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Domain Adaptation / Adapting 
Pretrained Models Lecture 
Lecturers: Abhinav  Ramesh Kashyap, Devamanyu Hazarika, Alexandre Gravier, Rabiul Awal 
Authors: Yisong Miao, Zhang Ruixi, Ding Xu, Xu Lin 
Slide Link: 
https://docs.google.com/presentation/d/1JQWRXKjh-nlu1vU4CKEJKOBbOhZ8JTYYuPH0iS
N2hvE/edit?usp=sharing 
<ps: still not complete> 
This document: 
https://docs.google.com/document/d/1mqw2kWiW2diG913IFip3EO22Nu_TfyFgxM_m_caDoxg 
Other documents in this series at http://bit.ly/cs6101-2010-notes  

Week 6 Materials 

<Domain Adversarial Training of Neural Networks> 
Reference: Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." The Journal 
of Machine Learning Research 17.1 (2016): 2096-2030. 
 
Two kinds of domain adaptation: Unsupervised (with no labelled data in target domain) and 
semi-supervised.   
 
Abhinav’s Talk on: how can we probabilistically define a domain?  

1.​ Quantify the difference between domain; 
2.​ Quantify the bad error in target domain; 
3.​ Theory basis for the representations we need to learn. 

 
Domain defined in the probabilistic way: a distribution of a/some random variables 
 
Learning a discriminative classifier or other predictor in the presence of a shift between training 
and test distributions is known as domain adaptation (DA) 
 
Definition: 

 

Input variable:  f: project to [0,1]. We have  

Both source domain and target domain are from the same . 
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Bound between the target error and source error: 
Target error  <  source error + distribution difference + difference in labelling function 
 
Assuming difference in labelling function goes to zeros: 

 
 

Here, the distribution difference is the focus and could be represented with  
-​ L1-divergence 

 
Problems:  
Hard to calculate over all possible events with finite samples for arbitrary distributions.  
 

-​ H-divergence  

 
An empirical H-divergence given symmetric hypothesis: (Ben-David et al. 2006, 2010) 
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In Ben-David et al. 2006, it suggest that if  is generally hard to compute 
exactly, we could approximate it by running a learning algorithm and learn the 
discrimination between source and target example. The generalization error between 

source and target error are . We could have an approximation to H-divergence as 

 
Also named as Proxy A-distance (PAD) 
 
Summary: 
H-divergence relies on the capacity of the hypothesis class H to distinguish between 
examples generated by source domain from examples generated by target domain. It 
can be estimated from finite samples. The sample estimated will be close to actual value 
with very high probs. 
 

-​ Proxy A distance (Operationalises theory) 

 

By choosing  subset of X, the PAD and H-divergence are identical. 
 

To summarize, the target error could be represented with 

 
The VC term is the Vapnik-Chervonenkis dimensions and n is the number of samples. 
 
 

 
Let classifier not able to distinguish between samples. Such classifier could be trained from 
Neural network. 
 
The rest of the paper directly stems from this intuition: in order to minimize the target risk the 
proposed Domain Adversarial Neural Network (DANN) aims to build an “internal 
representation that contains no discriminative information about the origin of the input (source or 
target), while preserving a low risk on the source (labeled) examples”. 
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Devamanyu’s talks on how can we train models in source domain that works well in a related 
target domain. 

-​ Indistinguishable between source and target domains.  
-​ Discriminative towards source-domain task. 

 
DANN has two versions: shallow version and deep version. 
 
Shallow DANN: 

 
We want to have DC fail while TC succeeds. 
 
Optimization function: 
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Deep DANN: 

 
Change the feature extractor gradient with -1 with gradient reversal layer. 
 
 
Discussion: 

1.​ Should the discriminator have output as half-half 0 and 1 instead of 100% 0 to 1 or 100% 
1 to 0? 
The concept of swifting and still able to discrime. In the following work 
https://people.eecs.berkeley.edu/~jhoffman/papers/Tzeng_ICCV2015.pdf. This work has  
the domain discriminator enforced to make predictions towards a uniform distribution (to 
“maximally confuse” it). 

2.​ Other supplementary: 
https://arxiv.org/pdf/1702.05464.pdf.  
This paper provides a good overview of adversarial training methods for domain 
adaptation. 
Improvement over DANN: Bousmalis, Konstantinos, et al. "Domain separation 
networks." Advances in neural information processing systems. 2016. 

 
 
Put notes on the topics presented in the lecture here.  You may also want to c-n-p notes from 
other sources (but make sure to attribute them by linking to the original resource). 

