Atom creation and deletion and modification are common events, and occur according to 

complex patterns that may vary a lot over time, even for a particular OpenCog instance. 
9.​ Some atoms will remain around for a really long time, others will be ephemeral and get 

removed shortly after they're created. 
10.​For most of OpenCog's cognitive tasks, the Atoms involved in thinking need to live in 

RAM. But the saving/retrieving of Atoms to/from disk also has a role to play. 

Glossary 
For sake of simplicity, the reader of this document is supposed to be familiar with all the 
theoretical concepts, data structures and algorithms related to OpenCog and its components. A 
minimal glossary is provided below to avoid ambiguity but it isn't meant to be a complete 
explanation of the listed terms. 
 

●​ Atom - the theoretical abstract definition of the most elementary entity in an AtomSpace, 
i.e. a node (uniquely identified by its type and name) or link (uniquely identified by its 
type and outgoing set).  

●​ Clone - atom sitting in RAM. Thus, given a single, pure "abstract/theoretical" atom, there 
might be two different realized atoms (i.e. two different clones) on two different servers, 
having the same name/outgoing-set. 

●​ Serialized atom - analogously, we may call atoms living on disk, or flying on a wire, 
"serialized atoms".  

●​ KBB (Knowledge Building Block) - a subgraph of nodes and links with a 
self-contained semantic meaning. The actual form and size of a KBB vary from 
application to application (or even in the same application) but typically it's a link and the 
whole subgraph defined by it and its constituents. E.g.: 

 



(EvaluationLink 
    (PredicateNode "predicate1") 
    (ListLink 
        (ConceptNode "concept1") 
        (ConceptNode "concept2") 
    ) 
) 

 
In degenerate cases, a KBB could be solely a node or a single link between two nodes. 

 
●​ Handle - Locally (in the scope of a single server) unique ID of an atom 
●​ UUID - Universally (in the scope of all servers) unique ID of an atom. 
●​ STI - Short-term importance. 
●​ LTI - Long-term importance. 
●​ DAS - Distributed Atom Space. A set of atoms stored (RAM and/or disk) across several 

servers. 

 



Functional Requirements 
1.​ Two or more clones of the same atom may be present in different components of DAS. 
2.​ Each component of DAS may have only one clone of a given atom i.e., within a single 

component, two processes acting on a certain atom can be confident they are acting on 
exactly the same thing. 

3.​ Two or more components may create or update clones of the same atom at the same 
time. Potentially this can cause inconsistency in atom's state. DAS is supposed to solve 
this inconsistency accordingly. 

a.​ Inconsistencies should be solved by heuristics appropriate to the semantics of 
the atoms involved, e.g., by PLN's Rule of Choice (which invokes the PLN 
revision rule much of the time). 

b.​ There is a trade-off between the overall consistency of the atoms in the whole 
DAS and total processor time spent to keep this consistency. DAS must provide 
ability to a user to adjust a trade-off between the overall consistency of the atoms 
in the whole DAS and total processor time spent to keep this consistency. 

i.​ DAS must provide ability to tune system parameters to allow a high level 
of inconsistency. 

ii.​ DAS must provide ability to tune system parameters to enforce a high 
level of consistency. 

iii.​ Regardless the trade-off parameters setup, DAS must assure that any 
inconsistency don't remain forever i.e., DAS should make an effort to 
resolve inconsistencies, although this effort will be balanced against the 
need for efficiency. 

c.​ DAS must use STI and LTI  to guide the resolution of inconsistencies, so that the 
more important Atoms have their inconsistencies resolved faster.  

4.​ There should not be local collision of UUID, i.e., if an atom being inserted in DAS has an 
UUID collision with another atom in the same server, this collision must be solved 
immediately. 

5.​ UUID collisions between atoms in different components must be solved the first time one 
of the atoms is retrieved as answer for a request made in the server where the other 
atom resides. 

6.​ DAS is supposed to be capable of storing an "as large as necessary" number of atoms. 
So it can not rely on the number of servers to provide this feature since this number may 
be restricted by deployment constraints. So DAS must use disk or DB persistence as 
additional/optional storage resources. 

7.​ KBBs involving highly important atoms should be kept in RAM. 
8.​ User must be able to explicitly persist an atom or a set of atoms to save room in RAM for 

more important information. 
9.​ User must be able to explicitly restrict the scope of a newly created atom to the local 

component. Atoms with restrict scope can't be returned as answer on requests from 
other components. 



10.​User must be able to move sets of atoms to a specific component, allowing local access 
for AI algorithms in that component. 

11.​User must be able to pin sets of atoms in a given component, preventing than from being 
moved by any underlying balance strategy of DAS. 

12.​User must be able to clone atoms in different components in order to minimize the 
amount of time spent by AI algorithms running in one component when access to atoms 
living in other components are required. 

