I. Rappels sur la forme exponentielle d'un nombre complexe

$$\forall \theta \in R, e^{i\theta} = \cos \cos \theta + i \sin \sin \theta$$

Soient des réels θ et θ' , et n un entier naturel non nul,

$$e^{i\theta}e^{i\theta'} = e^{i(\theta+\theta')}$$
 $(e^{i\theta})^n = e^{in\theta}$

$$\left(e^{i\theta}\right)^n = e^{in\theta}$$

$$\frac{1}{e^{i\theta}} = e^{-i\theta}$$

$$\frac{e^{i\theta}}{e^{i\theta}} = e^{i(\theta-\theta)}$$

$$\overline{e^{i\theta}} = e^{-i\theta}$$

II. Formules de Moivre et d'Euler

Formule de Moivre

Soient θ , $\theta \in R$. Soit $n \in N^*$.

$$\left(e^{i\theta}\right)^n = e^{in\theta}$$

Soit encore

$$(\cos \cos \theta + i \sin \sin \theta)^n = \cos \cos (n\theta) + i \sin \sin (n\theta)$$

Méthode

Appliquer la formule de Moivre

Vidéo https://youtu.be/RU2C4i3n5Ik

Exprimer $\cos \cos (3x)$ en fonction de $\cos \cos x$ et $\sin \sin (3x)$ en fonction de $\sin \sin x$.

Solution

Soit $x \in R$, d'après la formule du binôme de Newton,

 $(\cos \cos x + i \sin \sin x)^3 = x + x \sin \sin x + 3i^2 \cos \cos x + i^3 = x + x \sin \sin x - 3 \cos \cos x - i = x$

D'après la formule de Moivre,

 $\cos \cos (3x) + i \sin \sin (3x) = (\cos \cos x + i \sin \sin x)^3$

On en déduit que

$$\cos \cos (3x) = 4x - 3\cos \cos (3x)$$

$$\sin \sin (3x) = 3\sin \sin x - 4x$$

Formules d'Euler

Soient θ , $\theta \in R$,

$$\cos \cos \theta = \frac{e^{i\theta} + e^{-i\theta}}{2} \sin \sin \theta = \frac{e^{i\theta} - e^{-i\theta}}{2i}$$

On utilisera notamment ces formules pour linéariser des expressions trigonométriques : ceci consistera à supprimer les puissances dans cette expression.

Méthode

Appliquer les formules d'Euler

Vidéo https://youtu.be/p6TncUjPKfQ

- **a.** Linéariser l'expression*x* .
- **b.** En déduire une primitive de la fonction $x \mapsto x$.

Solution

a. Soit $x \in R$. On applique une formule d'Euler et la formule du binôme de Newton pour développer

$$x = \left(\frac{e^{ix} + e^{-ix}}{2}\right)^3 = \frac{1}{8} \left(\left(e^{ix}\right)^3 + 3\left(e^{ix}\right)^2 e^{-ix} + 3e^{ix}\left(e^{-ix}\right)^2 + \left(e^{-ix}\right)^3\right) = \frac{1}{8} \left(e^{3ix} + 3e^{2ix}e^{-ix} + 3e^{ix}e^{-2ix} + e^{-3ix}\right) = \frac{1}{8} \left(e^{3ix} + 3e^{2ix}e^{-ix} + 3e^{2ix}e^{-2ix} + e^{-3ix}\right) = \frac{1}{8} \left(e^{3ix} + 3e^{2ix}e^{-2ix} + 3e^{2ix}e^{-2ix}\right) = \frac{1}{8} \left(e^{3ix} + 3e^{2ix}e^{-2ix} + 3e^{2ix}e^{-2ix}\right) = \frac{1}{8} \left(e^{3ix} + 3e^{2ix}e^{-2ix} + 3e^{2ix}e^{-2ix}\right) = \frac{1}{8} \left(e^{3ix} + 3e^{2ix}e^{2ix}\right) = \frac{1}{8} \left(e^{3ix} + 3e^{2ix}e^{-2ix}\right) = \frac{$$

b. Chercher une primitive de la fonction $x \mapsto x$ revient à chercher une primitive de la fonction

$$x \mapsto \frac{1}{4} (\cos \cos 3x + x)$$

Ainsi, la fonction

$$x \mapsto \frac{1}{4} \left(\sin \frac{1}{3} \sin 3x + x \right) = \sin \frac{1}{12} \sin 3x + \sin \frac{3}{4} \sin x$$

est une primitive de la fonction $x \mapsto x$

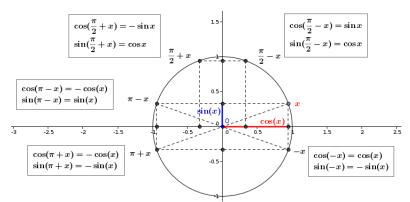
III. Application à la trigonométrie

1. Rappels

Propriété 3

Soit $x \in R$,

- $-1 \le \cos x \le 1$
- $-1 \le \sin x \le 1$
- $\cos^2 x + \sin^2 x = 1$



Valeurs remarquables des fonctions sinus et cosinus

x	0	6	4	3	2	
Cos x	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	1 2	0	- 1
Sin x	0	1 2	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0

