
Thumbnail:

ALT TEXT: A p5.js logo with musical notes above it

Description:
Use p5.Oscillator objects to generate musical notes in an app where users can write
and replay melodies they create by interacting with the canvas!

Note from writer:
Here is how it fits in with the Get Started with Node.js tutorial:

Part 1: Simple Melody App
Develop a simple melody app where users can compose melodies from a musical
scale, and play them back.

Part 2: Getting Started with Node.js
Learn how to use Node.js and Express.js to route HTTP requests that retrieve and play
melodies saved on your computer.

https://p5js.org/reference/#/p5.Oscillator
https://docs.google.com/document/d/1n6Je0Lzht2ibQmN1st1ccth47ppNhIYtMBTOwNAAFdo/edit#heading=h.h9a78zb256j1
https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe
https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe
https://docs.google.com/document/u/0/d/1n6Je0Lzht2ibQmN1st1ccth47ppNhIYtMBTOwNAAFdo/edit
https://nodejs.org/en/about
https://expressjs.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP

Part 3: Melody App with Node.jsIn , you will learn how to integrate your simple melody
app with Node.js and Express.js

Simple Melody App
Introduction
Music is used by cultures around the world as a way to communicate their histories,
emotions and experiences by combining vocal or instrumental sounds. One of music's
basic elements is a melody: a group of musical notes that form compositions of sounds
that are pleasing to hear. In this tutorial you will explore how to use p5.Oscillator objects
to generate musical notes, and develop an web application where users create

melodies, and play them back!
Alt text: A p5.js logo with musical notes above it

This tutorial is part 1 in a series of 3 tutorials that walk you through creating different
versions of a melody app.

●​ Part 1: In this tutorial you will develop a simple melody app where users can
compose melodies from a musical scale, and play them back.

https://docs.google.com/document/d/1y9vVGIumV4gYoOomY_sehYKao6dXi7aGTJq_eRkTQqw/edit?usp=sharing
https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe
https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe
https://nodejs.org/en/about
https://expressjs.com/
https://www.britannica.com/art/music
https://www.britannica.com/science/sound-physics
https://www.masterclass.com/articles/music-101-what-is-melody
https://p5js.org/reference/#/p5.Oscillator
https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe

●​ Part 2: In Getting Started with Node.js, you will learn how to use Node.js and
Express.js to route HTTP requests that retrieve and play melodies saved on your
computer.

●​ Part 3: In Melody App with Node.js, you will learn how to integrate your simple
melody app with Node.js and Express.js. You will develop a more complex
Melody App where users can heir melodies onto their computers, and retrieve
them for playback later.

Prerequisites
This tutorial requires:

●​ A computer with internet connection and speakers or headphones
●​ The p5 Web Editor (or an IDE and the most recent p5.js library download)
●​ Understanding of basic programming concepts from Introduction to p5.js

tutorials such as:
○​ variables
○​ loading files
○​ conditionals
○​ arrays
○​ for loops
○​ JSON objects

●​ Understanding of basic web design principles introduced in the Web Design
tutorials

○​ p5.js DOM objects

Note: Sections 1.1 - 1.5 introduce concepts in other disciplines such as physics and
music theory. These sections are resources for background knowledge recommended
to understand how p5.Oscillator objects can be used to create melodies. Although it is
highly recommended for you to review these section, it is not required to finish the
simple melody app.

If you are already familiar with:

●​ p5.Oscillator objects
●​ sound waves
●​ pressure waves
●​ periodic waves and their characteristics

https://docs.google.com/document/u/0/d/1n6Je0Lzht2ibQmN1st1ccth47ppNhIYtMBTOwNAAFdo/edit
https://nodejs.org/en/about
https://expressjs.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://docs.google.com/document/d/1y9vVGIumV4gYoOomY_sehYKao6dXi7aGTJq_eRkTQqw/edit?usp=sharing
https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe
https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe
https://nodejs.org/en/about
https://expressjs.com/
https://editor.p5js.org/
https://p5js.org/download/
https://drive.google.com/open?id=1pGUf7MgimptMT8eB6g7ehvDZjdAoStPH
https://drive.google.com/open?id=1pGUf7MgimptMT8eB6g7ehvDZjdAoStPH
https://drive.google.com/open?id=1UiEb9ujbVAuzg_WaLy22OVOH4zWuB-f3
https://drive.google.com/open?id=1UiEb9ujbVAuzg_WaLy22OVOH4zWuB-f3
https://p5js.org/reference/#group-DOM
https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe
https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe

●​ musical notes (frequency, pitch, and amplitude)

Skip to Play musical notes with oscillators to bypass background knowledge.

Oscillators, science & music background
information

p5.Oscillator objects
p5.Oscillator objects hold information to generate electrical signals called oscillators
that can play musical notes. These signals change between a minimum and maximum
value in a pattern that repeats at a specific rate. When the signal is played through
your speakers, we can hear that it generates a sound!

To understand how oscillators generate musical notes, we can dive into some science
behind sound.

Note
In the next section, Science of sound and music, the following concepts are introduced:

-​ Sound as a pressure waves
-​ Periodic wave characteristics
-​ Sound waves in relation to musical notes

-​ Pitch and frequency
-​ Music Theory concepts such a melodies, musical notes & frequency

Skip ahead
If you are already familiar with the background concepts above, jump over to the
Building a melody app section to begin your project!

Science of sound & music
Melodies are a collection of musical notes that form sounds that are pleasing to hear.
Sounds are described as pressure waves, and can be generated by oscillators.

https://p5js.org/reference/#/p5.Oscillator
https://www.techtarget.com/whatis/definition/oscillator
https://www.simplifyingtheory.com/music-note/
https://www.britannica.com/science/sound-physics
https://www.physicsclassroom.com/class/sound/u11l1c.cfm
https://www.open.edu/openlearn/science-maths-technology/engineering-technology/sound-music-technology-an-introduction/content-section-2.3
https://www.physicsclassroom.com/class/sound/Lesson-2/Pitch-and-Frequency
https://www.masterclass.com/articles/music-101-what-is-melody
https://www.idrumtune.com/ultimate-guide-to-musical-frequencies/
https://www.masterclass.com/articles/music-101-what-is-melody
https://www.simplifyingtheory.com/music-note/
https://www.britannica.com/science/sound-physics
https://www.britannica.com/science/sound-physics

1.1 - Sound and pressure waves
Have you ever wondered if you can hear a sound in outer space? Or why sounds are
lower when you are under water?

In physical science, sound is energy created by vibrating molecules and particles of air,
or any other form of matter. The matter that carries sound from one place to another is
called a medium, and can be a liquid (like water), a gas (like air) or a solid (like a wall
or a door). These vibrating particles of matter create a pressure wave that carries the
sound from one place to another, through the medium.

A pressure wave is any disturbance that carries energy when the particles in the
medium get closer together, and create areas of higher pressure. Consider the
following gif of a tuning fork creating a sound:

ALT TEXT: A tuning fork vibrates the particles of matter around it, creating a pressure
wave of sound energy illustrated by a repeating pattern of particles that are
compressed together, and particles that are spread out. The particles of matter carry
the sound wave from left to right as they bump into one another,
Source: The Physics Classroom: Sound Waves and Music - Lesson 1 - The Nature of a
Sound Wave

We can see in the gif above that the tuning fork vibrates the particles of matter around
it, creating a pressure wave that carries sound energy. When that pressure wave
reaches your ear, you hear the particle vibrations as sound! The reason why you
wouldn’t hear any sounds in outer space is because there is no medium to carry the
sound energy!

https://letstalkscience.ca/educational-resources/backgrounders/introduction-particle-theory-matter
https://letstalkscience.ca/educational-resources/backgrounders/introduction-particle-theory-matter
https://www.physicsclassroom.com/class/sound/u11l1c.cfm
https://www.physicsclassroom.com/class/sound/u11l1c.cfm
https://letstalkscience.ca/educational-resources/backgrounders/introduction-particle-theory-matter

To get a better idea of how sound travels through matter, check out this video that
demonstrates pressure waves formed by the sound of a clap!

