
Proposal: Maintenance for the 
substrate-api-client Nov22 - Jan23 
Proponent: FsnxqJnqWVNMZZgxaQdhaCk9c5sL3WSggRCRqp1qEzk1L2i​
Date: November 2022​
Requested KSM: 2’866.6666 KSM​
Short Description: This proposal aims to fund: 1. maintenance and support for the substrate 
api client over 3 months (Nov-22 until Jan-23). 2. evaluation and design of two new features: a 
CLI-wallet implementation and full no_std-compatibility  

 

The substrate-api-client is a Rust-library for connecting to a substrate-based node via RPC. It is 
an alternative to subxt, which provides a similar functionality. RPC clients are needed in any 
software component, connecting to a substrate parachain. Therefore it is advisable, that there is 
more than one client available for Rust developers. Apart from that, the substrate-api-client fills 
a gap, providing the possibility to create extrinsics in a no_std-environment. Thereby facilitating 
extrinsic creation from within trusted hardware (like Intel sgx). This has a big potential for further 
usage in IoT environments. Last but not least, the substrate-api-client has an easy-to-use 
interface and comes with many practical examples, which makes it a good option for new 
developers.   

Originally, substrate-api-client has been developed by SCS as a side product of a web3 
foundation grant for SubstraTEE and has since been maintained and extended based on funds 
from both Encointer and Integritee. These teams have, however, only focused on the features 
they need for their own purposes and many good ideas and requests from the community have 
not been implemented yet. 

The substrate-api-client is currently used by at least 5 ecosystem projects actively. There are 
101 forks on github and over 20 Github organizations currently have a dependency on the 
client. We therefore consider this library a common good for the ecosystem and we are looking 
for sustainable financing of enhancements but also maintenance to keep up with frequent 
substrate/polkadot releases. 

Ongoing Maintenance 
With this proposal we would like to fund ongoing maintenance for the existing functionality over 
the course of 3 months. This includes: 

●​ Address current issues 
●​ Stay up-to-date with the ecosystem 

○​ Follow Polkadot releases within a timely manner 

https://github.com/scs/substrate-api-client/issues/240
https://github.com/scs/substrate-api-client/issues/240
https://github.com/paritytech/subxt
https://github.com/w3f/Grants-Program/blob/master/docs/accepted_grant_applications.md#surfing_woman-wave-1---first-quarter-2019
https://github.com/w3f/Grants-Program/blob/master/docs/accepted_grant_applications.md#surfing_woman-wave-1---first-quarter-2019
https://encointer.org/
https://integritee.network/


○​ Updates of used libraries (ws, serde, hex, …) as needed 
○​ Replacement of unmaintained libraries 

●​ Address technical debt 
○​ Improvements on code-quality (refactorings, add more tests, …) 

●​ Support existing and new users 
○​ Answer questions to usage and analyzing problems 
○​ Track current issues, document bugs and providing workarounds 
○​ Keep documentation up-to-date 

Current Issues 

As of November 2022, we would address the following list of issues: 
 

●​ Ease-of-use 
○​ More robust error and timeout handling (#157, #134, #241)  

●​ Improve performance to support more requests per second 
○​ Implement usage of concurrent threads (#133, #240). 
○​ If needed: change to different websocket library 

●​ Improve documentation 
○​ Add more examples (#225) 
○​ Get documentation up-to-date (#277) 

Long-term goals 
Apart from the ongoing maintenance we want to work towards a broader usage of the api-client. 
In the following we describe our current long-term goals: 

CLI-wallet implementation with decent security 
Substrate-api-client has already been used to implement wallet functionality, but for test 
purposes only and without any security features. We see potential in developing a proper CLI 
wallet with 2FA. While such a cli wallet won’t be as secure as a hardware wallet or air gapped 
parity signer phone, it will improve upon the security of the most popular wallet, the polkadot-js 
browser extension, which uses password protection only. We suggest using smartcard/yubikey 
features for enhanced protection of the keystore. The detailed design has yet to be elaborated 
and makes part of this proposal. 

Currently there is no command-line wallet implementation (see 
https://wiki.polkadot.network/docs/build-wallets) 

Tracking issues:  

●​ https://github.com/scs/substrate-api-client/issues/266  

https://docs.rs/ws/latest/ws/
https://docs.rs/serde/0.9.0-rc2/serde/index.html
https://docs.rs/hex/latest/hex/
https://github.com/scs/substrate-api-client/issues/157
https://github.com/scs/substrate-api-client/issues/134
https://github.com/scs/substrate-api-client/issues/241
https://github.com/scs/substrate-api-client/issues/133
https://github.com/scs/substrate-api-client/issues/240
https://github.com/scs/substrate-api-client/issues/225
https://github.com/scs/substrate-api-client/issues/277
https://github.com/integritee-network/worker/blob/60773433353508a5c3bceccf5de4cc8f8ab65324/cli/src/base_cli/mod.rs#L84
https://polkadot.js.org/extension/
https://polkadot.js.org/extension/
https://wiki.polkadot.network/docs/build-wallets
https://github.com/scs/substrate-api-client/issues/266