13.​DAS must be able to return  the handle of an atom given an UUID.  
14.​DAS must be able to return the handle of an atom given its definition (type + name for 

nodes or type + outgoing set for links).  
15.​DAS must be able to completely erase an atom, removing it from whatever storage entity 

used by DAS (yes, this is just a simple DELETE. The emphasis is to enforce that the 
erased atom is not supposed to be kept in disk, DB etc). 

16.​DAS must be able to return the handle of all links with a specific (UUID, handle or 
type/name/outgoing set) atom in its outgoing set. 

17.​DAS must be able to return the handle of all links with a specific (UUID, handle or 
type/name/outgoing set) atom in its incoming set. 

18.​DAS must be able to return handles of all atoms of a given type. 
19.​DAS must be able to return only the number of atoms of a given type. 
20.​DAS must be able to return handles of the M atoms with highest/lowest LTI or STI. 

Optionally constrained to a given atom type. 
21.​DAS must be able to return handles of all atoms with time-stamp within a certain 

time-interval. 
22.​DAS must be able to return handles of all atoms with spatial location within a certain 

region, during a certain time-interval. 
23.​DAS must be able to consider only non-persisted atoms for FR 16 to 22 above. 
24.​DAS must be able to consider only atoms in local component  for FR 16 to 22 above. 
25.​DAS must be able to return all variable assignments that satisfy a given pattern. 
26.​DAS must be able to return all KBBs that satisfy a given pattern. 
27.​DAS must be able to consider KBBs of atoms, rather than just individual atoms, as 

elementary units to be distributed amongst components. The actual form/size of a KBB 
is application-dependent, and should thus be user-configurable. 

28.​DAS must be able to consider KBBs of atoms, rather than just individual atoms, as 
elementary units to persist amongst cache stages. The actual form/size of a KBB is 
application-dependent, and should thus be user-configurable. 



 

Requirement Traceability Matrix 
In Table 1 we show the correlation between functional requirements and high-level business 
requirements. 
 

 B1 B2 B3 B4 B5 B6 B7 

F1  X  X    

F2       X 

F3 X X      

F4       X 

F5 X X     X 

F6 X  X X    

F7 X  X X    

F8 X  X X    

F9 X       

F10 X X X     

F11 X X      

F12 X X      

F13     X  X 

F14     X  X 

F15    X   X 

F16     X  X 

F17     X  X 

F18     X  X 

F19     X  X 

F20     X  X 

F21     X  X 

F22     X  X 

F23    X    

F24 X       

F25      X  

F26      X  

F27 X       

F28    X    

 
Table 1: Traceability of functional requirements to business requirements 



Non-Functional Requirements 
 

1.​ Regarding consistency amongst clones in different components, where it is not possible 
to have good balance between high consistency and high efficiency the priority must be 
given to performance. 

2.​ DAS must be able to keep 5 to 10 million atoms on each server to allow AI algorithms to 
run in a fast and sensible way. 

3.​ DAS must be able to run on a cluster of roughly equally powerful machines. 
4.​ Typically we want clusters as large as dozens of servers. 
5.​ In addition to atom storage proper, each server in the cluster may run one or more AI 

algorithms potentially using local and remote atoms. Such algorithms tend to create/use 
information locally (in the hosting server) but not necessarily. 

6.​ DAS must add very small overhead for requests that can be answered exclusively with 
local information. I.e. user's requests to DAS that can be answered without inter-server 
communication should be answered in the same (or nearly the same) time as requests 
to a regular AtomSpace. 

7.​ User's requests to DAS that demands inter-server communication should be answered 
at a rate of at least 5 user requests/second. 

 



Use Cases 
In this section we list concrete use cases for DAS to illustrate the importance of the 
requirements presented in the previous sections. 

Use case 1: Distributed Incremental Pattern Mining From Social 
Network Data 
Mining patterns from social network data, such as what kinds of people tend to do to make 
friends. New data can be fed into the pattern miner incrementally. 
 

●​ Layout: One central server + N pattern mining workers run in different machines. 
●​ Data: Before start pattern miner, the data should have been converted into Atomese and 

stored in the distributed corpus Atomspace. The mined patterns are stored in a separate 
distributed Atomspace from the corpus Atomspace. 

●​ Central server:  It has two functions (1) works as a task distributor to assign Links to 
every mining worker  on request by giving a list of Link handle uid. (2) run an 
interestingness evaluation task on user request. 

●​ Mining worker: When a mining worker is launched, it connects to the server and fetch 
the Links from the distributed Atomspace by the handle uids assigned to it by the server, 
and then start to mine all possible patterns from these Links and add them into the 
separate distributed pattern Atomspace. If a pattern already exists, simply increase the 
count by 1. When a worker  

●​ Hardware requirements: Common pc  ( like 2G RMB) should be enough for both the 
server and mining workers. 