Learn more about the science behind pressure waves and sound by visiting these
resources: Particle Theory of Matter, Sound as a Pressure Wave and Waves and the
eardrum.

1.2 - Periodic waves and sound
Pressure waves can be described by repeating patterns of compressed particles in a
medium. Compressions are characterized by areas with high pressure where particles
are close together. Rarefactions are characterized by low pressure areas where
particles are more spread out. The image below illustrates the areas of high and low air
pressure caused by a sound wave generated by a tuning fork. Notice how high air
pressure corresponds to areas where air particles are close together, and low air
pressure corresponds to areas where air particles are farther apart.

ALT TEXT: A sound generated by a tuning fork causes a periodic pattern of high and low
pressure areas in a medium. Areas where particles are close together are labeled as
“high pressure,” and areas where particles are farther apart are labeled “low pressure.”
Source: Sound for Music Technology - The Open University

Pressure waves that create sound are simply a sequence of repeating cycles of
compressions and rarefactions in a medium. One cycle of the wave, one oscillation,
includes an area with high pressure (compression) and an area with low pressure
(rarefaction). Repeating oscillations at a fixed interval of time form periodic waves that
we hear as musical notes and other sounds!

https://www.youtube.com/watch?v=px3oVGXr4mo
https://letstalkscience.ca/educational-resources/backgrounders/introduction-particle-theory-matter
https://www.physicsclassroom.com/class/sound/u11l1c.cfm
https://www.physicsclassroom.com/mmedia/waves/edl.cfm
https://www.physicsclassroom.com/mmedia/waves/edl.cfm
https://www.open.edu/openlearn/science-maths-technology/engineering-technology/sound-music-technology-an-introduction/content-section-2.3

For example, speakers produce sound waves by moving its surface up and down in a
periodic pattern generated by electric circuits. The gif below illustrates how sound
waves produced by a speaker travel through particles of air:

ALT TEXT: A black line on the left-hand side moves in a periodic pattern to imitate the
surface of a speaker as it produces sound. Columns of black dots to the right of the
surface represent the air particles around the speaker. As the surface moves to the
right, it pushes surrounding air particles causing them to bump into others. As the
surface moves to the left, it creates space for particles to spread out as they move
back. Red lines that mark areas where particles bump into others, appear to travel to
the right through the air. A periodic sine curve that represents air pressure is drawn
under the sound wave, with each peak aligned to a red line. The sine curve appears to
travel to the right as red lines move through air particles.
Source: Flipping Physics

The black line on the left represents the surface of the speaker, and columns of black
dots represent particles of air.

The speaker produces sound by moving its surface from right to left in a periodic
pattern. As the surface of the speaker moves to the right, it pushes air particles to the
right, and causes them to get closer together (compress). When particles compress
they create areas of high air pressure and transfer sound energy down the medium.

https://www.flippingphysics.com/uploads/2/1/1/0/21103672/0327-animated-gif-6_2.gif

In the gif above, red lines label areas in the air where particles compress and transfer
sound energy. A blue line, in the form of a periodic sine curve, shows changes in
pressure as sound travels through air. Areas where air particles compress align with the
highest points on the blue line (high pressure). Areas where particles are more spread
apart align with the lowest points on the blue line (low pressure).

Did you notice how particles in a medium oscillate back and forth to carry sound
energy, but never actually travel anywhere? The red lines illustrate how the sound
energy is carried by the medium through the transfer of energy from its particles. Notice
how the sound travels in the same direction that particles vibrate. This means that sound
is a longitudinal wave! Visit this resource to learn more about longitudinal waves.

Sound waves are commonly illustrated using a periodic sine curve that represents
changes in pressure as sound travels through a medium (like the blue line in the gif
above).

Periodic wave characteristics
Periodic waves are described using characteristics illustrated in the diagram below:

https://www.investopedia.com/terms/s/sinewave.asp#:~:text=A%20sine%20wave%20is%20a,oscillates%20above%20and%20below%20zero.
https://www.physicsclassroom.com/class/waves/Lesson-1/Categories-of-Waves
https://www.investopedia.com/terms/s/sinewave.asp#:~:text=A%20sine%20wave%20is%20a,oscillates%20above%20and%20below%20zero.

Alt text: A diagram of a periodic sine curve drawn over a horizontal line in the middle.
Arrows label the wave characteristics: “wavelength (distance per cycle)”, “frequency
(cycles per time)”, “amplitude” and “equilibrium.” Horizontal arrows pointing from one
peak to the next show that wavelength measures the length of one wave cycle, and
frequency measures the number of wave cycles that occur over a specific period of
time. The line in the middle of the wave is labeled the “equilibrium.” Vertical arrows that
point from the highest point in the line to the equilibrium, or from the lowest point to the
equilibrium, show that amplitude is a measure of the distance from the equilibrium.

Label descriptions:

●​ Equilibrium: represents the resting position of an oscillation, and is often
represented by a flat horizontal line in the middle of a wave.

○​ For a pressure wave, equilibrium describes the pressure in a medium when
there is no sound.

●​ Wavelength: the distance between two identical points on the wave, or the
length of one oscillation.

○​ The wavelength for a sound wave is the distance between two
consecutive compressions, or two consecutive rarefactions.

●​ Amplitude: the distance between the equilibrium line, and the highest or lowest
point on the wave

○​ For a sound wave, the amplitude describes the intensity, or volume, of the
sound.

●​ Frequency: the number of oscillations that occur in a specific period of time.
○​ Frequency is often measured in Hertz (Hz), which measures the number of

cycles per second. 1 Hz = cycle/second
○​ The frequency of a pressure wave, measured in Hz, is the number of times

a compression or rarefaction passes a point in one second.

1.3 - Musical notes and wave characteristics
Since musical notes are sounds that are carried by periodic pressure waves, we can
also describe them using wave characteristics.

The amplitude of a sound wave is a measure of the sound's intensity, which we can
hear through its volume. Musical notes played at high volumes have high amplitudes,

https://www.simplifyingtheory.com/music-note/
https://www.britannica.com/science/sound-physics
https://www.simplifyingtheory.com/music-note/

while notes played at low volumes have low amplitude. To learn more about amplitude
and music, visit this resource.

The equilibrium for a sound wave describes the energy that is transferred by the
particles in the medium when no sound is traveling through it. We can imagine that at
equilibrium, the volume of a sound is 0, and the pressure in the medium is at some
resting value.

The frequency of sound waves can be heard through its tones, or pitch, which range
from high to low. Musical notes are sound waves played at specific frequencies for a
short period of time. Notes played at low frequencies correspond to low tones, much
like the musical notes played on a bass guitar. Notes played at high frequencies
correspond to high tones, much like the musical notes played on a flute. To learn more
about how musical notes correspond to wave specific frequencies, visit this resource.

Visit the Sound Synthesis Tutorial from the coding train for a brief introduction to
p5.Oscillator objects and waves.

Play musical notes with osciallators
Let’s dive into the wonderful world of sound, music and oscillators to create a simple
melody app!

Step 1 – Create a p5.oscillator object that can play a
musical note
Open a new p5.js project, name it “Play a note,” and save the project.

●​ Be sure that you have the p5.js sound library linked in your index.html file.

Identify a frequency that matches a musical note, and store it in a global variable
called myFreq.

●​ For the middle C note, initialize myFreq with 262 by adding this code above
setup():

// Variable for frequency (middle C).

let myFreq = 262;

https://www.howmusicworks.org/103/Sound-and-Music/Amplitude-and-Frequency
https://www.simplifyingtheory.com/music-note/
https://www.idrumtune.com/ultimate-guide-to-musical-frequencies/
https://www.youtube.com/watch?app=desktop&v=Bk8rLzzSink
https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe
https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe
https://p5js.org/libraries/
https://www.sciencedirect.com/topics/mathematics/middle-c

Visit this resource for a list of musical notes and corresponding frequencies.
Middle C has a frequency of 262 Hz.

Declare a global variable that will store the p5.Oscillator object.