Full no_std compatibility for IoT 

no_std-compatibility is needed, whenever the std-library cannot be used for some reason. This 
is the case on some lightweight embedded devices, trusted execution environments (like Intel 
sgx) or from within a wasm blob. Currently, only part of the code is no_std-compatibile: 
extrinsics and metadata can be created and parsed. To actually send an extrinsic, via 
websockets, the std-library is still needed. ​
We propose to evaluate and work towards full no_std-compatibility, such that no_std-Rust 
code can communicate with an rpc-node. 

This can greatly extend the scope of substrate towards IoT 

Tracking issues 

●​ https://github.com/scs/substrate-api-client/issues/279  

Team 
Supercomputing Systems AG (SCS), based in Zurich, Switzerland 

As an engineering services company SCS AG has more than 25 years of experience in the 
fields of electronics, software and system design. Profound know-how, solid methodological 
competence as well as efficient project management are the foundation of our success. See our 
company website, with a description of our work. 

In the last 2 years our team “decentralized systems” has been the main contributor for the 
Integritee core development, has contributed to Encointer and has been contracted by other 
ecosystem projects. Within those 2 years we developed from substrate beginners to an 
experienced team, knowing how to implement, design and maintain substrate projects in a 
challenging environment. With the development of Integritee core, the team brought substrate 
pallets into trusted execution environments, requiring a profound knowledge of the internals of 
substrate. Furthermore the team acquired a deep knowhow on no_std-development in Rust. 

Our team on github: 

●​ haerdib 
●​ mullefel 
●​ echevrier 
●​ niederb 

https://github.com/scs/substrate-api-client/issues/279
https://www.scs.ch/en/projekt/blockchain-und-trusted-execution-schaffen-vertrauen/
https://github.com/integritee-network
https://github.com/integritee-network
https://github.com/encointer
https://github.com/haerdib
https://github.com/mullefel
https://github.com/echevrier
https://github.com/Niederb


 

Costs 
This proposal is offered at 2’866.6666 KSM. 

The following table gives an overview on the expected costs: 

 Deliverables Cost 

Maintenance   

Current Issues Fixing the issues defined in 
“Currrent Issues” 

 $ 30’667 

Stay up-to-date with 
ecosystem 

Updates from Nov-22 until 
Jan-23 

 $ 9’333 

Technical debt Code improvements  $ 5’333 

User support Support from Nov-22 until 
Jan-23 

 $ 6’667 

Long term goals   

CLI-wallet Analysis and Detail Design. 
No implementation planned in 
this phase. 

$ 20’000 

Full no_std compatibility for 
IoT 

Analysis and Detail Design. 
No implementation planned in 
this phase. 

$ 8’000 

Total Costs: Maintenance 
and Long term goals 

 2’750 KSM = $80’000, based 
on EMA7 7 day moving 
average for the KSM/USD 
rate (29.088 USD/KSM) 

Deposits Kusama   

Submission deposit for 
proposal 

 100 KSM 

Deciding deposit for proposal  16.6666 KSM 

Overall Total  2’866.6666 KSM 

 

https://kusama.subscan.io/tools/charts?type=price


As the project serves a common good and will continue to be published under Apache 2 license, 
SCS offers a discount to their usual rate, resulting in a price of 165 CHF (Swiss Francs) per 
hour. 

The costs of this proposal cover maintenance and support for 3 months plus an evaluation of 
our long-term goals. The idea is to continuously have follow-up proposals (for periods of 3 
months), that will cover costs for maintenance and smaller work packages. For bigger work 
packages in the future (e. g. the implementation of a CLI-wallet) we will make separate 
proposals. 

Maintenance will be done from November 1st 2022 until January 31st 2023. Analysis and 
Detail Design of the long term goals will also be done within this period. 

At the end of each month, SCS will report on the issues they worked on. The progress can 
further be tracked in the github-repository. 

In general, maintenance will be prioritized over long-term goals. Therefore the above plan is 
subject to change. 

Beneficiary 

FsnxqJnqWVNMZZgxaQdhaCk9c5sL3WSggRCRqp1qEzk1L2i 

owned by: 

Supercomputing System AG​
8005 Zürich​
Switzerland​
CHE-107.465.659​
E-mail: info@scs.ch 

mailto:info@scs.ch

	Proposal: Maintenance for the substrate-api-client Nov22 - Jan23 
	Ongoing Maintenance 
	Current Issues 

	Long-term goals 
	CLI-wallet implementation with decent security 
	Full no_std compatibility for IoT 

	Team 
	 
	Costs 
	Beneficiary 