Input data 
The user provides a graph database of social network data, for example in neo4j, contains 
entity, relations, each entity and relation can have attributes, for example: 
 

●​ Entities: Person (name, gender, age, occupation), Organization, School ... 
●​ Relations: Friend, work_in, graduate_from … 

 
 



Each Entity can be mapped into EvaluationLinks with all of its attributes, like: 
 

(EvaluationLink 
 (PredicateNode "name") 
   (ListLink 
       (EntityNode "5531") 
       (ConceptNode "Adam") 
   ) 
) 

 
(EvaluationLink 
   (PredicateNode "occupation") 
   (ListLink 
       (EntityNode "5531") 
       (ConceptNode "teacher") 
   ) 
) 

 
Because relation types are limited and usually predefined in such database,  a relation can be 
mapped into a relationLink rather than an EvaluationLink: 
 
(FriendLink 
   (EntityNode "5531") 
   (EntityNode "9891") 
) 

 
E.g. in a MMORPG, if there are around 5M active players, each player have 10 friends in 
average in the game, then there are 25M FriendLinks. 

Atomspace insert / update operation 
Different workers may add the same pattern into the distributed Atomspace or update its count 
at the same time, which requires basic multithreading security. 

 



The current implementation of distributed pattern miner in Opencog without 
Distributed Atom Space  
This section is just for reference so as to explain how it works in current implementation without 
distributed Atomspace. 
 

●​ The basic framework 
One central server + N pattern miner workers run in different machines. 
The huge amount of input data is to divided into small slightly overlapped portions and 
stored in worker machines.  

●​ Patten miner worker 
A pattern miner task with one portion of data, can be launched in a worker; one task 
application will load this portion of data into its local Atomspace and then starts to mine 
all possible patterns from its local Atomspace. Every 10 or x patterns mined will be sent 
to the central server via network. If one task is finished, the process can be shut down 
and a new task with a new portion of data can be started. 

●​ Central server 
The central server is always waiting be connected by workers. It keeps receiving the 
patterns sent by the workers and adding the patterns into its local Atomspace and . If a 
pattern already exist, just increase its occurrences. When all the workers have finished 
mining and disconnected from the server, the user can choose to keep waiting for new 
workers to connect or start interestingness evaluation.  

●​ Hardware requirements 
The central server requires large RAM (at least 64 G). 
The workers should be just common pc ( like 2G RMB) 

 



Use case 2: Distributed Inference Control Learning 
Inference Control Learning in the URE (Unified Rule Engine) is the process of learning how to 
efficiently guide reasoning to produce new knowledge, validate conjectures, etc. 

Efficient reasoning is amongst the hardest problems in computer science. One way to tackle it is 
to learn how to bias reasoning to be efficient on problems that matter to us. It will always be 
generally inefficient, but as long as these inefficiencies hover around problem classes of no 
interest, that is OK. 

To do that we 

1.​ Run reasoning over a collection of problems. 
2.​ Record the traces of every decision the URE makes while reasoning. 
3.​ Mine hidden patterns in these traces. 
4.​ Turn these patterns into control rules so that the URE would be more efficient at solving 

these problems the next time. 

If the problems the URE is exposed to are sufficiently general, and the control rules learned 
sufficiently abstract, then the efficiency should be transferable to new problems as well. 

The catch is that it requires phenomenal computational power. First, in order to extract valuable 
information from problems, some must be solved. If the problems are hard, this alone can be 
challenging. Second, in order to attain decent confidences on the control rules, a large number 
of problems must be attempted. Third, learning the control rules can itself be costly. 

Fortunately, the first two steps, reasoning over a collection problems and recording their traces, 
is embarrassingly parallel. Each reasoning instance can live in its own process/machine, and 
record as well post-process traces on its own local atomspace. Things start getting a more tricky 
in the third step because unarguably many patterns will only surface when mining data across 
AtomSpaces. Then the fourth step can probably take place in a centralized manner, gathering 
only knowledge obtained from the previous step that seem relevant to produce control rules. 

The remaining of the document mostly focuses on step 3, mining hidden patterns from traces 
distributed across atomspaces. 

 



Input Data 
We only give the representations for backward chaining, which only minorly differs from forward 
chaining. Backward chaining traces are represented by two types of knowledge. 

1.​ Connecting inferences to other inferences: 

ExecutionLink (stv 1 1)​
   SchemaNode "URE:BC:expand-inference"​
   List​
     <inference>​
     <premise>​
     <rule>​
   <new-inference> 

 

Meaning that <inference> is expanded from <premise> with <rule> to produce 
<new-inference>. 