●​ Add this code above setup():
// Variable for Oscillator.

let osc;

Initialize osc with a p5.Oscillator object using myFreq as an argument.
●​ Add this code in setup():

 /* Create an Oscillator object with a

 Frequency defined by the variable myFreq */

 osc = new p5.Oscillator(myFreq);

Tip: Ensure that the oscillator object was successfully initialized by adding
console.log(osc) in the next line. You should see and object that looks like this:

r {started: false, phaseAmount: undefined, oscillator: OscillatorNode, f: 262, output:
GainNode…}

You can confirm that you created an oscillator object with the correct frequency by
examining the “f” property in the console, or printing it using console.log(osc.f). The
frequency in the osc.f should match the frequency you identified for your note.

Visit the p5.Oscillator reference to learn more about the properties in p5.Oscillator
objects. See this resource for a chart that lists the frequencies for specific musical notes.

Your sketch.js file should look like this:

// Variable for frequency (middle C).
let myFreq = 262;

// Variable for Oscillator.
let osc;

function setup() {
 createCanvas(400, 400);

 /* Create an Oscillator object with a

https://www.idrumtune.com/ultimate-guide-to-musical-frequencies/
https://www.sciencedirect.com/topics/mathematics/middle-c
https://p5js.org/reference/#/p5.Oscillator
https://p5js.org/reference/#/p5.Oscillator
https://p5js.org/reference/#/p5.Oscillator
https://mixbutton.com/mixing-articles/music-note-to-frequency-chart/

 Frequency defined by the variable myFreq */
 osc = new p5.Oscillator(myFreq);
 console.log(osc.f)

}

function draw() {
 background(220);
}

Step 2 – Play a note
Most browsers require a user's permission to play or retrieve sounds, images and video.
To bypass this feature, we can add a feature that gives the user control over when a
sound is played.

Enable a user to start the oscillator when they click the canvas by defining a
mousePressed() function that calls osc.start().

●​ Add the following lines of code under draw():
// Starts the oscillator when the mouse is pressed.

function mousePressed() {

 osc.start();

}

●​ Run your code. You should hear middle C play after clicking on the canvas.

If you do not hear any sounds after clicking the canvas , check that your code
looks like this. If a sound does not play, check that your browser settings allow for
playing multimedia. You can use the following resources to help you:

○​ Chrome Settings
○​ Safari Settings
○​ Edge Settings

We have created a musical note that plays forever, or until you stop running the code!

Enable a user to start and stop the sound when they click the canvas.

●​ Replace the code in the mousePressed() function with this conditional
statement:

https://editor.p5js.org/Msqcoding/sketches/ObN4r-VJo
https://support.google.com/chrome/answer/9692215?hl=en
https://testgenius.com/help/safari-enable-auto-play-settings.pdf
https://answers.microsoft.com/en-us/windows/forum/all/no-sound-on-edge/d78ee7a0-ee77-4d16-b406-919579b4397e

// Toggle the note that is playing.

if(osc.started){

osc.stop();

} else {

​ osc.start();

}

●​ Run your project. You should be able to hear the middle C note play when you

click the canvas, and stop when you click the canvas again!

Your sketch.js file should look similar to this:

// Variable for Oscillator.​
let osc;

// Middle C frequency.​
let myFreq = 262;​
​
function setup() {​
 createCanvas(400, 400);​
​
 // Create the Oscillator object.​
 osc = new Oscillator(myFreq);

 // console.log(osc.f);

}​
​
function draw() {​
 background(220);​
}​
​
function mousePressed() {

 // Toggle the note that is playing.

 if(osc.started){

 osc.stop();

 } else {

 osc.start();

 }

}

In the code above, a new p5.Oscillator object is initialized with a frequency of 262 Hz
and stored in the osc variable. The user can start and stop the oscillator by clicking the
canvas. To add this interactivity, you added a conditional statement in mousePress()
that used the oscillators .started property to check if the oscillator has started playing

already. osc.started returns true if the oscillator has started, and false otherwise. If
the oscillator has started, the conditional instructs the program to stop the oscillator
using the .stop() function, otherwise the oscillator starts using the .start() function.

Visit the p5.js reference for p5.Oscillator to learn more about its functions and
properties.

Example Project

Try It!
●​ Display the oscillator's frequency in Hz on the canvas. (example)
●​ Play different frequencies by looking at this chart and changing the value of the

frequency variable. Round the frequencies to the nearest whole number. (example)

Note
In the next section, Musical scales and oscillators, we introduce the theory behind
musical scales and melody composition by introducing musical scales, melody
composition, octaves & musical scales and frequencies.

Skip ahead
If you are already familiar with the background concepts above, skip ahead to the
Build a simple melody app section!

Musical scales and oscillators
Music composers and producers often create simple melodies by choosing notes from
a specific musical scale to ensure melodies will sound pleasing to listeners. In western
culture, musical scales are a collection of evenly spaced notes arranged according to
ascending or descending frequencies. Ascending scales increase in frequency (from a
low pitch to a higher pitch), and descending scales decrease in frequency (from a high
pitch to a lower pitch). An octave is an ascending scale consisting of eight evenly
spaced musical notes, where the frequency of the last note is two times the frequency
of the first note.

https://p5js.org/reference/#/p5.Oscillator
https://editor.p5js.org/KM_Playground/sketches/Ccjew0snE
https://editor.p5js.org/KM_Playground/sketches/3Ul83pu93
https://mixbutton.com/mixing-articles/music-note-to-frequency-chart/
https://editor.p5js.org/KM_Playground/sketches/2ChPeL9r6
https://piano-music-theory.com/2016/05/31/major-scales/
https://pulse.berklee.edu/?id=4&lesson=73
https://pulse.berklee.edu/?id=4&lesson=73
https://www.masterclass.com/articles/music-101-what-is-an-octave
https://www.swarthmore.edu/NatSci/ceverba1/Class/e5_2006/MusicalScales.html

We chose one of the most fundamental scales in western music known as C Major in
the example for this tutorial. The first note in the C Major scale is middle C, with a
frequency of 264 Hz. The last note in the scale will have a frequency that is double the
frequency for middle C. This means the last note in the scale is C sharp with a frequency
of 524 Hz. See table below for a list of frequencies and corresponding musical notes:

Musical Notes and Frequencies in C Major

Note
(4th Octave)

Frequency
(Hz)

Expression
(myFreq = 242 Hz)

C 264 myFreq * 1

D 294.75 myFreq * 9/8

E 327.5 myFreq * 5/4

F 349.33 myFreq * 4/3

G 393 myFreq * 3/2

A 436 myFreq * 5/3

B 491.25 myFreq * 15/8

C#
(5th Octave)

524 myFreq * 2

Visit these resources to explore more about other musical scales, octaves, melody
composition and scales, and C Major.

This project uses p5.Oscillator objects to generate the musical notes that will play during
a melody. We learned to initialize a new p5.Oscillator object in a variable with a
specific frequency in step 1. To generate oscillators for a musical scale, we can initialize
multiple p5.Oscillator objects with different frequencies in an array.

To learn more about arrays, visit the MDN resource for JavaScript Arrays.

https://pulse.berklee.edu/scales/c-major-scale.html
https://pulse.berklee.edu/scales/c-major-scale.html
https://www.skoove.com/blog/middle-c-on-piano/#:~:text=Middle%20C%20is%20a%20basic,the%20middle%20of%20the%20piano.
https://www.swarthmore.edu/NatSci/ceverba1/Class/e5_2006/MusicalScales.html
https://www.swarthmore.edu/NatSci/ceverba1/Class/e5_2006/MusicalScales.html
https://peabody.sapp.org/class/st2/lab/notehz/
https://piano-music-theory.com/2016/05/31/major-scales/
https://www.masterclass.com/articles/music-101-what-is-an-octave
https://pulse.berklee.edu/?id=4&lesson=73
https://pulse.berklee.edu/?id=4&lesson=73
https://ux1.eiu.edu/~cfadd/3050/Adventures/chapter_12/ch12_4.htm
https://p5js.org/reference/#/p5.Oscillator
https://p5js.org/reference/#/p5.Oscillator
https://p5js.org/reference/#/p5.Oscillator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

Build a simple melody app
In the simple melody app project, we will enable users to choose any note in C Major to
compose melodies. Frequencies and oscillator objects are stored in arrays so that they
are ready to be played when the user selects them. Each note in C Major has a
specific frequency, so each note will have a specific oscillator object that will play it.

