
 ​

Bernstein & Goodman
This is the go-to reference for concurrency control in general, and distributed concurrency
control in particular.

Textbook material -- this is the textbook!

-​ Partial Failure: DDBMS must account for “one site failing while the rest of the system
continues to operate”

-​ “Computationally equivalent” executions
-​ produces the same output (is the order of output relevant?)
-​ has the same effect on the database

-​ Conflict Serializability
-​ Serialization Order: if it’s serializable, there must be some order!
-​ Choosing unique timestamps in a distributed system w/o coordination

Basic Assumptions:

-​ Ordered, reliable delivery (per channel)
-​ Data may be partitioned and copied
-​ No semantics of computation -- just BEGIN, READ, WRITE, END
-​ “Private workspace”, i.e. shadow copies.
-​ No WAL.

-​ dm_write(x) on END. A single dm_write is like a Commit log -- no going back.
-​ Assume there’s an atomic write scheme (log-based).

Distributed Database Model

-​ TMs vs DMs. Bipartite -- TMs don’t communicate with each other, DMs don’t
communicate with each other.

-​ Every transaction gets a “supervisory” or “master” TM.
-​ Single-site “Two-Phase Commit” (really a primitive WAL scheme)

-​ Phase 1:
-​ TM sends prewrite commands to DMs
-​ DMs put private copies into secure storage (like WAL)

-​ Phase 2:

-​ TM sends dm-write commands to DMs.
-​ DMs can use private copies to ensure durability

-​ Distributed “Two-Phase Commit”
-​ Need to account for partial failure
-​ Modification to Phase 1:

-​ TM sends prewrite commands to DMS, with the list of the other DMs
involved in the commit

-​ Modification to Phase 2:
-​ If the TM fails, the DMs that never got dm-writes can gang up with the

other DMs to commit. “The details of this procedure are complex and
appear in HAMM80” :-)

-​ Standard DDBMS processing:
-​ BEGIN: TM creates a private workspace in some unspecified way
-​ READ(X): TM checks the workspace for a copy of X. Return if found, else select

some stored copy, and issue dm-read(xi) to the relevant DM.
-​ WRITE(X, val): Update private workspace copy of X (create if necessary)
-​ END: “two-phase commit”

-​ prewrite(xi) the appropriate DM for all the updated xi’s
-​ DMs store onto secure storage
-​ Then issue dm-writes
-​ DMs install new versions into DB

Separating rw and ww Concurrency Control
Definitions:

-​ rw conflict
-​ wr conflict
-​ ww conflict
-​ rwr and unspecified conflicts

Theorem 2 [Bern80a]
Execution E is serializable if (a) its rwr conflicts are acyclic, (b) its ww conflicts are acyclic, and
(c) there is a total ordering of the transactions consistent with all rwr and ww conflicts.

Say what??

Consider this history:

W1(x) R2(x) W2(y) W1(y)

“The cornerstone of our paradigm for concurrency control.”

OK, let’s roll with it. We’re going to enforce rwr and ww synchronization separately. “However, in
addition to both rwr and ww being acyclic, there must also be one serial order consistent with all
-> relations.”

What will this be for T/O? For 2PL?

Distributed 2PL

Basic 2PL
-​ Obvious thing to do is co-locate schedulers (lock managers) with data

-​ Readlock granted on dm-read, release when dm-writes go out (commit)
-​ Writelock granted on prewrite, released on dm-write
-​ Works for partitioned AND replicated data too!

-​ Read-lock one, write-lock many
-​ You have to write all anyhow (?)
-​ This seems arbitrary and we may revisit in later in discussions of quorums

Primary Copy 2PL
-​ [Ston79]: simplest possible scheme!
-​ Extra communication for readlocks, to talk to master even if you read elsewhere (e.g.

local)
-​ BUT actually kind of nice for writelocks: only the prewrite(x1) sets a write lock (others do

not).
-​ Hint: so maybe Primary Copy is good for ww?
-​ Do we care about saving the lock requests?

Voting 2PL
Now, let’s talk consensus, specifically majority.
A lock is granted if a majority of TMs say so!
Consider w lock:

-​ Upon issuing prewrite requests, you wait until you get the majority, then you go.
-​ Only 1 write can have the majority
-​ If that transaction is not aborted (e.g. deadlock) it will get to its locked point and

issue all its dm-writes at commit time
-​ Seems to solve ww

Why not use it for rwr?

-​ “Correctness only requires that a single copy of X be locked—namely the one being
read—yet this technique requests locks on all copies. For this reason we deem Voting
2PL to be inappropriate for rw synchronization.”

-​ Huh?

