Shedding	Light on	Heat E	nisade 4.	The Ke	lvin Scale
Shouding	Light on	IICAL E	pisout T.	1 110 120	avin Scarc

Part A

1.	The Celsius scale calls the melting point of ice	°C and the boiling point of water	°C. The
	Fahrenheit scale calls the melting point of ice	°F and the boiling point of water	°F.

- 2. Zero on the Kelvin scale is the same as ______°C on the Celsius scale.
- 3. What is significant about the temperature referred to in Question 2?
- 4. Fill in the table below.

Temperature				
Kelvin	degrees Celsius			
0				
1				
2				
	-270			
	-269			

Part B

_			10.1.	1 1.0 .	
4	The temperature	10 0 tym100	I tridge ic	and in a typical traczer is	
.)	The temperature	illi a tvinca	1 1110752 12	and in a typical freezer is	
• •	1 110 tollip oliveri	ee e , p e e		wiid iii w t/pitwi 1100201 is	•

- 6. In general, how does the average temperature of the planets change as you move further from the sun?
- 7. Zero Kelvin is also called zero.
- 8. All atoms are constantly moving (or vibrating). Describe what happens to the speed of the atoms that make up a substance as the temperature of the substance gets lower and lower.

Part C

9. Describe what a bimetal strip is and what it does?

Material	Coefficient of Thermal Expansion (metres extension per metre length per degree Celsius)		
Aluminium	0.000 023		
Brass	0.000 018		
Copper	0.000 016		
Steel	0.000 012		
Concrete	0.000 012		

- 10. What does the Coefficient of Thermal Expansion tell us about a substance?
- 11. If you have an aluminium rod and a steel rod and you heat them equally, which one will expand the most?
- 12. Write down the equation for calculating how much a material will expand when its temperature changes.

13. Fill in the table below.

Material	Coefficient	Original	Initial	Final	Temperature	Change in	Change in
	of Thermal	Length	Temperature	Temperature	Change	Length	Length
	Expansion	(m)	(°C)	(°C)	(°C)	(in metres)	(in millimetres)
steel		4	15	35			
concrete		30	0	40			
aluminium		100	5	30			
concrete		100		50	40		

P	art	D

14.	What is the coldest temperature that you can	get on the Celsius scale?
15.	If a gas at 0°C is cooled to -1°C, it will lose _	of its volume.

- 16. If oxygen gas and nitrogen gas are both heated by the same amount,
 - (a) the oxygen gas will expand more because oxygen atoms are heavier than nitrogen atoms.
 - (b) the nitrogen gas will expand more because nitrogen atoms are lighter than oxygen atoms.
 - (c) the two gases will expand by the same amount since <u>all gases</u> undergo the same thermal expansion when they undergo the same temperature change (unlike solids and liquids).

17	117les 2	t anything a		41	11	(2	7200	710
1/.	wnv can	t anvuning s	zet coldel	man zero	Kerviii	(01 -2)	\prime \circ \circ	۱۱ ر

- 18. A change of 1 Kelvin equals a change of _____ °C
- 19. Write the equations that link the Celsius scale and the Kelvin scale.

20. Complete the table.

Celsius scale (°C)	Kelvin scale (K)
0	
10	
20	
	303
	373
-18	

Part E	1
--------	---

21.	If a gas's temperature (in Kelvins) doubles, its volume will	(as long as the pressure is
	the same). For example, if the gas starts with a volume of 20	litres, it will thermally expand to
	litres.	

22.	If a gas's temperature (in Kelvins) increases by 35%, its volume will increase by	(as lo	ng as
	the pressure is the same).		

23. Calculate how the volume of a gas will change in the following conditions.

	Calculating the Change in Volume of a Gas When its Temperature Changes													
A	В	C	D	Е	F	G	Н	I	J					
Initial Volume (litres, L)	Initial Temperature (°C)	Final Temperature (°C)	Initial Temperature (Kelvin, K) (B + 273)	Final Temperature (Kelvin, K) (C + 273)	Change in Temperature (Kelvin, K) (E-D)	% Change in Temperature $(\frac{F}{D} \times 100\%)$	% Change in Volume (same as G!)	Actual Change in Volume (litres, L) $(\frac{H}{100} \times A)$	Final Volume (litres, L) (A+I)					
50	20	100												
20	0	40												
1	50	373												

(Note: The calculations in columns H, I, and J assume that the pressure of the gas has not changed.)

