
Data Structures CSE 2341
Fall 2015 Programming Project 2 Page 1 of 5

AutoIndexer
Due: Sept 28, 2015 submitted to GitHub.

Introduction
Professor Jackson was just assigned to be the editor of a riveting textbook titled Advanced Data
Structure Implementation and Analysis. She is super excited about the possibility of delving into
the material and checking it for technical correctness. However, one of the more mundane tasks she
must perform is creating an index for the book. Everyone has used the index at the back of a book
before. An index organizes important words or phrases in alphabetical order together with a list of
pages on which they can be found. But, who or what creates these indexes? Do humans create
them? Do computers create them? As a comp sci prof, Jackson decides she wants to automate the
process as much as possible because she knows that an automated indexer is faster and more accurate,
and because it can be reused later when she finishes writing her own book. So as she is editing the
book, she keeps a list of words on each page that should be included in the index. However, time is
short, and she needs to get the book edited AND indexed quickly. She’s enlisted your help to write
an AutoIndexer.

Your Task
You will implement a piece of software that can read in Professor Jackson’s keyword file (raw ASCII
text with page indications), process the keyword data from the book, and output the complete index
to separate file. All of this must be done within specific implementation constraints described in the
forthcoming sections.

Implementation Details
You’ll read from the ASCII text file generated by Prof Jackson. We’ll call this the intput text file.
Once you read in all of the data and process it, you’ll write the index to an output file. We’ll call this
the output text file.

The Input Text File
The input text file will contain a list of keywords and phrases from the book separated into groups
based on the page each word or phrase appears on. The end of the list of keywords will be indicated
by <-1> at the end of the file. If a phrase is to be indexed, the words that comprise the phrase will be
surrounded by square brackets (ex: [binary search tree]). No index word or phrase will exceed 40
characters in length (not including square brackets for phrases).

Here are a few things you should know about Prof. Jackson’s messy style for keeping track of the
keywords. She didn’t pay attention to letter case, so you’ll need to account for that in your program.
This means that ‘tree’ and ‘Tree’ should be considered as the same word. Page numbers will appear
in angle brackets (ex: <8>) and will always be on their own individual line. Page number will not
necessarily be in order. Because of the editing process, Jackson may accidentally repeat page

Data Structures CSE 2341
Fall 2015 Programming Project 2 Page 2 of 5

numbers due to re-reading the same section multiple times. This may mean she accidentally lists a
word twice on the same page. In this case, there’s no need to list the word or phrase twice in the
index. A (very very) simple input text file can be found in Listing 1.

Listing 1: Sample Input Text File.

Listing 2: Sample Output Text File.

The Output Text File
The output text file will be organized in ascending order with numeric index categories appearing
before alphabetic categories. Each category header will appear in square brackets followed by index
entries that start with that letter in ascending alphabetic or numeric order. An index entry will
consist of the indexed word, a colon, then a list of page numbers where that word was found in

Data Structures CSE 2341
Fall 2015 Programming Project 2 Page 3 of 5

ascending order. No output line should be longer than 50 characters. The line should wrap before 50
characters and subsequent lines for that particular index entry should be indented 4 spaces. An
example output text file can be found in Listing 2.

Prof. Jackson’s Peculiarities with C++ Dev
Professor Jackson is a purist and doesn't trust many of the container classes and algorithms from the
C++ standard library. Therefore, she has instructed you to not use any of them. This includes her aversion
to string objects. However, through much pressuring from her students and colleagues, she has come
to accept and trust the streaming libraries that are part of the STL (iostream, fstream, stringstream.).
Jackson trusts your skills though, so she encourages you to implement your own container class(es).
Prof Jackson is also a sticker for efficiency of memory usage. So, she requires some very strict
limits/constraints on memory management. See the section on Data Structure Implementation for
more info.