Centralized 2PL
LaaS -- locking as a service!

Deadlock Prevention
Textbook stuff: Wound-Wait and Wait-Die. Generic priorities can be used. Timestamps are
useful to ensure that priority goes up over retries.

Distributed Deadlock Detection
Looking for cycles in a distributed graph.
Suggestion 1: Centralized
Suggestion 2: Hierarchical
​
Protocol game: Pick a number between 1 and 10. Write it down. Now pick another, write it down.
Draw an arrow from the first to the second.

Name a scheme that DOESN’T work here.
What can we say about deadlocks? About detecting them?

Timestamp Ordering

Timestamps
Each TM assigns a unique TS to every entering transaction.

-​ How?
-​ What’s the total order of time?
-​ Can new nodes join the system?
-​ What could cause the scheme to break?

Basic Single-Site T/O
For rw synchronization:

●​ Consider transaction T with TS issues dm-read(x):

○​ if TS < W-ts(x), reject and abort T
○​ else R-ts(x):= max(TS, R-ts(x)) and output the dm-read

●​ Consider transaction with TS issues dm-write(x):
○​ if TS < R-ts(x), reject and abort T
○​ else W-ts(x) := max(TS, W-ts(x)) and output the dm-write

For ww synchronization
●​ if TS < W-ts(x) reject and abort T
●​ else W-tx(x) = TS; output the dm-write

Basic Distributed T/O
As above but:

1.​ accept/reject on prewrite (not on dm-write)
○​ Accepting a prewrite is a promise to accept the dm-write
○​ Essentially a write lock until commit!

2.​ dm-read, dm-write and prewrite are buffered by the scheduler.
○​ Can release these from buffer when we know their time(stamp) has come
○​ I.e. for dm-read(x), when its TS precedes the earliest prewrite in the buffer

(min-P-ts(x))
○​ I.e. for dm-write, when its TS precedes the earliest dm-read in the buffer

(min-R-ts(x))

The Thomas Write Rule (TWR)
For ww synchronization, if TS < W-ts(x), do not abort. Just ignore!
Idea: this write might as well have arrived earlier, it still would have been overwritten. No harm in
ignoring “obsolete” writes!

Note: ww synchronization with TWR requires no 2PC -- all prewrites can be accepted, no
dm-writes ever buffered.

MultiVersion T/O
This is the fun one!
Easiest to explain with a picture:

Process dm-read(x) with TS=95.
Process dm-write(x) with TS=93.

The (only!) problematic situation:
You may not install a Write between a W-ts and an R-ts in a timeline. If you try, you are aborted.​

Proof of correctness: demonstrate that the committed transactions are equivalent to the serial
TS-ordered schedule.

Let W be an out-of-order dm-write(x). That is, some dm-read(x) with higher timestamp arrived
before this. Since W was not rejected, that means there was an intervening write after W and
before the dm-read(x) in the schedule. So W had no effect on that read.

Let R be an out-of-order dm-read(x). That is, some dm-write(x) with higher timestamp arrived
before this. R will ignore all writes greater than ts(R), so will read the same data it would have in
the serial execution.

NOTES:

-​ Reads are never rejected in rw!
-​ Writes are never rejected in ww -- hence no need for 2-phase commit!

Pros?​
Cons?

Conservative TO
I always find this far-fetched and odd. Lots of constraints. “Optimizations” like transaction
classes only make it weirder and more complicated. Some day you can convince me I’m wrong.

Timestamp Management
-​ Representation?
-​ Garbage Collection/Compaction?

Combinations?
Yeah maybe.

“Interface” to get a serialization order mixing 2PL and T/O?

-​ Assign timestamps at locked points!
-​ L-TS for each lock request
-​ TS is assigned to be bigger than any L-ts for the transaction

-​ Any problems with this?

Let’s Revisit the Postgres Storage Manager
●​ No distribution.
●​ 2PL
●​ MV data

○​ Xmin, Xmax
○​ Tmin, Tmax: similar to the TS for mixed 2PL and TO?!

●​ What’s the effect on serialization order?

	 ​
	
	
	Bernstein & Goodman
	Separating rw and ww Concurrency Control
	Distributed 2PL
	Basic 2PL
	Primary Copy 2PL
	Voting 2PL
	Centralized 2PL
	Deadlock Prevention
	Distributed Deadlock Detection

	Timestamp Ordering
	Timestamps
	Basic Single-Site T/O
	Basic Distributed T/O
	The Thomas Write Rule (TWR)
	MultiVersion T/O
	Conservative TO
	Timestamp Management
	Combinations?

	Let’s Revisit the Postgres Storage Manager

