Debugging the ChatGPT solution to the Halloween candy problem

input 4 3 1 5
9 15 2 7
2 5 6 17
1 13 4 8
max from 38 37 35 37
each house 27 34 27 32
15 18 19 25
1 13 4 8 copy this row from input table
def max candy collection(grid):
m = len(grid) # number of rows
n = len(grid[0]) # number of columns

Initialize the memo table with the same values as the bottom row of the grid

memo = [list(row) for row in grid[-1:1]

Fill in the memo table by working our way up from the second-to-last row
for i in range(m-2, -1, -1):
for j in range(n):
Calculate the maximum number of candy pieces that can be collected
from the next house by taking the maximum of the three possible
moves from the next row's corresponding houses, plus the value of
the current house.
candy = grid[i][j] + max(
memo [-1][3],
memo[-1] [max (j-1, 0)1],

memo[-1] [min(j+1, n-1)]

Store the maximum number of candy pieces in the table for this house

memo.insert (0, [candy])

Find the max collection by checking the values in the top row of the table

max candy = max (memo[0])

return max candy

Comparing Code Styles for the Original Flavor-Selection Problem

the 00 solution that we wrote by hand

class PickSweets: # the 00 solution that we wrote by hand

def init (self, sweets 1lst : "list[tuple[str, int]]"):

self.sweets list = sweets 1lst

def rating(self, for index : int) -> int:

return self.sweets list[for index] [1]

def max sweets rating(self, start ind: int) -> int:
if start ind == len(self.sweets list) - 1: # is the last sweet

return self.rating(start ind)

elif start ind == len(self.sweets list) - 2: # is the next to last sweet

return max(self.rating(start ind), self.rating(start ind + 1))

else:

pick this sweet = self.rating(start ind) + self.max sweets rating(start ind + 2)

skip this sweet = self.max sweets rating(start ind + 1)

return max (pick this sweet, skip this sweet)

def pick sweets(self) -> int:

return self.max sweets rating(0)

the non-00 solution from ChatGPT
def max sweets(n, tasty):
dp = [0] * n # create an array of length n to hold results
dp[n-1] = tasty[n-1][1]
dp[n-2] = max(tasty[n-2][1], tasty[n-1]1[1])
for 1 in range(n-3, -1, -1):
dp[i] = max(dpl[i+l], dp[i+2] + tasty[i][1l])
return dp[0]

A list of sweets and their ratings

our sweets 1lst = [("choc", 3), ("straw", 10), ("vanilla", 12), ("pistachio",

p = PickSweets (our sweets 1lst)

p.pick sweets()

max_ sweets (our sweets list)

16), ("rasp", 4)]