<Deep Transfer RL for text summarization> 
Reference: Keneshloo, Yaser & Ramakrishnan, Naren & Reddy, Chandan. (2018). Deep 
Transfer Reinforcement Learning for Text Summarization. 
 
Romain first introduced the basic concept of ROUGE. 
Two main approach for text summarization: (1) extractive (2) abstractive 
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Romain then goes through current state-of-the-art of text summarization: 
-​ Basic Seq2Seq model (refer to past week of our reading group [Hyperlink here] [Lecture 

Slides] [Scribe Notes]) 
-​ Pointer Network -- Prof Min comments that it is very related to Copy Network. (switch 

mechanism… Go check the slides :P ) 
-​ Pointer-generator model 

 
Alexandre is online to cover transfer learning. 

-​ Knowledge distillation  
-​ Generalized models. This is not the favorite of Alexandre since he is unclear what is 

transferred between tasks (individual one can be difficult) 
-​ Copy (some of) the layers 

 

 
The similar cross-entropy loss as in seq2seq. 
Two problems: 

-​ Exposure bias 
-​ Inflexibility (meaning that the reference is fixed, however such reference might not be the 

ONLY ground truth. It affects the generalization of the model) 
 

 
“the objective of the reinforcement learning problem here is to maximize the expected ROUGE 
score when we sample the summary from the proposed hybrid (pointer-generator / seq2seq) 

network parametrized by Θ (where Θ = all weights and biases in the model)” 
 

 
Presenters’ Question about the paper: 
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<Universal Language Model Fine-tuning for Text Classification> 
●​ Domain adaptation vs Transfer learning 
●​ ULMFiT is a universal model for transfer learning in any NLP task. 
●​ Review three ways for retaining knowledge and avoiding catastrophic forgetting during 

fine-tuning: 
○​ Discriminative fine-tuning,  
○​ Slanted triangular learning rates 
○​ Gradual unfreezing 

●​ Framework of the method proposed in this paper ULMFiT 
○​ General-domain LM pretrained on wikitext-103; 
○​ Target task LM fine-tuning ,further finetune on task dataset; 

■​ Discriminative finetuning, finetune each layer with different learning rates. 
Last layer x, then decrease by a factor of 2.6 for each layer up 

■​ Slanted triangular learning rates, short increase of initial learning rate, and 
then long decrease 

○​ Target task classifier Fine Tuning, gradual unfreeze the model from the last layer.  
 

 
●​ Experiments 

Experiments shows superiority of this method 
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Ablation study shows that each step for transfering can contribute to the last performance. 

 
The lecturer said: The most important part for this model is LM-finetuning part, better transfer 
from large pretrained model to a specific task.  
 
 
Zoom talk: 
From Khushaal JAMMU to Everyone: (2:30 PM) 
 we’ll talk more about this approach in the context of BERT next week! 😋  
From Siddhartha Banerjee to Everyone: (2:36 PM) 
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There are opinions for/against ROUGE being a good metric for summarization. Are there any 
papers on RL for summarisation that use a different reward function (not with ROUGE)?  
From Kan Min-Yen to Everyone: (2:38 PM) 
 I don’t recall seeing other other papers using other metrics aside from ROUGE. Mostly the other 
metrics require other more cumbersome forms of annotation (e.g., Pyramid), they are harder to 
utilise as compared the lowest common denominator of ROUGE.  Good question though.  
From Devamanyu Hazarika to Everyone: (2:41 PM) 
 https://arxiv.org/pdf/2007.12626.pdf  a recent paper discussing summarization evaluation. Might 
hold some clues.  
From Siddhartha Banerjee to Everyone: (2:42 PM) 
 Xiachong Feng posted a paper on the general chat that uses Distributional semantics. The 
paper is from Prof. William Wang’s group. I remember I had a chat with Prof Wang last year at 
SSNLP on something related :) Thanks Devamanyu.  
From Romain Iehl to Everyone: (3:03 PM) 
 we can hear, thank you for the presentation  
 
Slack talk 
https://people.eecs.berkeley.edu/~jhoffman/papers/Tzeng_ICCV2015.pdf   
- Paper where the domain discriminator is enforced to make predictions towards a uniform 
distribution (to “maximally confuse” it). 
https://arxiv.org/pdf/1702.05464.pdf  
- Paper providing good overview of adversarial training methods for domain adaptation. 
From Devamanyu Hazarika to Everyone  2:24 PM 
 
https://arxiv.org/abs/1909.00141 
Deep Reinforcement Learning with Distributional Semantic Rewards... 
Deep reinforcement learning (RL) has been a commonly-used strategy for the abstractive 
summarization task to address both the exposure bias and non-differentiable task issues.  
From Xiachong Feng to Siddhartha Banerjee 2:39 PM 