2.​ Relating inferences and success: 

EvaluationLink <TV>​
   PredicateNode "URE:BC:preproof-of"​
   List​
     <inference>​
     <target> 

 

Here the notion of success is determined by whether a certain inference is a  preproof of 

some target. That is whether subsequent expansions may lead to an inference proving 

the target or not, where <TV> reflects how much we know it (that knowledge is not 

always certain unless the target gets proven). 

Both inferences and rules are represented by BindLink (a rule can be seen as an atomic 
inference): 

BindLink​
   <variables>​
   <clauses>​
   <rewrite> 



Preprocessing 
Let us first explain what a control rule is. Its general form is: 

ImplicationScope <TV>​
  <vardecl>​
  And​
    Execution​
      GroundedSchema "URE:BC:expand-inference"​
      List​
        <inference>​
        <premise>​
        <rule>​
      <new-inference>​
    Evaluation​
      Predicate "URE:BC:preproof-of"​
      List​
        <inference>​
        <target>​
    <pattern>​
  Evaluation​
    Predicate "preproof-of"​
    List​
      <new-inference>​
      <target> 

 

expressing that, given that <inference> expending from <premise> with <rule> produces 
<new-inference>, and <inference> is a preproof of <target>, possibly following some 
extra <pattern>, the odds that <new-inference> is a preproof of <target> is <TV>. 

Said simply, this represents the probability that applying some rule in a given inference gets us 
hopefully closer to proving the target. 

To do well the distance from the proof should be used instead of the binary notion of preproof, 
because some paths are shorter than others, and we want the inference control to choose the 
shortest path. But the notion of preproof is simpler to start with. 

In principle no preprocessing would be required, one would only need to run this query on the 
URE to infer control rules. However in practice any preprocessing that may reduce the 
computation is worth doing. In particular one can pre-compute all conjunctions of the form 

 



And​
   Execution​
     GroundedSchema "URE:BC:expand-inference"​
     List​
       <inference>​
       <premise>​
       <rule>​
     <new-inference>​
   Evaluation​
     Predicate "URE:BC:preproof-of"​
     List​
       <inference>​
       <target> 

 

Which is done by merely applying the backward chainer to the target above with the fuzzy 
conjunction introduction rule. This can be done on each atomspace separately, thus is 
embarrassingly parallel, as even if some inferences are shared across problems, applying that 
query on the entire distributed atomspace is not expected to produce any extra knowledge. 

Rule-Engine Queries 
The pattern miner (which is already a URE process) combined with other forms of reasonings 
will be used for uncovering patterns to then be turned into control rules. For that a rule base 
(usually small, thus requiring no distribution) need to be run the entire distributed atomspace 
containing all traces over all problems. 

Now let's break it down for the simplest possible rules we can learn, context free control rules 
expressing the probability of producing a preproof by expanding any inference from any premise 
with a given inference rule, regardless of how that inference and premise look like. This is 
equivalent to setting the weight of the inference rule (or the "second order weight" as confidence 
is taken into account). 

 

https://github.com/opencog/opencog/blob/master/opencog/pln/rules/propositional/fuzzy-conjunction-introduction.scm
https://github.com/opencog/opencog/blob/master/opencog/pln/rules/propositional/fuzzy-conjunction-introduction.scm


The result is gonna be like: 

ImplicationScope <TV>​
  And​
    Execution​
      GroundedSchema "URE:BC:expand-inference"​
      List​
        Variable "$inference"​
        Variable "$premise"​
        <rule>​
      Variable "$new-inference"​
    Evaluation​
      Predicate "URE:BC:preproof-of"​
      List​
        Variable "$inference"​
        Variable "$target"​
  Evaluation​
    Predicate "preproof-of"​
    List​
      Variable "$new-inference"​
      Variable "$target" 

 

where everything is a variable except <rule> which hold constant. 

Given the previous preprocessing done described in the section above, such control rule only 
require a call a single PLN rule, conditional direct evaluation. What that rule is doing is, given a 
certain implication, fetch all instances of its antecedent that are true, let's call that set A, then for 
each element of A, take its valuation (mapping from variables to values), apply it to the 
consequent of the implication to obtain a consequent instance, and if it is true, add it to C, then 
calculate the resulting TV on the implication as follows: 

TV.strength = |C|/|A|​

TV.count = |A| 

(this is not the best possible estimate which may vary depending on the prior, but we let aside 
for sake of simplicity). 

It is important to realize that the pattern matchings required to obtain A and C need to take place 
over the entire Distributed Atom Space of traces. 

Of course interesting control rules will require more sophisticated reasoning schemes such as 
pattern mining but in the end it will probably end up requiring the same sort of distributed pattern 
matching as in this simple case. So starting with that should already be quite meaningful. 

https://github.com/opencog/opencog/blob/master/opencog/pln/rules/predicate/conditional-direct-evaluation.scm


Knowledge Base Properties 
The size of an atomspace of trace seems to grow almost linearly in our toy problem (the one in 
that same directory). 