Data Structure Implementation
You don't have any idea how many individual words, index entries, etc. will be present in the input
data file. And since Jackson doesn't like the container classes from the c++ standard library, you can’t
use the vector class that automatically grows as you insert elements into it. You'll need to implement
some “data structure” that is capable of “growing” as needed. Using dynamic memory allocation
smartly, you can simulate the idea of an array growing in capacity. Therefore, this would allow you
to handle really small books as well as really large books without being insensitive to memory usage
issues. There is no need (and you definitely shouldn't) allocate arrays with 50,000 elements and cross
your fingers in hopes that you'll not encounter 50,001 items that need to go into your array.
In particular, you'll implement functionality that will resize your arrays as needed for the various
different dimensions of your data structure (such as words, pages, page list, etc.). Figure 1 shows an
overview of a potential memory layout for this project.

Figure 1 - Possible Memory Layout

Data Structures CSE 2341
Fall 2015 Programming Project 2 Page 4 of 5

At a minimum, your implementation should contain a pointer to a char pointer (char**) and a
pointer to an int pointer (int**). You may have other data members as you see fit. Your
implementation will likely always have some “extra” space to store more words and their page lists.
However, you may never have more than 10 unused spaces in your data structure in any
particular array. Of course, for the purposes of reading from the input text file, because the lines of
text may be up to 80 characters, you may have a statically allocated array big enough to hold one
line.

Assumptions
You may make the following simplifying assumptions in your project:

● The input file will be properly formatted according to the rules above
● With the exception of angle brackets and square brackets for page number and phrases, you

may ignore the presence of other punctuation marks. For example, “Data” and “Data!!!”
would be considered two different index entries.

● No line of text in the input file will contain more than 80 characters
● No word or phrase will be longer than 40 characters
● Different forms of the same word should be considered as individual entries in the index (e.g.

run, runs, and running would each be considered individual words)

Execution
The executable for this project will be run from the command line with two arguments:

● the name of the input text file,
● the name of the output file to write the index to.

Example:
prompt$./indexer input.txt index.output

What to Submit
You should submit:

● well formatted and documented source code
● any design documents you created up front in order to help you get started on the project

o Keep anything you jot down while thinking about how to structure the project. Scan
it, take a picture of it, or otherwise reproduce it as part of your submission.

● any sample data files you used to test your program.

Strategies for Success
Just some friendly words of wisdom from your professor and TAs:

● The first 10% of a project is always the hardest. Don't sit down in front of an empty .cpp file
hoping/waiting for inspiration. This is likely to turn into exasperation, desperation,
exhaustion, etc. very quickly

● THINK BEFORE YOU CODE.
o Design before you start. Draw class diagrams; connect the classes with lines.

Brainstorm about what classes/functionality you'd need to make this happen. Think
about the major steps of processing that you'll have to go through. Do this step with a

Data Structures CSE 2341
Fall 2015 Programming Project 2 Page 5 of 5

friend/buddy/pal/BFF that's in the class. That is completely acceptable. Challenge each
other's design. Critique. Question. Explore.

o Consider the analogue of writing a paper by starting with an outline. After reading
this handout in detail, what are the big “roman numeral” things that have to get
done. Try to keep the list to 5 or less big tasks. Write them down (or type them into
a Word doc). Break each of them into smaller tasks.

o When coding, THINK BEFORE YOU TYPE. You don't want a carpenter to start
randomly putting nails in walls or drilling holes in your ceiling before they measure,
re-measure, think about it, etc. Don't just mindlessly write code. Be intentional about
every line you write.

Your TA's will also give you their guidance in each of the respective labs. Please don't dismiss our
suggestions; they come from experience of making many mistakes. This is a completely do-able
project in the time frame you've been given as long as you use your time wisely.

Grading
Points Possible Points Awarded

Correct Underlying Data Structure
Implementation

30

Complete functionality implemented 30
Dynamic memory managed correctly 20
Proper class infrastructure (constructors,
destructors, accessors, mutators, etc.) and design

10

Class documentation, formatting, comments,
design documents

10