Step 1 – Create p5.Oscillator objects for a musical scale
Open a new project in the p5.js Web Editor, name it “Simple Melody App” and save.

●​ Be sure that you have the p5.js sound library linked in your index.html file.

Choose a musical scale to use in your app.

●​ This tutorial uses the C Major scale (4th octave) where the first note is middle C -
the same note that has a frequency stored in the variable myFreq.

●​ Calculate the 8 evenly spaced frequencies that represent musical notes in a
scale, starting with the frequency in a variable myFreq.

​
Refer to this table from the Musical scales and oscillators section above for more
information on how to calculate the frequencies for notes in C Major.

Declare a global variable myFreq and initialize it the frequency of the first note in the
scale. Declare another global variable called frequencies, and initialize it with an
array of frequencies you calculated that match the 8 notes in the scale.

●​ Add this code before setup():
// Variable for frequency (middle C).

let myFreq = 262;

// Array of frequencies in C Major.

let frequencies = [

 myFreq,

 myFreq * 9/8,

 myFreq * 5/4,

 myFreq * 4/3,

 myFreq * 3/2,

 myFreq * 5/3,

 myFreq * 15/8,

 myFreq * 2

];

https://ux1.eiu.edu/~cfadd/3050/Adventures/chapter_12/ch12_4.htm
https://ux1.eiu.edu/~cfadd/3050/Adventures/chapter_12/ch12_4.htm
https://editor.p5js.org/
https://p5js.org/libraries/
https://ux1.eiu.edu/~cfadd/3050/Adventures/chapter_12/ch12_4.htm
https://ux1.eiu.edu/~cfadd/3050/Adventures/chapter_12/x_12.16.jpg
https://ux1.eiu.edu/~cfadd/3050/Adventures/chapter_12/ch12_4.htm

Access the elements in the frequencies array to initialize p5.Oscillator objects for
each note in C Major.

●​ Create a global variable called oscillators and initialize it with an empty
array. This array will hold the p5.Oscillator objects for each note.

○​ Add this code above setup():
// Empty array for oscillator objects.

let oscillators = [];

●​ Initialize oscillators for notes that match the frequencies array, and add them to
the oscillators array by calling .push() on each new oscillator.

○​ Add this code in setup():
 // Initialize oscillators and place in oscillators array.

 for (let freq of frequencies) {

 osc = new p5.Oscillator(freq);

 oscillators.push(osc);

 }

Here you use a for loop to access each frequency in the frequencies array to
initialize new p5.Oscillator objects for each note. Each oscillator object is stored in
the oscillators array.

Note: The index of for specific frequencies in the frequencies array match the index of
oscillator objects in the oscillators array.

Double check oscillators are created correctly by printing the frequencies for each
oscillator in the console.

●​ Add this line of code in setup():
//double check each oscillator has correct frequency

 for (let freq of frequencies) {

 console.log(osc.f);

 }

Your sketch.js file should look similar to this:

// Middle C frequency.​
let myFreq = 262;​

// Array of frequencies in C Major.

https://p5js.org/reference/#/p5.Oscillator
https://ux1.eiu.edu/~cfadd/3050/Adventures/chapter_12/ch12_4.htm
https://p5js.org/reference/#/p5.Oscillator
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://p5js.org/reference/#/p5.Oscillator

let frequencies = [

 myFreq,

 myFreq * 9/8,

 myFreq * 5/4,

 myFreq * 4/3,

 myFreq * 3/2,

 myFreq * 5/3,

 myFreq * 15/8,

 myFreq * 2

];

// Empty array for oscillator objects.

let oscillators = [];

​
function setup() {​
 createCanvas(400, 400);​
​
 // Initialize oscillators and place in oscillators array.

 for (let freq of frequencies) {

 osc = new p5.Oscillator(freq);

 oscillators.push(osc);

 }

 //double check each oscillator has correct frequency

 for (let freq of frequencies){

 console.log(osc.f);

 }

}​
​
function draw() {​
 background(220);​
}

 p5.Oscillator objects have methods such as .start(), .stop(), and .amp() that
help control the intensity of the sound it produces. They also have properties such a .f
and .started that stores its frequency in Hz, and a boolean variable that is true when
the oscillator starts, and false otherwise. We will use these to add more interactive
elements to the sketch later on.

https://p5js.org/reference/#/p5.Oscillator

Note
In the next section, Melodies and tempo, we will introduce how tempo and note
duration play a role in creating melodies.

Skip ahead
If you are already familiar with the background concepts above, skip ahead to step 2!

Melodies and tempo
Melodies are created when multiple musical notes are played one after the other. A
simple melody can consist of musical notes, rhythm, and tempo. Rhythm describes how
long each individual note is played, and is commonly measured in beats. Tempo
describes the number of beats per minute (bpm) for a melody. For example, the
average pop melody is played at 120 beats per minute, which means that each beat is
half a second long. Beats describe the pulse of a melody, whereas the tempo describes
how fast each beat moves in time.

The amount of time each note is played, known as note duration, is measured in beats
and directly affects a melody’s rhythm. Notes are often played every 4 beats, 2 beats, 1
beat and 1/2 beat. For a simple melody, each note is played for the same amount of
time. A simple melody played at 120 bpm will have notes that are played every half a
second, and last for half a second. To learn more about note duration, rhythm and
tempo, visit this resource.

Visit the MDN reference to review JavaScript JSON objects - we will be storing our
melodies as JSON objects that we can play back!

Build a simple melody app (continued)

We will use JSON objects to store melodies and their characteristics such as a name,
musical notes, and tempo. We will call these melody objects.

Step 2 – Create a melody object
We can create a melody object that represents the notes in C Major by adding this
code before setup():

https://www.hoffmanacademy.com/blog/what-is-tempo-in-music/
https://classicalguitarshed.com/theory-note-duration/
https://classicalguitarshed.com/theory-note-duration/
https://www.masterclass.com/articles/music-101-what-is-melody
https://www.simplifyingtheory.com/music-note/
https://classicalguitarshed.com/theory-note-duration/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://ux1.eiu.edu/~cfadd/3050/Adventures/chapter_12/ch12_4.htm

// Melody Object for C Major

let melody = {name: 'C Major Scale',

 notesIndex: [0, 1, 2, 3, 4, 5, 6, 7],

 tempo: 120

 };

Melody objects have the following properties:
○​ name: the name of the melody
○​ notesIndex: an array of numbers that specify the index in the oscillators array

that corresponds to each note. notesIndex defines the order in which each
note will be played

○​ tempo: the number of beats per minute used to calculate the duration of each
note in the melody.

Visit the MDN reference for JSON objects to learn more about how to access property
values.

Step 3: Play a note in a melody object
Before playing an entire melody, we first have to give the program instructions on how
to play an individual note.

Define a playNote() function with a parameter n, where n matches the index in the
melody.noteIndex. n also matches the indices for notes in the oscillators array, and
their frequencies in the frequencies array.

●​ Add the following function declaration below draw():

// Starts playing the note.
function playNote(n) {

}

Use a conditional statement that plays a note if the note is not already playing.

●​ Add the following code in playNote(n):
 // Starts oscillator if needed.

 if (oscillators[n].started === false) {

 oscillators[n].start();

 }

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON

Add a short fade-in as the note plays using .amp() for a more natural listening
experience.This method changes the amplitude of the oscillator, gradually raising the
volume in the beginning.

●​ Add the following function declaration below draw():

// Starts playing the note by increasing the volume with a 0.01

sec fade-in.

 oscillators[n].amp(1, 0.01);

The playNote() function should look like this:

function playNote(n) {

 // Starts oscillator if needed.

 if (oscillators[n].started === false) {

 oscillators[n].start();

 // Starts playing the note by increasing the volume with a

0.01 sec fade-in.

 oscillators[n].amp(1, 0.01);

 }

The playNote()function:
➢​ Receives a number n that indicates the index value for a note based on the

notesIndex property in the melody object.
➢​ Start the oscillator at oscillators[n], as long as it hasn’t already started.