Number of 
iterations 

Atoms of 
trace 

50 1K 

100 2.1K 

200 4.3K 

 

This makes sense. First, each successful iteration produces an inference. Second, although 
inferences grow with the depth of the search, much of their content is being shared due to being 
stored on the atomspace. However, it is not expected that the grow would be linear in the worst 
case, because due to unification/substitution a new inference may share little with the inference 
it has been expanded from. Based on that we conclude that the growth is quadratically 
bounded, and probably in average as follows 

|T| = a*N^b 

Where N is the number of iterations, and a and b are parameters ultimately depending on the 

problem, the knowledge and rule bases. b is likely within 1 and 2, linear in the  best case, 

quadratic in the worst. If the rule base is sufficiently restricted it may even go sub-linear, as in 

this case not all inferences can be successfully expanded. 

Let us estimate the size of an atomspace of traces for a real world problem. Let say that N=10K, 
a=10 and b=1.1, thus |T|=251K, which to our experience requires about 250MB of RAM. 
According to our early experiments about a hundred of problem instances must be run to begin 
to collect enough traces to learn more sophisticated (beyond context-free) control rules, though 
that seems to be really a minimum. 

So it seems a few workstations, each with a dozen cores and dozen GB of RAM would be able 
run a moderate scale (beyond toyish) inference control learning experiment in about a day. A 
couple of hours for solving 100+ problem instances, and perhaps the rest of the day for mining 
and producing control rules, the effort depending essentially on how sophisticated we want it to 
be, which is hard to determine in advance. Learning context-free rules might just be a question 
of minutes, while mining complex patterns for producing context-sensitive rules might easily take 
hours or days. 



Actual Databases and Test Scripts 
A toy single-thread experiment can be found in that same folder and described in length in the 
README.md. 

Use case 3: MOSES 
MOSES is a program learner. It works by evolving islands of programs called demes, each 
representing a subregion of the program space. Optimizing a deme consists of searching that 
subregion for programs that maximize a given fitness function. Optimizing multiple demes is 
embarrassingly parallel, i.e. each deme can be created and optimized almost in isolation w.r.t. 
the other demes (assuming they do explore relatively disjoint subregions). 
 
Once a deme has been optimized (searched till some criteria are met) its most promising 
candidates are sent to the meta-population. The meta-population is a population of programs 
that can be used to spawn more demes. For that a selected program is turned into a template, 
called an exemplar, where some parts of it can be mutated. The set of all possible mutations of 
that exemplar defines the program region of the deme. 
 
With MOSES being ported to the AtomSpace, programs will soon be represented as atoms. 
Each deme thus far explored will be stored in its own AtomSpace and the meta-population will 
be an AtomSpace too. 
 
On top of the program candidates, the fitness function (including for instance associated data, in 
the case of data fitting) will have to be copied to each deme so MOSES can evaluate each 
candidate. 
 
So we would start with a centralized architecture with a master AtomSpace containing the 
meta-population, and peripheral slave AtomSpaces containing demes being optimized. Then 
eventually move towards a more hierarchical architecture to avoid a bottleneck on the master. 
 
MOSES actually already supports such centralized distributed architecture built around MPI. 
However no AtomSpace is currently used, not yet. Program candidates are coded in MOSES' 
home-brewed language called Combo, and are being exchanged back and forth between 
master and slaves as strings. These exchanges though only happen at the creation and 
destruction of a deme. At the creation the exemplar is sent to a slave, and at destruction 
promising candidates are sent back to the master. Communications happening during deme 
optimization could be useful in principle but can probably be ignored for the time being. 

Input data 
Both demes and the meta-population contain Atomese programs. Here are some examples of 
programs. 

https://github.com/opencog/opencog/blob/master/examples/pln/inference-control-learning/README.md


;; f1 + f2​
(Plus​
  (Schema "f1")​
  (Schema "f2"))​
​

;; (p1 and p2) or p3​
(Or​
  (Predicate "p3")​
  (And​
    (Predicate "p1")​
    (Predicate "p2")))​
​

;; if p1 then f1 else f2​
(IfThenElse​
  (Predicate "p1")​
  (Schema "f1")​
  (Schema "f2")) 

 
where p1, p2 and p3 are boolean features and f1 and f2 are numerical features of some 
dataset, and usual operators are high level overloads (for instance f1 + f2 means the sum of 
function f1 and f2). Obviously the average program size will be much larger than what is 
presented here. In addition, though the exact form remains to be determined, programs will be 
explicitly marked as members of a deme, such that 
 
;; [f1 + f2] is a member of deme1​
(Member​
  (Plus​
    (Schema "f1")​
    (Schema "f2"))​
  (Concept "deme1"))​
​

;; [(p1 and p2) or p3] is a member of deme1​
(Member​
  (Or​
    (Predicate "p3")​
    (And​
      (Predicate "p1")​
      (Predicate "p2")))​
  (Concept "deme1"))​
​

;; [if p1 then f1 else f2] is a member of deme1​
(Member​
  (IfThenElse​
    (Predicate "p1")​
    (Schema "f1")​



    (Schema "f2"))​
  (Concept "deme1"))) 

 
Finally, the whole fitness function will have to be duplicated in each deme AtomSpace. The 
format of the fitness function is to be determined, but it might look like 
 
Lambda​
  Variable "$P"​
  <fitness> 

 
where <fitness> could be a least squared error between $P and some dataset. 
 