 

One potential issue with distributional semantics might be inclusion of rare entities in the 
summary. But with a mix of distributional + pointer-net sort of a technique, that can be avoided. 
ROUGE helps with exact match based optimization. 
FromSiddhartha Banerjee to Xiachong Feng  2:39 PM 

 

https://www.aclweb.org/anthology/P18-3015/ 

Reinforced Extractive Summarization with Question-Focused Rewards 
https://www.aclweb.org/anthology/N18-2102/ 

Multi-Reward Reinforced Summarization with Saliency and Entailment 
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Ramakanth Pasunuru, Mohit Bansal. Proceedings of the 2018 Conference of the North 
American Chapter of the Association for Computational Linguistics: Human Language 
Technologies, Volume 2 (Short Papers). 2018.  
https://arxiv.org/abs/1909.01610 

Answers Unite! Unsupervised Metrics for Reinforced Summarization Models 
Abstractive summarization approaches based on Reinforcement Learning (RL) have recently 
been proposed to overcome classical likelihood maximization.  
From Xiachong Feng to Everyone  2:40PM 
 
For those unfamiliar with RL and Policy Gradients, watch some of the nice basic lectures on 
Reinforcement Learning.  It's pretty cool as well. 
Our CS3244 course does a recap of at least the first lecture (unfortunately not enough to get to 
REINFORCE and Policy gradients).  We had a previous CS6101 iteration on Deep 
Reinforcement Learning following UCB's Sergey Levine's course. 
https://deepmind.com/learning-resources/reinforcement-learning-lectures-series-2018 

This lecture series serves as an introduction to reinforcement learning. Comprised of eight 
lectures, this series covers the fundamentals of learning and planning in sequential decision 
problems, all the way up to modern deep RL algorithms. 
This lecture series serves as an introduction to reinforcement learning. Comprised of eight 
lectures, this series covers the fundamentals of learning and planning in sequential decision 
problems, all the way up to modern deep RL algorithms. 
From Min-Yen Kan to Everyone  2:43 PM 

 

 
 
The support team should assign at least one member to go through the week’s discussion on 
Slack (if any) and copy the resources into this scribe document.  Expect to spend at least 30 
minutes post editing notes from Slack into this archival document. 

Other Resources 
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Recess Week Materials 

<Introduction to Fine-tuning on BERT> 

Key points discussed- 

1.​ BERT has two tasks- a language modelling task and the net sentence prediction task 
2.​ Fine tuning for binary classification is usually done with binary cross entropy 
3.​ Tokenization is important for mapping to BERT’s internal vocabulary (which contains 

approx 30000 words) 
4.​ Other fine tuning methods- Sentence comparison, Question answering and Classify/Tag 

each token 
5.​ BERT is too large- so we consider DistilBERT (retains 97% of language understanding 

and is also 60% faster) 
6.​ Q on chat-  

 
a.​ To what extent can we use the CLS token as a sentence representation, other 

than for classification?​
- as a label comparing two sentences 

b.​ Do you add a test specific output layer for BERT? 
c.​ Each time, do we use all fine-tuning methods for each downstream task?​

- Should be able to (just structure it accordingly) 
d.​ How do we compare two sentences? by formulating it as a classification 

problem?​
- You can formulate it as a classification problem (both SOP and SMP task). 
This will be an unsupervised approach 

e.​ What are the differences between classifying one sentence and classifying 
each tokens?​
- The token is relevant for pre-training, while with the sentence, you try to 
build coherence 

f.​ Some fine tuning methods are task specific while other are task agnostic 
g.​ Albert has a better performance than BERT even with lesser parameters, 

why?​
- On its own, Albert does not do better, but they compress it first and then 
scale it up. It has lesser original parameters, while has more or around same 
number of parameters as BERT. 

 
7.​ Albert, another simplification of BERT uses SOP (sentence order prediction). Matrix 

factorization makes the model smaller. 
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8.​ BERT- not good with NLG compared to GPT (auto regression model) due to its 
bidirectional nature 

9.​ Essentially, what’s happening in ALBERT is that it splits the embedding parameters into 
two smaller matrices. Thus, instead of projecting one hot vectors directly into H (hidden 
layers), one hot vectors are projected into a smaller, lower dimension matrix E 
(embedding matrix). Then finally they project E into the H hidden space. 
 