○​ To check if the oscillator is playing, use its .started property in a
conditional statement.

○​ Use the .start() method to start the oscillator if its not already started
➢​ Using the oscillators .amp() method, set the volume to 1, with a fade-in of 0.01

seconds

To stop the note, we can add a fade out using the amp() to decrease the volume to 0,
and stop the oscillator using .stop().

●​ Define a function called stopNote() with a parameter n by adding this code
under playNote():

// Stops playing the note.
function stopNote(n) {

 // Lower oscillator volume to 0.

 oscillators[n].amp(0, 0.01);

 // Stop the oscillator.

https://p5js.org/reference/#/p5.Oscillator/amp
https://p5js.org/reference/#/p5.Oscillator/start
https://p5js.org/reference/#/p5.Oscillator/amp
https://p5js.org/reference/#/p5.Oscillator/amp
https://p5js.org/reference/#/p5.Oscillator/stop

 oscillators[n].stop();

}

The stopNote() function: ​
➢​ Receives a number n that indicates the index of the oscillator object that is

playing
➢​ Sets the volume to 0 with a fade out of 0.01 seconds using the oscillators amp()

method
➢​ Uses the stop() method to stop the oscillator

We can call stopNote() in the playNote() function, and control the amount of time
each note plays. First define a global variable noteDuration that uses the
melody.tempo property to calculate the amount of time each note should play..

●​ Add the following code before setup():
// Calculate duration of each note in seconds.

let noteDuration = 60 / melody.tempo;

In the Melodies and tempo section we learned that note duration can be calculated
using tempo because each note in a simple melody is played for the same amount of
time. Since the tempo is measured in beats per minute, we can divide 60 seconds per
minute by the tempo (60 / melody.tempo), to determine the number of seconds a
note should play.

Modify playNote() by using setTimeout() to schedule the time when a specific note
from melody.notesIndex plays. setTimeout() requires 3 arguments: the function to call
after the set time, the set time to wait until the function is called (in milliseconds), and
the argument to use in the function when it is called.

●​ Trigger stopNote() after noteDuration * 1000 milliseconds using n as the third
parameter using setTimeout():

●​ Add this line of code at the end of playNote():
// Stops playing the note after number of seconds stored in

noteDuration

setTimeout(stopNote, noteDuration * 1000, n);

setTimeout() calls stopNote after a period of time measured in milliseconds:
➢​ noteDuration can be converted from seconds to milliseconds using the

expression noteDuration * 1000.

https://p5js.org/reference/#/p5.Oscillator/amp
https://p5js.org/reference/#/p5.Oscillator/stop
https://classicalguitarshed.com/theory-note-duration/
https://classicalguitarshed.com/theory-note-duration/
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout

➢​ The third argument, n, indicates the value to pass into the stopNote() function
when it is called. This is the value for the index in the melody.notesIndex array
that matches the index of the oscillator in the oscillators array that is
playing.

➢​ Delaying stopNote() based on noteDuration plays the note for a 1/2 beat.

For more information about the setTimeout() function visit the MDN reference.

Your playNote() and stopNote() functions should look like this:

// Starts playing the note.
function playNote(n) {

 // Starts oscillator if needed.

 if (oscillators[n].started === false) {

 oscillators[n].start();

 }

 // Starts playing the note by increasing the volume with a 0.01 sec fade-in.

 oscillators[n].amp(1, 0.01);

 // Stops playing the note after number of seconds stored in noteDuration

 setTimeout(stopNote, noteDuration * 1000, n);

}

// Stops playing the note.
function stopNote(n) {

 // Lower oscillator volume to 0.

 oscillators[n].amp(0, 0.01);

 // Stop the oscillator.

 oscillators[n].stop();

}

●​ Test playNote() by calling it at the end of setup using a specific note from the

melody object. For example, you can add this line of code at the end of setup()
and change the argument to test each:

//test playNote

playNote(0);

https://developer.mozilla.org/en-US/docs/Web/API/setTimeout

Step 4: Play a melody object
Define the play() function to schedule when to play each note from the oscillators
array based on the order in which their index appears in the melody.notesIndex
array, and the melody’s noteDuration. The elements in melody.notesIndex include all
indices for notes in the melody, in the order they should be played.

The value of melody.notesIndex[0] is the value of the index in the oscillators array
that plays the first note in the melody. The last element in melody.notesIndex is the
index in the oscillators array for the last note. Each note can be played at a specific
time after the melody starts using setTimeout() to trigger playNote() in a for loop.

●​ Add the function declaration for play() at the bottom of sketch.js:
// Plays the notes in a melody.

function play() {

 // Read each [index, note] in melody.notesIndex

 for (let [index, note] of melody.notesIndex.entries()) {

 // Play each note at scheduled time

 setTimeout(playNote, noteDuration * 1000 * index , note);

 }

}

●​ Test the play() function by calling it to the mousePressed() function.

Your code should look like this:

// Variable for frequency (middle C).

let myFreq = 262;

// Array of frequencies in C Major.

let frequencies = [

 myFreq,

 myFreq * 9/8,

 myFreq * 5/4,

 myFreq * 4/3,

 myFreq * 3/2,

 myFreq * 5/3,

 myFreq * 15/8,

 myFreq * 2

];

// Melody Object for C Major

let melody = {name: 'C Major Scale',

 notesIndex: [0, 1, 2, 3, 4, 5, 6, 7],

 tempo: 120

 };

// Empty array for oscillator objects.

let oscillators = [];

// Calculate duration of each note in seconds.

let noteDuration = 60 / melody.tempo;

function setup() {

 createCanvas(400, 400);

 // Initialize oscillators and place in oscillators array.

 for (let freq of frequencies) {

 osc = new p5.Oscillator(freq);

 oscillators.push(osc);

 }

 //set color mode to HSB (better for using notes to color keys)

 colorMode(HSB);

}

function draw() {

 background(220);

 drawMelody();

}

// Starts playing the note.

function playNote(n) {

 // Starts oscillator if needed.

 if (oscillators[n].started === false) {

 oscillators[n].start();

 // Starts playing the note by increasing the volume with a 0.01 sec

fade-in.

 oscillators[n].amp(1, 0.01);

 }

 // Stops playing the note after number of seconds stored in noteDuration * 1000

 setTimeout(stopNote, noteDuration * 1000, n);

}

// Stops playing the note.

function stopNote(n) {

 // Lower oscillator volume to 0.

 oscillators[n].amp(0, 0.01);

 // Stop the oscillator.

 oscillators[n].stop();

}

// Plays the notes in a melody.

function play() {

 // Read each [index, note] in melody.notesIndex

 for (let [index, note] of melody.notesIndex.entries()) {

 // Play each note at scheduled time

 setTimeout(playNote, noteDuration * 1000 * index, note);

 }

}

//play melody with mouse click

function mousePressed(){

 play();

}

The play() function:
●​ Uses a for loop to iterate through all the elements in the melody.notesIndex

array, and captures the index of the element in the index variable, and its value
in the note variable.

○​ index indicates the order in which the note should be played.
○​ note indicates the index for in the oscillators array that will play the

note.
●​ Schedules the playback for each note in melody.notesIndex using

setTimeout()

○​ Calls playNote(note) after a time, in milliseconds, calculated by
noteDuration * 1000 * index

setTimeout() schedules when each note should be played, and takes three
arguments: the function to run (playNote), the delay before it runs (in milliseconds),
and the argument to pass to the playNote function (note). The delay is calculated
using noteDuration * 1000 * index, where index is the index of the current note in

https://p5js.org/reference/#/p5/for

the melody.noteIndex array that corresponds to the index of the oscillator in the
oscillators array.

This timing allows for the following schedule for playing notes in a melody:
●​ The first note in melody.noteIndex plays immediately when the melody starts (at

0 milliseconds).
●​ The second note plays after the after noteDuration * 1000 * 1 milliseconds. This

occurs 1/2 beat after the first note starts playing
●​ Third note: Plays after the second note, delayed by noteDuration * 1000 * 2

milliseconds.
●​ This process repeats until each element in the melody.notesIndex array is used.