Once a deme is done being optimized it will send its most promising candidates to the 
meta-population, which will look like 
 
;; [if p1 then f1 else f2] is a member of deme1​
(Member​
  (IfThenElse​
    (Predicate "p1")​
    (Schema "f1")​
    (Schema "f2"))​
  (Concept "meta-population")) 

Atomspace Queries/Searches 
I guess it's premature to tell how the data will be queried and exchanged. One can imagine 
queries such as the following to fetch promising candidates 
 
(Get​
  (And​
    (Member​
      (Variable "$P")​
      (Concept "deme1"))​
    (Evaluation​
      (GroundedPredicate "is-promising")​
      (Variable "$P")))) 

Knowledge base properties 
As a rough estimation, the number of nodes should generally be limited to a dozen of thousands 
corresponding to the number of features in the data to fit (the most common case for a fitness 
function). So nodes of that types 
 



(Schema "f1")​
... 

 
or 
 
(Predicate "p1")​
... 

 
if the features are boolean. 
 
The number of links however is only limited by the complexity of the models being evolved. It is 
not unusual to evolve models with dozens of operators, and since the upper limit of the number 
of links grows exponentially with the number of operators, that would be going into the billions. 
In practice though, because evaluating the fitness function on each candidate is so costly, deme 
optimization would rarely goes above millions of candidates, meaning likely millions of atoms, 
because candidates share most of their atoms. Given that an atom takes in average about 1.5K 
of RAM a million atoms would take about 1.5GB of RAM. 
 
The requirements for the meta-population are probably similar. 
 
There can be extra RAM needed if fitness evaluation memoization is used, but that's another 
problem. It is expected that the fitness function (including data) will be negligible compared to 
the deme population and meta-population. 

Actual databases and test scripts 
The AtomSpace MOSES port being in its infancy there is no existing code to test that. MOSES 
which is itself however quite mature can be found here https://github.com/opencog/as-moses (if 
that helps). 

 

https://github.com/opencog/as-moses


Use case 4: NLP question answering about the system's internal 
state 

Definitions 
●​ opencog-apps : Any app that a developer might develop using various opencog 

subsystems as a service 
●​ nl-apis : Natural-language apis or conversational apis are natural-language based 

interfaces to opencog-apps or opencog. This are similar to ‘Ok Google’, ’Siri’, questions, 
or any other predefined natural-language pattern that could be used as a standard 
means of triggering a conversational response. 

NLP question answering about the system’s internal state 
The aim is to query opencog about its internal-states model using natural-language and get the 
response in natural-language. Here internal-states model means an atomese representation of 
opencog subsystems such as GHOST, PLN, MOSES, OpenPsi-dynamics, URE, 
Pattern-matcher, Pattern-miner, and any other system that a developer might develop, and may 
include such information as 

●​ Time spent processing a task 
●​ Estimated time of completion of a task 
●​ Atomese logs of previous performances 
●​ How much processing power was used to complete a task 
●​ Which subsystems contributed to accomplish a task (subsystem traces) 
●​ Action-selection traces 
●​ Developer defined event logs such as surprising changes in ECAN’s attentional focus or 

surprising change in truth-value(or any other value) of a set of OpenPsi rules 
 
The possible users are developers of opencog-apps. A developer may use it for debugging as 
well as part of their opencog-app service. The following are some of the nl-apis that may be 
used 

●​ Why did you come to this reasoning conclusion? 
●​ Why is it taking too long to complete task x? 
●​ How much time and processing power do you estimate it would take to complete task x? 
●​ What made you do x? 
●​ What percentage of users of opencog-app-123, that have European Citizenship, allow 

their data to be processed for xyz purposes? 
●​ Is opencog-app-345 GDPR compliant? 

 
The rest of this document demonstrates how to answer “how long it would take to complete task 
x?”. 



Input data 
Input data required for giving such a service probably comes from log files generated by the 
system. Some of the data we are looking for looks like this, once imported into the atomspace. 
 