If you tie H and E (what happens in BERT), and with NLP requiring large V (vocabulary), 
then your E, which is really V*E, must scale with H and thus you end up with models that 
can have billions of parameters, but most of which are rarely updated in training.​
 
Thus, untying the two, results in more efficient parameter usage and thus H 
(context dependent) should always be larger than E (context independent). 

<Introduction to Fine-tuning on GPT> 
Reference:  

1)​ Brown, et al. "Language Models are Few-Shot Learners." 
2)​ Radford, et al. “Language Models are Unsupervised Multitask Learners.” 
3)​ Radford, et al. “Improving Language Understanding by Generative Pre-Training.” 

 
2 approaches to pre-training: 

Approach 1: When pre-training and fine-tuning objectives are the same. Eg. Pre train on 
SQuaD and fine tune on custom QA dataset 
Approach 2: Different upstream and downstream task. Eg. BERT approach 

 
 
 
 
Downside of both approaches: 

●​ Approach 1 
○​ Requires a large amount of data for pre training as data used to fine-tune is 

narrow subset of that task 
●​ Approach 2 

○​ Pretrain-finetune mismatch 
●​ Common to both approaches 

○​ Need for labelled examples limits their usefulness 
○​ Poor generalization (post pre training on expansive datasets if you fine tune it on 

very narrow distribution it generally ends up overfitting) 
○​ Humans don’t need datasets. We’re good with 1-2 examples. 

 
GPT (Generative Pre-training) family: Collection of auto regressive language models 
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GPT-1: Generative pre-training with a transformer works! 
●​ Training can be split in 2 parts: 

​ ​    ​       Part 1​ ​ ​ ​ ​ ​ Part 2​  

○​  

○​  
●​ GPT-1 is largely task agnostic yet it falls short as it doesn’t understand very well. 

 
 
GPT-2: Language models are unsupervised task learners! 

●​ Everything became ‘zero-shot’ (completely unsupervised) 
●​ Byte-pair encoding. Has a good balance between character and word level language 

modelling. Can also take into account morphological transformation 
●​ Input transformations- no need for task specific architecture (task agnostic model) 
●​ Much less training data required during fine tuning. 
●​ Instructions are structured with language. 
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GPT-3: The Scaling Hypothesis is (possibly) true! 
●​ The model is massive. Check the table below: 

 
●​ Makes use of in-context learning 

○​ Using the text input of a pre trained language model as a form of task 
specification;  

○​ The model is conditioned on instructions + some set of examples, then asked to 
complete further instances 

 
●​ GPT-3 tends to do well on these tasks: 

○​ common-sense reasoning or world-knowledge tasks 

○​ generative tasks (e.g. writing a news article, completing the end of a story) 
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○​ Winograd-style tasks (certain sentences where pronouns are grammatically 
ambiguous but for a human they’re semantically unambiguous)  

○​ capturing long-range dependencies (e.g. LAMBADA) 
●​ GPT-3 is not that good in these tasks: 

○​ tasks that involve comparing two sentences or snippets (e.g. whether word is 
used in the same way) 

○​ translation tasks 

●​  
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Comparing GPT-1 v/s GPT-2 v/s GPT-3 

 

How does GPT-3 perform so well? the model learns to learn 

The GPT-3 model: 

●​ Develops a broad set of skills and pattern recognition abilities at training time, and then 
●​ Uses those abilities at inference time to rapidly adapt to or recognise the desired task 
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The “in-context learning” approach didn’t work with GPT-2, but it starts to work as you make the 
model bigger. This essentially boils down to As you make a model larger and train it on​
large datasets, lots of its problems disappear. Large models become more: 

●​ Powerful 
●​ Generalizable 
●​ Human-like 

All this without very complicated architectures. 

 

 
 
 

BERT 
●​ Only has the next sentence prediction task. 

GPT3 
●​ One problem about the GPT is that it tries to decode an answer no matter how well it 

does on the subject content. So how do we make it more ‘humble’ and accept in some 
cases that he does not understand the topic/question etc? 
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●​ Unsatisfying part of the GPT paper is that it misses analysis and is dominated by a lot of 

experimentational results. 

Parameter Eff. TL 
 

Q&A Notes 
Questions asked during the Q&A session of Brian’s BERT presentation: 

●​ To what extent can we use the CLS token as a sentence representation, other than for 
classification? 

●​ Do you add a task-specific output layer? 
●​ Each time, do we use all fine-tuning methods for each downstream task? 
●​ How do we compare two sentences? by formulating it as a classification problem? 
●​ What are the differences between classifying one sentence and classifying each tokens? 

Questions on Khushhaa’s Presentation:  
●​  

Other Resources 
●​ AlBERT 
●​ Natural language generation using BERT 
●​  
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