Each note's playtime is staggered by the duration and position of a single note in the
melody. This allows for a smooth progression of notes played throughout the melody,
and creates a rhythm where each note is played at a consistent interval, aligning with
the melody's tempo.

Example Code

Try It!
●​ Change the values in the elements in melody.notesIndex and observe how the melody

changes
●​ Change the value in melody.tempo and observe how the melody changes
●​ Create new melody objects of your own and play them!

Note
In the next section, User interface and experience, we will introduce how to think about
user interface (UI), user experience (UX), and the importance of visual feedback while
using an app.

Skip ahead
If you are already familiar with the background concepts above, skip ahead to step 7!

User interface and experience
We have programmed our projects to play the notes from a melody object! Now we
can add a user interface (UI)that allows users to select notes from the C Major scale,

https://editor.p5js.org/Msqcoding/sketches/hQbNZKWhJ
https://clearbridgemobile.com/mobile-app-design-fundamentals-user-experience-user-interface/
https://www.interaction-design.org/literature/topics/ux-design
https://uxplanet.org/the-details-that-matter-8b962ca58b49
https://clearbridgemobile.com/mobile-app-design-fundamentals-user-experience-user-interface/
https://pulse.berklee.edu/scales/c-major-scale.html

and compose their own melodies. A user interface (UI) can provide anything you think
a user may need to use your app successfully, and have a great time while doing so. It
can provide a fun and pleasant user experience (UX).

Visual feedback during their experience is an important part of keeping users interested
in your app. for users as each note plays can make composing and playing back
melodies a more satisfying experience that keeps people making more!

Visit these resources to learn more about user interfaces (UI), user experiences (UX) and
visual feedback.

Building a melody app (continued)

In this step you can design any user interface you like. As an example, we will be
drawing a row of buttons that resemble the keys on a piano. To allow for an intuitive
user experience, each note in the C Major scale will correspond to a button on the
canvas, organized in order of decreasing frequency. When the note associated with a
specific key is played, the key will light up with a bright color to add some visually
pleasing feedback to the melody playback experience!

Step 5 – Create a user interface
In this step you will define a drawMelody() function that draws buttons that resemble
piano keys across the canvas. Each button corresponds to a specific musical note
represented by a p5.Oscillator object in the oscillators array. Since each there are 8
oscillator objects in the oscillators array and 8 musical note frequencies in the
frequencies array, there will be 8 buttons drawn across the canvas.

●​ Define global variables that hold the number of notes available for users in
numNotes, and the width of the canvas in cWidth. Add the following code above
setup():

/* number of notes that can be played (equal to the number of

frequencies/oscillators) */

let numNotes = frequencies.length;

//canvas width

let cWidth = 400;

https://clearbridgemobile.com/mobile-app-design-fundamentals-user-experience-user-interface/
https://www.interaction-design.org/literature/topics/ux-design
https://uxplanet.org/the-details-that-matter-8b962ca58b49
https://clearbridgemobile.com/mobile-app-design-fundamentals-user-experience-user-interface/
https://www.interaction-design.org/literature/topics/ux-design
https://uxplanet.org/the-details-that-matter-8b962ca58b49
https://p5js.org/reference/#/p5.Oscillator

●​ Replace the width dimension in createCanvas() with cWidth and set the color
mode to HSB.

Your global variables and setup():

//..other variables

/* number of notes that can be played (equal to the number of

frequencies/oscillators) */

let numNotes = frequencies.length;

//canvas width

let cWidth = 400;

function setup() {
 createCanvas(cWidth, 400);

 // Initialize oscillators and place in oscillators array.
 for (let freq of frequencies) {
 osc = new p5.Oscillator(freq);
 oscillators.push(osc);
 }
 //set color mode to HSB (better for using notes to color keys)
 colorMode(HSB);
}

cWdith and numNotes will be used to calculate the x-coordinate for each button on the
canvas. Each button will change color, using HSB color mode, as a note plays, and will
return back to a default color when a note is not playing.

In this example, you will draw a row of rectangular buttons on the canvas that behave
like keys on a piano. Each key corresponds to a note in the C Major Scale. The keys
change color when the note that matches a specific key is played. Each button (keys)
represents a note in C Major, and appears on the canvas arranged in the order of
increasing pitch.

●​ Define a function called drawMelody() that draws buttons for each note on the
canvas in a row.

●​ Define a local variable named keyWidth and initialize it with cWidth/numNotes -
the width of each key.

●​ Define a local variable keyWidth for x and y coordinates for each button using a
for loop:

https://www.learnui.design/blog/the-hsb-color-system-practicioners-primer.html
https://www.learnui.design/blog/the-hsb-color-system-practicioners-primer.html

○​ y is a fixed value
○​ x is dependent on the index variable i and the keyWidth
○​ Use x, y and keyWidth to draw rounded rectangle keys across the

canvas.

Your drawMelody() function should look like this:

//User Interface
function drawMelody() {
 // width of each key
 let keyWidth = cWidth/numNotes;

 //Loop for the number of notes available
 for (let i = 0; i < numNotes; i ++) {
 //set x for each element
 let x = i * keyWidth;
 let y = keyWidth*3; // y 3x width

 // Draw a rounded key.
 rect(x, y, keyWidth, keyWidth*2, 10);
 }
}

●​ Add drawMelody() to the draw() function, and click the canvas with your mouse!
Observe how the colors don’t change yet!
Example code

Step 6: Add visual feedback
drawMelody() generates a color for each but that represents a note. Each time a note
is played, its corresponding key will change in a color. This creates a visually pleasing
element to the experience. The map() function can be used to to set the color for each
button in HSB color mode as it is playing using the index of each note in the
oscillators array.

●​ Add the following code to drawMelody() before rect():
//Check if the oscillator[i] has started playing
if (oscillators[i].started) {
 //true: define a local variable h, using map(), numNotes and i
 let h = map(i, 0, numNotes, 0, 360);

 // Set the color of the key using map()
 // use h in fill
 fill(h, 100, 100);

https://p5js.org/reference/#/p5/map
https://www.learnui.design/blog/the-hsb-color-system-practicioners-primer.html

 } else {
 fill("white");
 }

Your drawMelody() function should look like this:

//User Interface
function drawMelody() {
 // draw rectangular buttons
 let keyWidth = cWidth/numNotes;

 //Loop for the number of notes available
 for (let i = 0; i < numNotes; i ++) {
 //set x for each element
 let x = i * keyWidth;
 let y = keyWidth*3; // height 3x width

//Check if the oscillator[i] has started playing
 if (oscillators[i].started) {
 //true: define a local variable h, using map() and numNotes
 // Set the color of the key using map()
 let h = map(i, 0, numNotes, 0, 360);
 // use h in fill
 fill(h, 100, 100);
 } else {
 fill("white");
 }

 // Draw a rounded key height double the width.
 rect(x, y, keyWidth, keyWidth*2, 10);
 }

}

●​ Test your code by clicking the canvas! You should see a row of keys that

become colorful as notes play!

Your code should look like this

Try It!
Change the range in the map() function. You can alter the range from 0, 360 to a
different range in the map(n, 0, numNotes, 0, 360) line within drawMelody(). This will

https://editor.p5js.org/Msqcoding/sketches/Qo-_4zCyE

change the spectrum of hues that the notes are mapped to.

For example, mapping to 50, 250 instead of 0, 360 will use a different segment of the
color spectrum.

To prepare for the next step, consider reviewing p5.Elements such as createP(),
createSelect(), createInput(), and createButton(). Also consider reviewing the MDN
reference for DOM elements and html elements.

You can also review how to use and modify DOM objects by visiting the Creating and
Styling HTML tutorial.

Step 7 – Add user input to customize melodies
Now that we have a sketch that will play a melody and display visuals as sounds play,
we can add DOM elements and canvas interactivity to help users customize their
melody objects. DOM elements are html elements that we can include in p5.js web
apps.