(AtTime 
   (Execution 
      (GroundedSchema “scm: time-spent-reasoning”) 
      (Concept “who-moved-the-cheese”) 
      (Concept “Ben”) 
   ) 
   (TimeInterval 
      (Time “1529040789”) 
      (Time “1529050125”) 
   ) 
) 

 
The AtomSpace has to be populated with parsed sentences, which will be needed for sentence 
generation. We can, for instance, parse Wikipedia and books from Project Gutenberg etc, and 
load the atoms to one or more AtomSpaces. A subset of atoms that will be generated after 
parsing the sentence “I read books” looks like: 
 
(Inheritance 
   (Concept "I@123) 
   (Concept "I") 
) 
(Evaluation 
   (Predicate "read@456") 
   (List 
      (Concept "I@123") 
      (Concept "books@789") 
   ) 
) 
(Implication 
   (Predicate "read@456") 
   (Predicate "read") 
) 
(Inheritance 
   (Concept "books@789") 
   (Concept "book") 
) 

 
There will also be additional atoms that are used to represent the world, opencog’s subsystems 
and opencog-apps. The world model could be imported from sources like SUMO, ConcpetNet, 



or learnt  by opencog from other sources.  Model of opencog-apps will be a requirement while 
developing one. 

Atomspace queries/searches 
There should be a GHOST rule that will be triggered when someone asks a question. The 
context of the GHOST rule might be, say if the input matches the pattern “how long it would take 
to complete $x”, and the action may be, say “check historical record of $x”, and it would satisfy 
the goal “Answer User Questions”. 
 
The GHOST rule would look something like this: 
 
(ImplicationLink 
   (AndLink 
      (TrueLink 
         (ExecutionOutputLink 
            (GroundedSchemaNode "scm: ghost-execute-action") 
            (ListLink 
               (ExecutionOutputLink 
                  (GroundedSchemaNode "scm: check_historical_record") 
                  (ListLink 
                     (ListLink 
                        (GlobNode "wildcard-$001") 
                     ) 
                  ) 
               ) 
            ) 
         ) 
         (PutLink 
            (StateLink 
               (AnchorNode "GHOST Last Executed") 
               (VariableNode "$x") 
            ) 
            (ConceptNode "Rule1") 
         ) 
         (ExecutionOutputLink 
            (GroundedSchemaNode "scm: ghost-record-executed-rule") 
            (ListLink 
               (ConceptNode "Rule1") 
            ) 
         ) 
      ) 
      (SatisfactionLink 
         (VariableList 
            (TypedVariableLink 
               (GlobNode "wildcard-$002") 
               (TypeSetLink 



                  (TypeNode "WordNode") 
                  (IntervalLink 
                     (NumberNode "0.000000") 
                     (NumberNode "-1.000000") 
                  ) 
               ) 
            ) 
            (TypedVariableLink 
               (VariableNode "how-$003") 
               (TypeNode "WordNode") 
            ) 
            (TypedVariableLink 
               (VariableNode "how-$004") 
               (TypeNode "WordInstanceNode") 
            ) 
            (TypedVariableLink 
               (VariableNode "long-$005") 
               (TypeNode "WordNode") 
            ) 
            (TypedVariableLink 
               (VariableNode "long-$006") 
               (TypeNode "WordInstanceNode") 
            ) 
            (TypedVariableLink 
               (GlobNode "wildcard-$007") 
               (TypeSetLink 
                  (TypeNode "WordNode") 
                  (IntervalLink 
                     (NumberNode "0.000000") 
                     (NumberNode "-1.000000") 
                  ) 
               ) 
            ) 
            (TypedVariableLink 
               (VariableNode "to-$008") 
               (TypeNode "WordNode") 
            ) 
            (TypedVariableLink 
               (VariableNode "to-$009") 
               (TypeNode "WordInstanceNode") 
            ) 
            (TypedVariableLink 
               (VariableNode "complete-$010") 
               (TypeNode "WordNode") 
            ) 
            (TypedVariableLink 
               (VariableNode "complete-$011") 
               (TypeNode "WordInstanceNode") 



            ) 
            (TypedVariableLink 
               (GlobNode "wildcard-$001") 
               (TypeSetLink 
                  (TypeNode "WordNode") 
                  (IntervalLink 
                     (NumberNode "0.000000") 
                     (NumberNode "-1.000000") 
                  ) 
               ) 
            ) 
            (TypedVariableLink 
               (VariableNode "$S") 
               (TypeNode "SentenceNode") 
            ) 
            (TypedVariableLink 
               (VariableNode "$P") 
               (TypeNode "ParseNode") 
            ) 
         ) 
         (AndLink 
            (ReferenceLink 
               (VariableNode "how-$004") 
               (VariableNode "how-$003") 
            ) 
            (ParseLink 
               (VariableNode "$P") 
               (VariableNode "$S") 
            ) 
            (EvaluationLink 
               (GroundedPredicateNode "scm: ghost-lemma?") 
               (ListLink 
                  (VariableNode "long-$005") 
                  (WordNode "long") 
               ) 
            ) 
            (ReferenceLink 
               (VariableNode "to-$009") 
               (VariableNode "to-$008") 
            ) 
            (WordInstanceLink 
               (VariableNode "long-$006") 
               (VariableNode "$P") 
            ) 
            (WordInstanceLink 
               (VariableNode "to-$009") 
               (VariableNode "$P") 
            ) 