2. Formules d'addition

Propriété 4

Soit a et b deux nombres réels quelconques. $\cos \cos (a - b) = \cos \cos a \times \cos \cos b + \sin \cos b$

Preuve

Soient $a, b \in R$, d'après la formule d'Euler,

$$e^{i(a-b)} = e^{ia}e^{-ib} = (\cos\cos a + i\sin\sin a)(\cos\cos(-b) + i\sin\sin(-b))$$

La fonction cosinus étant paire et la fonction sinus étant impaire, on obtient

 $e^{i(a-b)} = (\cos\cos a + i\sin\sin a)(\cos\cos b - i\sin\sin b)e^{i(a-b)} = \cos\cos a \times \cos\cos b + \sin\sin a \times \sin\sin b + 0$, d'après la propriété 1,

$$e^{i(a-b)} = \cos \cos (a-b) + i \sin \sin (a-b)$$

Donc, en identifiant les parties réelle et imaginaire, on obtient

$$\cos \cos (a - b) = \cos \cos a \times \cos \cos b + \sin \sin a \times \sin \sin b$$

$$\sin \sin (a - b) = \sin \sin a \cos \cos b - \cos \cos a \sin \sin b$$

Les autres formules se retrouvent en remplaçant b par -b dans les formules précédentes et en utilisant la parité des fonctions sinus et cosinus.

Remarque

Ces dernières formules permettent de trouver les formules d'addition et de soustraction de deux cosinus ou de deux sinus. En effet, si l'on soustrait membre à membre les deux premières formules, on obtient

$$\cos \cos (a + b) - \cos \cos (a - b) = -2 \sin \sin a \sin b$$

Posons alors x = a + b et y = a - b

En additionnant membre à membre, on remarque que

$$x + y = 2a \Leftrightarrow a = \frac{x+y}{2}$$

De la même façon, en soustrayant membre à membre, on obtient

$$x - y = 2b \Leftrightarrow b = \frac{x-y}{2}$$

L'égalité ci-dessus s'écrit alors

$$\cos \cos x - \cos \cos y = -2 \sin \sin \left(\frac{x+y}{2}\right) \sin \sin \left(\frac{x-y}{2}\right)$$

De la même manière, on trouve les formules suivantes

$$\cos \cos x + \cos \cos y = 2 \cos \cos \left(\frac{x+y}{2}\right) \cos \cos \left(\frac{x-y}{2}\right)$$

$$\sin \sin x - \sin \sin y = 2 \cos \cos \left(\frac{x+y}{2}\right) \sin \sin \left(\frac{x-y}{2}\right)$$

$$\sin \sin x + \sin \sin y = 2 \sin \sin \left(\frac{x+y}{2}\right) \cos \cos \left(\frac{x-y}{2}\right)$$

La première formule nous servira pour calculer la dérivée de cosinus.

Méthode

Calculer des valeurs de cos et sin à l'aide des formules d'addition

Vidéo https://youtu.be/WcTWAazcXds

Calculer $\cos \cos \left(\frac{5\pi}{12}\right)$ et $\sin \sin \left(\frac{5\pi}{12}\right)$

Solution

$$\cos\cos\left(\frac{5\pi}{12}\right) = \cos\cos\left(\frac{\pi}{4} + \frac{\pi}{6}\right) = \cos\cos\left(\frac{\pi}{4}\right)\cos\cos\left(\frac{\pi}{6}\right) - \sin\sin\left(\frac{\pi}{4}\right)\sin\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \times \frac{1}{2} = \sin\sin\left(\frac{\pi}{4} + \frac{\pi}{6}\right) = \sin\sin\left(\frac{\pi}{4}\right)\cos\cos\left(\frac{\pi}{6}\right) + \cos\cos\left(\frac{\pi}{4}\right)\sin\sin\left(\frac{\pi}{6}\right) = \frac{\sqrt{2}}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{2} \times \frac{1}{2} = \frac{1}{2} \times \frac{1$$

3. Formules de duplication

Propriété 5

Soit $a \in R$,

$$\cos \cos (2a) = a - a \cos \cos (2a) = 2a - 1 \cos \cos (2a)$$

Preuve

On peut appliquer les 2° et 4° formules d'addition en posant a = b

$$\cos \cos (2a) = a - a$$

 $\sin \sin (2a) = 2 \cos \cos a \sin \sin a$

Remarquons également que

$$a + a = 1$$

donc

$$a - a = a - (1 - a) = 2a - 1$$

Et

$$a - a = 1 - a - a = 1 - a$$

Corollaire 1

Soit $a \in R$.

$$a = \frac{1 + \cos\cos(2a)}{2} a = \frac{1 - \cos\cos(2a)}{2}$$

Méthode

Calculer des valeurs de cos et sin à l'aide des formules de duplication

Vidéo https://youtu.be/RPtAUl3oLco

Calculer $\cos \cos \left(\frac{\pi}{8}\right)$ et $\sin \sin \left(\frac{\pi}{8}\right)$