Melody objects have 3 properties that can be customized: name, notesIndex, and
tempo. Users also can interact with a button to playback the melody. Let’s start by
adding a play button!

Step 7.1 - Add a play button
Erase the mousePressed() function from your code and call createButton() to create
a button to play the melody. We can add DOM objects, such as buttons, to our project
in setup():

●​ Call .position() to position the button on your app
●​ Call .mouseClicked(play)to call the play() function when the user clicks on

the button.
●​ Add this code to setup():

 // Play button.
 let playButton = createButton('🎵 Play your song when you
are done! 🎶');
 playButton.position(cWidth * 0.2, 540);
 playButton.mouseClicked(play);

https://p5js.org/reference/#/p5.Element
https://p5js.org/reference/#/p5/createP
https://p5js.org/reference/#/p5/createSelect
https://p5js.org/reference/#/p5/createInput
https://p5js.org/reference/#/p5/createButton
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://p5js.org/reference/#group-DOM
https://docs.google.com/document/u/0/d/1UOPxxfv1Fcos-EIZYLbDqvWRsy2L3yZGygHtf8ZT3k8/edit
https://docs.google.com/document/u/0/d/1UOPxxfv1Fcos-EIZYLbDqvWRsy2L3yZGygHtf8ZT3k8/edit
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/API/Document_Object_Model
https://developer.mozilla.org/en-US/docs/Web/HTML/Element
https://p5js.org/reference/#group-DOM

Your setup function might look like this:

function setup() {
 createCanvas(cWidth, 400);

 // Initialize oscillators and place in oscillators array.
 for (let freq of frequencies) {
 osc = new p5.Oscillator(freq);
 oscillators.push(osc);
 }
 //set color mode to HSB (better for using notes to color keys)
 colorMode(HSB);

 // Play button.
 let playButton = createButton('🎵 Play your song when you are done! 🎶');
 playButton.position(cWidth * 0.2, 540);
 playButton.mouseClicked(play);
}

●​ Test your button to see if it works!
Example

Step 7.2 - Customize tempo
Let's add a dropdown menu with a list of tempos that the user can choose from. The
value that they select will update the melody objects they are playing. Let’s start by
placing some instructions on the app on what to do with the dropdown menu.

●​ Use createP() to create a paragraph that prompts users to set their tempo. Use
.style() and .position() to style and position the paragraph element.

○​ Add this code in setup():
// Text to prompt users to set tempo
let p = createP('Step 1: Select tempo!');
p.style("color", "magenta");
p.position(10, 415);

To add a dropdown menu with tempo options, we’ll need an array, tempoList, with
values they can choose from (measured in bpm). We will also need a variable that
stores the dropdown menu DOM element.

●​ Add this code before setup():
// Tempo selection list (in beats per min).
let tempoList = ["100","110","120",

 "130", "140", "150",

https://editor.p5js.org/Msqcoding/sketches/Hym5KUSH8

 "160","170","180",
 "190", "200", "210",
 "220","230", "240",
 "250", "260","270",
 "280", "290", "300",]

// Variable for tempo dropdown.
let tempoSelect;

We can add DOM objects, such as dropdown menus, to our project in setup():

●​ Use createSelect() to create a dropdown box and store it in a variable called
tempoSelect. Set the location of the dropdown box with .position(). Set the
first option to the index 0 using .option()

○​ Add this code in setup():
// Tempo dropdown.
tempoSelect = createSelect();
tempoSelect.position(10, 455);
tempoSelect.option(0);

●​ Use a for loop to populate the dropdown options by adding this code in
setup():

// Add tempos to dropdown options.
for (let tempo of tempoList){
 tempoSelect.option(tempo);
}

●​ Test the dropdown to make sure the tempo list is correctly populated.
●​ Declare a custom function setTempo() that will set the melody.tempo and

noteDuration of a melody object based on the user's choice from the
dropdown menu.

○​ First, check that the tempo selected is not 0 (the default value).
○​ If not 0 then update melody.tempo and noteDuration
○​ Do this by adding this code outside of setup():

// Sets tempo of melody object
function setTempo() {
 // Check that the tempo choice isn’t 0
 if(tempoSelect.selected() !== 0){

https://p5js.org/reference/#group-DOM

 melody.tempo = tempoSelect.selected();
 noteDuration = 60 / melody.tempo;
 }
}

●​ Use .changed() to call setTempo() when users select a tempo by adding this
code in draw():`

// Call setTempo() when selected.
tempoSelect.changed(setTempo);

●​ Display the Melody’s tempo on the canvas.

○​ Add this code in draw():​
// Display melody tempo
fill("magenta")
textSize(20)
text(`Tempo:
${melody.tempo}`, 300, 50);

●​ Confirm that setTempo() works by changing the tempo using the dropdown,
then pressing the play button.

Your code could look like this example.

Step 7.3 - Customize names​
We will add some instructions for users on how to name their melodies, along with a text
input box to type their melody names, and a button to update the melody object’s
name.

●​ Use createP() to create a paragraph that prompts users to set the name of
their melody, then use .style() and .position() to style and position the
paragraph.

●​ Add the following code in setup():
// Directions to input text.
let p2 = createP('Step 2: Type a name for your melody and
click "Set name"');
p2.style("color", "magenta");
p2.position(10, 455);

https://editor.p5js.org/Msqcoding/sketches/wRg-W6WZI

●​ Use createInput() to create a textbox for users to enter a melody name, then
use .position() and .size() to position and resize it.

○​ Add the following code in setup():
// Name of song input.
nameInput = createInput("Type a name and set");

 ​ nameInput.position(10, 490);
 ​ nameInput.size(200);

●​ Use createButton() to create a button for users to set the melody name. Use
.position() to place it on the app. Use .mouseClicked() to call setName()
when the button is clicked.

○​ Add the following code in setup():
 ​ // Name button.

let nameButton = createButton('Set name');
nameButton.position(250, 490);
nameButton.mouseClicked(setName);

●​ Define a function called setName() to update the melody.name property with

the value of the text input field.
○​ Add this code outside of setup():​

// Set name of melody.
function setName(){
 melody.name = nameInput.value();
}

●​ Display the Melody’s name on the canvas.
○​ Add this code in draw():​

// Display melody name.
fill("magenta")
textSize(20)
text(`Melody Name:
${melody.name}`, 50, 50);

Your project should look similar to this example.

https://editor.p5js.org/Msqcoding/sketches/JoLAcmGcb

Step 7.4 - Add a refresh button
Create a button that resets the melody object so that the user can populate a new
melody object. Resetting the melody object allows users to begin composing a new
melody by clearing all of its properties. As a result users can start their melody with an
empty melody object. An empty melody object looks like the following:

//Empty melody object

let melody = { name: "",

 notesIndex: [],

 tempo:0,

 duration: 0

 };

●​ Declare a function that resets the melody object called resetMelody() by

adding the following code outside of all other functions:
//Reset melody object

function resetMelody(){

 // Reset melody object properties

 melody.name = "",

 melody.notesIndex = [],

 melody.tempo = 0,

 // Reset tempo dropdown

 tempoSelect.selected(0);

 }

●​ Use createButton() to create a button for users to reset the melody object.
Use .position() to place it on the app. Use .mouseClicked() to call
setName() when the button is clicked.

○​ Add the following code in setup():
 ​ // Reset button.

let resetButton = createButton('Reset Melody');
resetButton.position(150, 580);
resetButton.mouseClicked(resetMelody);

Your project should look similar to this example.

https://editor.p5js.org/Msqcoding/sketches/JoLAcmGcb

Step 10: Add interactive keys
Add interactive mouse presses to each key on the canvas by declaring a function
called updateMelody(). This function plays notes that match the key that is pressed on
the canvas, and adds the notes to melody.notesIndex. In updateMelody():

●​ Define a local variable keyWidth for x and y coordinates for each button using a
for loop. We will use the same code we used to generate each key in the user
interface during step 5.