            (EvaluationLink 
               (GroundedPredicateNode "scm: ghost-lemma?") 
               (ListLink 
                  (VariableNode "how-$003") 
                  (WordNode "how") 
               ) 
            ) 
            (ReferenceLink 
               (VariableNode "complete-$011") 
               (VariableNode "complete-$010") 
            ) 
            (WordInstanceLink 
               (VariableNode "how-$004") 
               (VariableNode "$P") 
            ) 
            (EvaluationLink 
               (GroundedPredicateNode "scm: ghost-lemma?") 
               (ListLink 
                  (VariableNode "complete-$010") 
                  (WordNode "complete") 
               ) 
            ) 
            (EvaluationLink 
               (PredicateNode "GHOST Word Sequence") 
               (ListLink 
                  (VariableNode "$S") 
                  (ListLink 
                     (GlobNode "wildcard-$002") 
                     (VariableNode "how-$003") 
                     (VariableNode "long-$005") 
                     (GlobNode "wildcard-$007") 
                     (VariableNode "to-$008") 
                     (VariableNode "complete-$010") 
                     (GlobNode "wildcard-$001") 
                  ) 
               ) 
            ) 
            (StateLink 
               (AnchorNode "GHOST Currently Processing") 
               (VariableNode "$S") 
            ) 
            (ReferenceLink 
               (VariableNode "long-$006") 
               (VariableNode "long-$005") 
            ) 
            (WordInstanceLink 
               (VariableNode "complete-$011") 
               (VariableNode "$P") 



            ) 
            (EvaluationLink 
               (GroundedPredicateNode "scm: ghost-lemma?") 
               (ListLink 
                  (VariableNode "to-$008") 
                  (WordNode "to") 
               ) 
            ) 
         ) 
      ) 
   ) 
   (ConceptNode "GHOST Answer User Questions") 
) 

 
The question asked by the user will be parsed by `nlp-parse`, which will go through Link 
Grammar, RelEx, and Relex2Logic. The atoms generated look similar to the ones quoted in the 
“Input data” section. After that, the above GHOST rule will be selected and triggered by the 
action selector. The function “check_historical_record” will be called and it should return an 
estimated average time, ideally in a NLG-compatible form, e.g. 
 
 
(QuantityLink 
   (ConceptNode "minutes") 
   (ConceptNode "three") 
) 

 
Ideally this will be sent to Microplanner and SuReal to generate the actual reply, e.g. “It usually 
takes about three minutes.” 

Knowledge base properties 
Let’s say there are 10 AtTimeLinks generated per second in the log, and it pulls 5 days of 
records of all services, find and take average to estimate the time for a particular service, which 
means we are loading: 

●​ AtTimeLink: 4.3M 
●​ ExecutionLink: 4.3M 
●​ GroundedschemaNode: 4.3M 
●​ ConceptNode: 8.6M 
●​ TimeIntervalLink: 4.3M 
●​ TimeNode: 8.6M 

 
The above is a pessimistic estimation, because we can invent some more intelligent way to 
decide what should be loaded from the logs, instead of just blindly loading everything. 
 



Also, let’s say we parse 100K sentences for sentence generation, assuming one parse per 
sentence and one interpretation of a parse, that gives(very roughly): 

●​ SentenceNode: 100K 
●​ ParseNode: 100K 
●​ ParseLink: 100K 
●​ SentenceSequenceLink: 100K 
●​ InterpretationNode: 100K 
●​ InterpretationLink: 100K 
●​ AtTimeLink: 100K 
●​ TenseLink: 100K 
●​ WordInstanceNode: 1M 
●​ WordInstanceLink: 1M 
●​ WordSequenceLink: 1M 
●​ PartOfSpeechLink: 700K 
●​ LemmaLink: 800K 
●​ WordNode: 800K 
●​ LemmaNode: 800K 
●​ PredicateNode: 150K 
●​ ConceptNode: 500K 
●​ EvaluationLink: 20M 
●​ InheritanceLink: 20M 
●​ ReferenceLink: 10M 
●​ ImplicationLink: 150K 
●​ ExecutionLink: 20M 
●​ SetLink: 200K 
●​ ListLink: 2M 
●​ LgWordCset: 800K 
●​ LgLinkInstanceNode: 800K 
●​ LgLinkInstanceLink: 800K 

 
The rest of the atom types can be neglected. 
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