Solution

$$\left(2 \times \frac{\pi}{8}\right) = 2\left(\frac{\pi}{8}\right) - 1$$

$$\cos \cos \left(\frac{\pi}{8}\right) = \sqrt{\frac{2+\sqrt{2}}{4}} = \frac{\sqrt{2+\sqrt{2}}}{2}$$

$$\left(\frac{\pi}{8}\right) = 1 - \left(\frac{\pi}{8}\right) = 1 - \frac{2+\sqrt{2}}{4} = \frac{2-\sqrt{2}}{4}$$

et donc, sin $sin\left(\frac{\pi}{8}\right)$ étant positif,

$$\sin \sin \left(\frac{\pi}{8}\right) = \sqrt{\frac{2-\sqrt{2}}{4}} = \frac{\sqrt{2-\sqrt{2}}}{2}$$

Méthode

Résoudre une équation trigonométrique

Vidéo https://youtu.be/yx3yULqR_wI

Résoudre dans $[0; 2\pi]$ l'équation $\cos \cos (2x) = \sin \sin x$

Solution

Soit $x \in [0; 2\pi]$, d'après une formule de duplication,

$$\cos \cos (2x) = \sin \sin x \Leftrightarrow 1 - 2x = \sin \sin x$$

On pose

$$X = \sin \sin x$$

l'équation s'écrit alors

$$1 - 2X^2 = X \Leftrightarrow 2X^2 + X - 1 = 0$$

$$\Delta = 1^2 - 4 \times 2 \times (-1) = 9$$

 $\Delta = 1^2 - 4 \times 2 \times (-1) = 9$ L'équation du second degré possède deux solutions réelles distinctes X_1 et X_2

$$X_1 = \frac{-1+3}{4} = \frac{1}{2}$$
 et $X_2 = \frac{-1-3}{4} = -1$

Résolvons alors dans $[0; 2\pi]$ les équations

$$\sin \sin x = \frac{1}{2} et \sin \sin x = -1$$

$$\sin \sin x = \frac{1}{2} \Leftrightarrow x = \frac{\pi}{6} \text{ ou } x = \frac{5\pi}{6}$$

$$\sin \sin x = -1 \Leftrightarrow x = \frac{3\pi}{2}$$

On en déduit que

$$S = \left\{ \frac{\pi}{6} ; \frac{5\pi}{6} ; \frac{3\pi}{2} \right\}$$

Remarque

Si l'on avait résolu cette équation dans R, il aurait fallu rajouter toutes les valeurs modulo 2π aux valeurs trouvées. On aurait alors

$$S = \left\{ \frac{\pi}{6} ; \frac{5\pi}{6} ; \frac{3\pi}{2} \right\} + 2\pi Z$$

Soient A et B deux ensembles. $x \in A + B$ s'il existe $a \in A$ et $b \in B$ tel que x = a + b

Application au calcul intégral

Calculer les intégrales suivantes

$$I = \int_{0}^{\pi/4} a \, da \, et \, J = \int_{\pi/6}^{\pi/4} a \, da$$

$$I = \int_{0}^{\pi/4} a \, da = \int_{0}^{\pi/4} \frac{1 + \cos\cos(2a)}{2} \, da = \left[\frac{a}{2} + \frac{1}{4}\sin\sin(2a)\right]_{0}^{\pi/4} = \frac{\pi}{8} + \frac{1}{4}$$

D'après la méthode pages 1 et 2,

$$J = \int_{\pi/6}^{\pi/4} a \, da = \int_{\pi/6}^{\pi/4} \frac{1}{4} \cos \cos (3a) + \cos \frac{3}{4} \cos a \, da = \left[\sin \frac{1}{12} \sin (3a) + \sin \frac{3}{4} \sin a \right]_{\frac{\pi}{6}}^{\frac{\pi}{4}} = \frac{\sqrt{2}}{24} + \frac{3\sqrt{2}}{8} - \frac{1}{12} - \frac{3}{8} = \frac{10\sqrt{2}}{8}$$

Autre méthode

Par linéarité.

$$J = \int_{\pi/6}^{\pi/4} a \, da = \int_{\pi/6}^{\pi/4} a \cos \cos a \, da = \int_{\pi/6}^{\pi/4} (1 - a) \cos \cos a \, da = \int_{\pi/6}^{\pi/4} \cos \cos a \, da - \int_{\pi/6}^{\pi/4} a \cos \cos a \, da$$

$$J = \left[\sin \sin a\right]_{\pi/6}^{\pi/4} - \left[\frac{1}{3}a\right]_{\pi}^{\frac{\pi}{4}} = \frac{\sqrt{2}}{2} - \frac{1}{2} - \frac{2\sqrt{2}}{24} + \frac{1}{24} = \frac{10\sqrt{2} - 11}{24}$$

La deuxième méthode n'est pas adaptée à des puissances supérieures à 3.