○​ updateMelody() should look like this:
//save notes based on rectangles on the screen
function updateMelody() {
 //width of keys
 let keyWidth = width / numNotes;

 //Loop over each key
 for (let i = 0; i < numNotes; i++) {
 //set x and y for each element
 let x = i * keyWidth;
 let y = keyWidth * 3;
 }

●​ Add a conditional statement that checks if the mouse is hovering over the
boundaries of each key, saves the specific note in the local notes variable, uses
the .push() array method to add the note to melody.notesIndex, and plays the
note.

○​ Add the following code in updateMelody():
 /* Check if the mouse is
 over the key */
 if (mouseX > x &&
 mouseX < x + keyWidth &&
 mouseY > y &&
 mouseY < y + keyWidth * 2) {

 //save notes index array
 let notes = melody.notesIndex;

 //add new note index to the array
 notes.push(i);

 //reassign to melody object
 melody.notesIndex = notes;

 //play note at that index
 playNote(i);
 }

●​ Replace the function call in mousePressed() with a call to the updateMelody()
function.

updateMelody() and mousePressed() should look like this:

//update melody object when canvas clicked
function mousePressed() {
 updateMelody();
}

//save notes based on rectangles on the screen
function updateMelody() {
 //width of keys
 let keyWidth = width / numNotes;

 //Loop for the number of notes available
 for (let i = 0; i < numNotes; i++) {
 //set x and y for each element
 let x = i * keyWidth;
 let y = keyWidth * 3;

 /* Check if the mouse is
 over the key */
 if (mouseX > x &&
 mouseX < x + keyWidth &&
 mouseY > y &&
 mouseY < y + keyWidth * 2) {

 //save notes index array
 let notes = melody.notesIndex;

 //add new note index to the array
 notes.push(i);

 //reassign to melody object
 melody.notesIndex = notes;

 //play note at that index
 playNote(i);
 }
 }
 }

For a more seamless user experience, replace the melody object for the C Major Scale
with an empty melody object. This will start your Simple Melody App with an empty
melody object so users can begin composing their own melodies!

Final Simple Melody App Example

Next Steps:

●​ Follow Get Started with Node.js to enable users to save and replay melodies from
their computers.

●​ Follow Melody App with Node.js to develop a more complex version of your
melody apps that allow users to compass melodies from multiple musical scales,
save them onto their computers and replay them.

Resources
Coding Train: Sound Synthesis p5.js Tutorial
Science resources

●​ Sound - definition
●​ Particle Theory of matter
●​ What does sound look like? - video
●​ Sound is a pressure wave
●​ Pressure waves and cycles
●​ Sound waves and the eardrum
●​ Sine waves
●​ Categories of waves
●​ Pitch and frequency

Music Resources

●​ Music - definition
●​ What is Melody?
●​ Musical note
●​ What is an oscillator?
●​ Amplitude and Frequency
●​ Understanding note frequencies
●​ What's synthesis and sound design? - video
●​ What are musical frequencies?
●​ Music note frequency chart
●​ Middle C

https://editor.p5js.org/Msqcoding/sketches/w_4t5bFYe
http://node.js
https://www.youtube.com/watch?app=desktop&v=Bk8rLzzSink
https://www.britannica.com/science/sound-physics
https://letstalkscience.ca/educational-resources/backgrounders/introduction-particle-theory-matter
https://www.youtube.com/watch?v=px3oVGXr4mo
https://www.physicsclassroom.com/class/sound/u11l1c.cfm
https://www.open.edu/openlearn/science-maths-technology/engineering-technology/sound-music-technology-an-introduction/content-section-2.3
https://www.physicsclassroom.com/mmedia/waves/edl.cfm
https://www.investopedia.com/terms/s/sinewave.asp#:~:text=A%20sine%20wave%20is%20a,oscillates%20above%20and%20below%20zero.
https://www.physicsclassroom.com/class/waves/Lesson-1/Categories-of-Waves
https://www.physicsclassroom.com/class/sound/Lesson-2/Pitch-and-Frequency
https://www.britannica.com/art/music
https://www.masterclass.com/articles/music-101-what-is-melody
https://www.simplifyingtheory.com/music-note/
https://www.techtarget.com/whatis/definition/oscillator
https://www.howmusicworks.org/103/Sound-and-Music/Amplitude-and-Frequency
https://producelikeapro.com/blog/note-frequency-chart/
https://www.youtube.com/watch?v=qV10Gb-Dvao
https://www.idrumtune.com/ultimate-guide-to-musical-frequencies/
https://mixbutton.com/mixing-articles/music-note-to-frequency-chart/
https://www.sciencedirect.com/topics/mathematics/middle-c

●​ C Major
●​ Note duration
●​ What is tempo?
●​ List of musical scales
●​ Musical scales and frequencies
●​ What is an octave?
●​ Understanding rhythm

Programming Resources

●​ Node.js
●​ Express.js
●​ HTTP
●​ p5.js library download
●​ p5.Oscillator objects

○​ .stop()
○​ .start()
○​ .amp()

●​ p5 DOM objects
○​ createP()
○​ createButton()
○​ createSelect()
○​ createInput()

●​ JavaScript Arrays
○​ .push()

●​ JavaScript JSON Objects
●​ setTimeout()
●​ User experience (UX) vs user interface (UI)
●​ The HSB color system
●​ colorMode()
●​ map()

https://ux1.eiu.edu/~cfadd/3050/Adventures/chapter_12/ch12_4.htm
https://classicalguitarshed.com/theory-note-duration/
https://www.hoffmanacademy.com/blog/what-is-tempo-in-music/
https://piano-music-theory.com/2016/05/31/major-scales/
https://www.swarthmore.edu/NatSci/ceverba1/Class/e5_2006/MusicalScales.html
https://www.masterclass.com/articles/music-101-what-is-an-octave
https://www.masterclass.com/articles/understanding-rhythm-in-music#RmoSLdJ8MF39r27j2PKur
https://nodejs.org/en/about
https://expressjs.com/
https://developer.mozilla.org/en-US/docs/Web/HTTP
https://p5js.org/download/
https://p5js.org/reference/#/p5.Oscillator
https://p5js.org/reference/#/p5.Oscillator/stop
https://p5js.org/reference/#/p5.Oscillator/start
https://p5js.org/reference/#/p5.Oscillator/amp
https://p5js.org/reference/#group-DOM
https://p5js.org/reference/#/p5/createP
https://p5js.org/reference/#/p5/createButton
https://p5js.org/reference/#/p5/createSelect
https://p5js.org/reference/#/p5/createinput
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/push
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/JSON
https://developer.mozilla.org/en-US/docs/Web/API/setTimeout
https://clearbridgemobile.com/mobile-app-design-fundamentals-user-experience-user-interface/
https://www.learnui.design/blog/the-hsb-color-system-practicioners-primer.html
https://p5js.org/reference/#/p5/colorMode
https://p5js.org/reference/#/p5/map

	Simple Melody App
	Introduction
	Prerequisites
	Oscillators, science & music background information
	p5.Oscillator objects
	Note
	Skip ahead

	Science of sound & music
	1.1 - Sound and pressure waves
	1.2 - Periodic waves and sound
	
	Periodic wave characteristics

	
	1.3 - Musical notes and wave characteristics

	Play musical notes with osciallators
	Step 1 – Create a p5.oscillator object that can play a musical note
	Step 2 – Play a note
	Try It!
	Note
	
	Skip ahead

	Musical scales and oscillators
	Build a simple melody app
	Step 1 – Create p5.Oscillator objects for a musical scale
	Note
	Skip ahead

	Melodies and tempo
	Build a simple melody app (continued)
	Step 2 – Create a melody object
	Step 3: Play a note in a melody object
	Step 4: Play a melody object
	Try It!
	
	Note
	Skip ahead

	User interface and experience
	Building a melody app (continued)
	Step 5 – Create a user interface
	Step 6: Add visual feedback
	Try It!

	Step 7 – Add user input to customize melodies
	Step 7.1 - Add a play button
	Step 7.2 - Customize tempo
	Step 7.3 - Customize names​
	Step 7.4 - Add a refresh button

	Step 10: Add interactive keys

	
	Next Steps:
	Resources

