Chemistry I

Topic	Priority Standard	Learning Targets (LT)	Unit	Term Taught	Term(s) Reinforced
Atomic Structure and Properties	9-12.PS1.A.1 Use the organization of the periodic table to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms *Clarification Statement: Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, and reactions with oxygen. Vocab or Pre-requisite skills needed:	LT.1: Students will be able to describe and write out the elemental composition of pure substances and mixtures. LT.2: Students will be able to label and describe the atomic structure of an element and its electron configuration. LT.3: Students will be able to identify and describe the differences between valence electrons and ionic compounds. LT.4: Students will be able to know and be able to identify where periodic trends exist on the periodic table and why. LT.5: Students will be able to identify, compare, and contrast the different types of chemical bonds (ionic and covalent). LT.6: Students will be able to label and illustrate the structure of ionic solids. LT.7: Students will be able to draw and interpret Lewis diagrams that represent the valence electrons of atoms.	Unit 1	Term 1	

IMFs and	9-12.PS1.A.3	LT.1: Students will be able to understand and	Unit 3	Term 3	
Properties	Plan and conduct	describe how intermolecular forces determine the	Offic 5	Terrir 5	
	an investigation to	structure and interactions of matter.			
	gather evidence to				
	compare physical	LT.2: Students will be able to identify the different			
	and chemical	properties and atomic structures that make up			
	properties of	solid forms of matter.			
	substances such as	a,			
	melting point,	LT.3: Students will be able to be able to identify,			
	boiling point,	compare, and contrast the physical properties and			
	vapor pressure, surface tension,	characteristics of solids, liquids, and gasses.			
	and chemical	LT.4: Students will be able to describe and			
	reactivity to infer	provide examples of the Ideal Gas Law, as it			
	the relative	relates to real world problems.			
	strength of				
	attractive forces	LT.5: Students will be able to describe and			
	between particles	provide examples of the Kinetic Molecular Theory,			
		as it relates to real world problems.			
	Clarification				
	Statement:	LT.6: Students will be able to identify, differentiate			
	Emphasis is on understanding the	between, and provide examples of both solutions and mixtures.			
	relative strength of	and mixtures.			
	forces between	LT.7: Students will be able to apply their			
	particles.	knowledge of properties of matter, solutions, and			
	Examples of	mixtures to separate them into individual			
	particles	components physically or in written expression.			
	could include ions,				
	atoms, molecules,	LT.8: Students will be able to describe how to			
	and simple	adjust the solubility of a solution and how			
	compounds (such	variations of solubility change the solution			
	as water).	properties.			
	Vocab or	LT.9: Students will be able to explain			
	Pre-requisite	spectroscopy phenomenon and label the different			

	skills needed:	parts of the EM spectrum. LT.10: Students will be able to ensure gas properties are explained macroscopically—using the relationships among pressure, volume, temperature, moles, gas constant—and molecularly by the motion of the gas.			
Chemical Reactions	9-12.PS1.A.2 Construct and revise an explanation for the products of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties. Clarification Statement: Examples of chemical reactions could include the reaction of sodium and chlorine or of oxygen and hydrogen. Students will use the periodic table to	LT.1: Students will be able to understand the basics of chemical reactions. LT.2: Students will be able to identify the different parts of a chemical equation and select reactants, products, coefficients, and states. LT.3: Students will be able to deconstruct an equation and assess the number of atoms (moles) of each element and determine how to balance the equation utilizing lowest integer coefficients. LT.4: Students will be able to deduce a compound's formula from its name, interpret the chemical equation from the provided statement, and calculate the lowest integer coefficient(s) needed to balance the equation LT.5: Students will be able to categorize a chemical equation into one of five categories based on the attributes of the chemical equation. LT.6: Students will be able to predict the product(s) of a chemical equation provided the type of chemical reaction and the reactants.	Unit 4	Term 4	

	create an explanation of how main group elements react, by identifying reactants and products. Students should know that noble gasses do not usually react Vocab or Pre-requisite skills needed:				
Structure & Properties of Matter	9-12.PS1.A.5 Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy Clarification Statement: Emphasis is on the idea that a chemical reaction is a system that affects the energy change. Examples	LT.1: Students will be able to create a model of an exothermic reaction and an endothermic reaction LT.2: Students will be able to identify an exothermic reaction and an endothermic reaction based on an energy diagram LT.3: Students will be able to explain where the loss or gain of energy comes from in an endothermic or exothermic reaction	Unit 5	Term 5	

	of models could include molecular -level drawings and diagrams of reactions, graphs showing the relative energies of reactants and products, and representations showing energy is conserved. Vocab or Pre-requisite skills needed:				
Structure & Properties of Matter	9-12.PS1.A.2 Construct and revise an explanation for the products of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties	LT.1: Students will be able to state the oxidation number of an element using either its location on the periodic table (thus it's outermost electrons), the chemical formula of a compound, or the name of a chemical compound. LT.2: Students will be able to identify the number of valence (outermost electrons) of an element and be able to calculate the ratio it would react with another element based on valence electrons and periodic trends LT.3 Students will be able to predict the products of a chemical reaction based on periodic trends and valence electrons of the elements LT.4 Student will be able to calculate the amount of products produced or reactants needed if given	Unit 5	Term 5	

Clarification Statement: Examples of chemical reactions could	an amount of either a product or reactant. LT.5: Students will be able to explain how interactions between intermolecular forces influence the solubility and separation of mixtures.			
include the reaction of sodium and chlorine, or of	Calculate the number of solute particles, volume, or molarity of solutions.			
oxygen and hydrogen.	LT.6: Students will be able to demonstrate how a substance can change into another substance through different processes, and the change itself can be classified by the sort of processes that	Unit 7	Term 6	
Vocab or Pre-requisite skills needed:	 produced it. Identify a reaction as acid base, oxidation-reduction, or precipitation. Identify species as BrønstedLowry acids, bases, and/or conjugate acid-base pairs, based on proton-transfer involving those species. 			